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1. Introduction 

 

The discovery of carbon nanotubes (CNTs) introduced a 

novel era in the nano scientific world (Iijima 1991). Since 

then, several investigations have been realized in the topic 

of the physical, electrical, mechanical and chemical 

behaviors of the nanostructures. The primary works 

demonstrate that the mechanic properties of the nano-

structures are different from other well-employed materials 

(Miller and Shenoy 2000, Bellifa et al. 2017a, Bensaid 

2017, Ehyaei et al. 2017, Karami et al. 2017, Bouadi et al. 

2018, Bensaid et al. 2018, Mehar and Panda 2018, 

Bakhadda et al. 2018, Akbas 2018, Tang and Liu 2018, 

Yazid et al. 2018, Youcef et al. 2018, Mokhtar et al. 2018, 

Kadari et al. 2018, Karami et al. 2018a, b, c, d, Cherif et al. 

2018, Draoui et al. 2019, Adda Bedia et al. 2019, Karami et 

al. 2019a, b, Semmah et al. 2019). The important properties 

of such structures have favored their applications in several 

fields such as nanodevices, nano-bearings, nanooscillators, 

hydrogen storage, and electrical batteries. 

The plate-as nanostructures like nanoplates or nano- 
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scale sheets are very important kinds of the nanostructures 

with 2D shapes (Shahadat et al. 2018). They contain 

important mechanic properties (Iijima 1991, Miller and 

Shenoy 2000, Shen and Zhang 2010, Pradhan and Phadikar 

2009, Eltaher et al. 2012, 2016, Ebrahimi and Salari 2015, 

Khorshidi et al. 2015, Chemi et al. 2015, Akbaş 2016, 

Ghorbanpour Arani et al. 2012, Janghorban 2016, Wu et al. 

2018) and with these unique characteristics they become 

ideal candidates for multifarious field of nanotechnology 

industry incorporating energy storage (Ma et al. 2008), 

nano electrome-chanical systems, strain, mass and pressure 

sensors (Sakhaee-Pour et al. 2008a, b), solar cells (Aagesen 

and Sorensen 2008), photo-catalytic degradation of organic 

dye (Ye et al. 2006), composite materials (Rafiee et al. 

2010) and ect. The size-dependent continuum modeling of 

the nanostructures has taken a wide attention by the 

scientific community because the controlled 

experimentations in nanosize are difficult and molecular 

dynamic simulations are highly expensive computationally. 

We can found in the literature various size dependent 

continuum models such as modified couple stress theory 

(Koiter 1969, Mindlin and Tiersten 1962, Toupin 1962), 

strain gradient elasticity theory (Nix and Gao 1998, Lam et 

al. 2003, Aifantis 1999, Li et al. 2016) and nonlocal 

elasticity theory (Eringen 1972). Among these models, the 
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Abstract.  In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of 

nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the 

natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to 
introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to 

examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are 

deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in 

specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the 

influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to 

length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail. 
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theory of nonlocal elasticity has been widely employed 

(Peddieson et al. 2003, Reddy 2007, Reddy and Pang 2008, 

Heireche et al. 2008, Murmu and Pradhan 2009a, b, Wang 

2009). To overcome the shortcomings of the conventional 

elasticity theory, Eringen and Edelen (1972) proposed the 

nonlocal elasticity model in 1972. They modified the 

conventional continuum mechanics to consider the small 

scale influences. It should be noted that in the nonlocal 

elasticity theory, the tensor of stress at an arbitrary point in 

the continuum of nano-material is related not only on the 

tensor of strain at that point but also on the tensor of strain 

at all other points in the continuum. Both the atomistic 

simulation data and the experimental studies on phonon 

dispersion indicated the accuracy of this remark (Eringen 

1983, Chen et al. 2004). 

The functionally graded materials (FGMs) are the novel 

generation of new composite materials in the family of 

engineering composites, whose characteristics are changed 

smoothly between two surfaces and the benefits of this 

combination lead to new structures which can withstand in 

important mechanical loads under high temperature 

environments (Ebrahimi and Rastgoo 2008a, b). Presenting 

new characteristics, FGMs have also attracted considerable 

research interests, which were principally focused on their 

bending, buckling and dynamic properties of FG structures 

(Ebrahimi et al. 2009a, b, Bouderba et al. 2013, 2016, 

Hebali et al. 2014, Meziane et al. 2014, Houari et al. 2016, 

Boukhari et al. 2016, Bennoun et al. 2016, Bousahla et al. 

2016, Bellifa et al. 2017b, Sekkal et al. 2017a, b, Benahmed 

et al. 2017, Atmane et al. 2017, Shahsavari et al. 2018, 

Benchohra et al. 2018, Younsi et al. 2018, Faleh et al. 

2018a, b, Bouazza et al. 2018, Zine et al. 2018, Bouhadra et 

al. 2018, Bourada et al. 2018, Boukhlif et al. 2019, Khiloun 

et al. 2019, Bourada et al. 2019, Zaoui et al. 2019). 

