Techno Press
Tp_Editing System.E (TES.E)
Login Search


You have a Free online access.
eri
 
CONTENTS
Volume 4, Number 1, March 2016
 

Abstract
A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a realworld application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be 4.37 kWh/m2. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Key Words
energy and power production; renewable energy; alternative energy; solar energy; energy efficiency

Address
Wongyu Choi and Michael B. Pate: Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
Ryan D. Warren: Senior Project Manager, Nexant, Chicago, Illinois, USA

Abstract
There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

Key Words
brayton cycle; power tower; thermal storage; combined cycle; exergy analysis

Address
Soumitra Mukhopadhyay and Sudip Ghosh: Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India

Abstract
A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

Key Words
renewable energy; renewable energy sources; hybrid power system; peak load management; distributed renewable energy generation

Address
C.P. Vineetha and C.A. Babu: Division of Electrical Engineering, Cochin University of Science and Technology, Kochi, Kerala, India

Abstract
The quest to reduce the level of overdependence on fossil fuel product and to provide all required information on proven existing alternatives for renewable energy has resulted into rapid growth of research globally to identify efficient alternative renewable energy sources and the process technologies that are sustainable and environmentally friendly. The present study is aimed at production and characterization of bioethanol produced from sugarcane juice using a 24 factorial design investigating the effect of four parameters (reaction temperature, time, concentration of bacteria used and amount of substrate). The optimum bioethanol yield of 19.3% was achieved at a reaction temperature of 30oC, time of 72 hours, yeast concentration of 2 g and 300 g concentration of substrate (sugarcane juice). The result of statistical analysis of variance shows that the concentration of yeast had the highest effect of 7.325 and % contribution of 82.72% while the substrate concentration had the lowest effect and % contribution of -0.25 and 0.096% respectively. The bioethanol produced was then characterized for some fuel properties such as flash point, specific gravity, cloud point, pour point, sulphur content, acidity, density and kinematic viscosity. The results of bioethanol characterization conform to American society for testing and materials (ASTM) standard. Hence, sugarcane juice is a good and sustainable feedstock for bioethanol production in Nigeria owing relative abundance, cheap source of supply and available land for large scale production.

Key Words
bioethanol; production; statistical analysis; factorial design; parameters

Address
Bilyaminu Suleiman, Saka A. Abdulkareem, E.A. Afolabi, Umaru Musa, Ibrahim A. Mohammed and Tope A. Eyikanmi: Department of Chemical Engineering, School of Engineering and Engineering Technology, Federal University of Technology Minna PMB 65, Niger State, Nigeria

Abstract
In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to 1.5oC after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Key Words
heating COP; cooling COP; thermal storage; TRNSYS; heat pump; control strategies; parallel; series

Address
Abtin Ataei, Hoofar Hemmatabady and Seyed Yahya Nobakht: Department of Energy Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran



Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com