In addition, structural complements such as plates, 

beams and membranes in micro or nano-length size are 

often employed as elements in micro/nano 

electromechanical systems (MEMS/NEMS). Thus 

understanding the mechanics and physics characteristics of 

nanostructures is necessary for its practical uses. In past 

decades, the dynamic of FGMs has been employed 

extensively. Malekzadeh and Heydarpour (2012) studied the 

dynamic behavior of rotating FG cylindrical shells under 

thermal environment by using the first-order shear 

deformation theory (FSDT) of shells. Ungbhakorn and 

wattanasakulpong (2013) examined the thermo-elastic 

dynamic response of FG plates carrying distributed patch 

mass based on HSDT. Kumar and Lal (2013) examined the 

first three natural frequencies of the free axisymmetric 

vibration of the 2D FG annular plates resting on Winkler 

foundation by employing differential quadrature technique 

and Chabyshev collocation method. Based on the 3D theory 

of elasticity and considering that the mechanical 

characteristics of the materials changed continuously in the 

direction of thickness, the 3D free and forced vibration 

investigation of FG circular plate with various boundary 

conditions was established by Nie and Zhong (2007). 3D 

elasticity theory was utilized, and novel sets of admissible 

functions for the kinematics were developed to improve the 

effectiveness of the Ritz technique in modeling the behavior 

of the cracked plates. Matsunaga (2008) analyzed the 

buckling stresses and the natural frequencies of FG plates 

by considering the influences of transverse shear and 

normal deformations. Ke et al. (2013) proposed a non-

conventional micro-plate model for the axisymmetric 

nonlinear dynamic analysis of annular FG micro-plates by 

using the modified couple stress theory, FSDT and von-

Karman geometric nonlinearity theory. Ke et al. (2012) also 

investigated the bending, stability and dynamic of annular 

FG micro-plates based on the modified couple stress theory 

and FSDT. Asghari and Taati (2013) employed a size-

dependent approach for mechanical investigations of FG 

micro-plates based on the modified theory of couple stress. 

Kocaturk and Akbas (2012) examined the thermal influence 

on post-buckling response of FGM beams based on 

Timoshenko beam theory and by employing finite element 

formulation. The vibration characteristics of beam with 

power law properties graduation in the transversal or the 

axial directions was reported by Alshorbagy et al. (2011). 

Recently, Eltaher et al. (2012, 2013a) used a finite element 

approach for dynamic investigation of FG nanoscale beams 

based on nonlocal Euler-Bernoulli beam theory. They also 

discussed the size-dependent bending-buckling response of 

FG nanobeams by using the nonlocal continuum theory 

(Eltaher et al. 2013b). Dynamic behavior of simply 

supported Timoshenko FG nanoscale beams were studied 

by Rahmani and Pedram (2014). Zemri et al. (2015) 

investigated the mechanical response of FG nanoscale beam 

using a refined nonlocal shear deformation theory beam 

theory. Belkorissat et al. (2015) examined the dynamic 

properties of FG nano-plate using a new nonlocal refined 

four variable theory. Ahouel et al. (2016) studied the size-

dependent mechanical behavior of FG trigonometric shear 

deformable nanobeams including neutral surface position 

concept. Bounouara et al. (2016) presented a nonlocal 

zeroth-order shear deformation theory for free vibration of 

FG nanoscale plates resting on elastic foundation. Khetir et 

al. (2017) developed a novel nonlocal trigonometric shear 

deformation theory for thermal buckling analysis of 

embedded nanosize FG plates. Bouafia et al. (2017) 

proposed a nonlocal quasi-3D theory for bending and free 

flexural vibration behaviors of FG nanobeams. Besseghier 

et al. (2017) analyzed the dynamic response of embedded 

nanosize FG plates using a new nonlocal trigonometric 

shear deformation theory. Mouffoki et al. (2017) examined 

the dynamic response of nonlocal advanced nanobeams in 

hygro-thermal environment using a new two-unknown 

trigonometric shear deformation beam theory. Karami et al. 

(2019c) investigated the wave propagation of FG 

anisotropic nanoplates resting on Winkler-Pasternak 

foundation. Recently, several authors proposed advanced 

plate/beam theories to study the mechanical behavior of 

nano- or macro-structures (Belabed et al. 2014, Hamidi et 

al. 2015, Kar and Panda 2016a, b, Bousahla et al. 2014, 

Beldjelili et al. 2016, Sahoo et al. 2016, Draiche et al. 2016, 

Bouazza et al. 2016, Mehar and Panda 2016, Becheri et al. 

2016, Katariya et al. 2017a, b, c, El-Haina et al. 2017, Fahsi 

et al. 2017, Mehar et al. 2017, Ebrahimi et al. 2017, Chikh 

et al. 2017, Sahoo et al. 2017, Abdelaziz et al. 2017, Singh 

and Panda 2017, Hirwani et al. 2017, Katariya and Panda 
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2018, Ellali et al. 2018, Mehar et al. 2018a, b, Katariya et 

al. 2018a, b, Kaci et al. 2018, Attia et al. 2018, Dash et al. 

2018, Belabed et al. 2018, Katariya and Panda 2019, 

Katariya et al. 2019). 

In the current work, the dynamic of FG nanoscale plates 

is studied based on the cubic quasi 3D high shear 

deformation theory in the conjunction with the nonlocal 

elasticity model. By considering the integral term in the 

kinematic led to a reduction in the number of variables and 

equations of motion. The Navier solution is employed to 

investigate the dynamic behavior of the FG nanoplates. It is 

considered that the material characteristics are varying 

within the thickness according to the power law variation. 

Numerical results are provided to be utilized as benchmarks 

for the application and the design of nanoelectronic and 

nano-drive devices, nano-oscillators, and nanosensors, in 

which nanoplates act as basic elements. They can also be 

useful as valuable sources for validating other approximate 

methods and formulations. 
 

 

2. Theory and formulation 
 

2.1 Nonlocal power-law FG nanoplate equations 
 

Consider a rectangular nanoscale plate of length a, 

width b, and total thickness h and composed of FGMs 

within the thickness as demonstrated in Fig. 1. 
 

 ( ) ( )c m f mE z E E V z E  
 

(1) 

 

 ( ) ( )c m f mz V z     
 

(2) 

 

where the subscripts c and m denote the ceramic and 

metallic constituents, respectively, and Vf is the volume 

fraction that is given by the following expression 
 

1
( )

2

n

f

z
V z

h

 
  
   

(3) 

 

where n is the gradient index and takes only positive values. 

Poisson’s ratio v is the same for all the ceramic/ metal 

materials that are employed here, so it is considered to be 

constant and is assumed to be equal to 0.3 throughout the 

investigation (Reddy 2011). The typical values for metals  
 

 

 

Fig. 1 The geometry of a FGM plate 
 

Table 1 The material properties of the employed FG plate 

Material 
Properties 

E (GPa) v ρ (kg/m3) 

Aluminum (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

Si3N4 348.43 0.3 2370 

SUS304 201.04 0.3 8166 
 

 

 

and employed in the FG nanoscale plate are reported in 

Table 1. 

 

2.2 The nonlocal elasticity theory 
 

In nonlocal theory, the field of stress at each point body 

is a function of the field of strain. So stress plays a 

considerable role in the model which is presented by the 

following expression (Khorshidi et al. 2015) 
 

   ' ' 'ij ij

V

t X X X dV  
 

(4) 

 

where X is a point on the body that the tensor of stress on its 

efficacy, X’ can be any point else in the body, V is the 

volume of a region of the body that integral is considered 

on it, ζij is the tensor of classical stress, α(|X′ ‒ X|) is the 

nonlocal kernel function related to the internal characteristic 

length. With respect to characteristics of nonlocal kernel 

function α(|X′ ‒ X|) that are presented by Eringen (1983), 

taking in a Greens function of a linear differential operator, 

ℑ, can be defined as following 
 

   ' 'X X X X    
 

(5) 

 

Substituting Eq. (5) into Eq. (4), the primary expression 

(1) form of the following differential equation is determined 

as 

 ij ijt  
 

(6) 

 

For the nonlocal linear elastic solids, the equations of 

motion have the following form (Narendar 2011) 
 

, ( )ij j i it f z u 
 

(7) 

 

where ρ is the mass density, fi body loads and ui is the 

vector of displacement. Substituting Eq. (7) into Eq. (6) 

yields to the following relation 

 

 ( ) 0ij i if z u   
 

(8) 

 

The nonlocal theory with the linear differential operator 

for the 3D case is presented by the following expression 

(Sakhaee-Pour et al. 2008a) 
 

2 21   
 

(9) 
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where 2 is the Laplace operator, which in Cartesian 

coordinates is defined by 2 = ∂2 / x2 + ∂2 / y2 + ∂2 / z2 and μ 

= e0a, a is the internal property length and e0 is the material 

constant which is predicted by the experiment. The value of 

the nonlocal parameter is related to the boundary condition, 

the chirality, the mode shapes, the number of walls, and the 

nature of motions (Hosseini-Hashemi et al. 2013a). There is 

no accurate way to compute this parameter, but it is 

considered that the factor be obtained by conducting a 

comparison of dispersion curves from nonlocal elasticity 

and lattice dynamics of nano-material crystal structure 

(Hosseini-Hashemi et al. 2013a). 

 

2.3 The assumptions made in the present theory 
 

(1) The components of displacement u and v are the 

axial displacements of the middle plane in x and y 

directions respectively, and w is the vertical 

displacement of the middle plane in z direction. 

The magnitude of the vertical displacement w is not 

of the same order as the thickness h of the plate and 

is small with respect to the plate thickness. 

(2) The axial displacements, u and v incorporate three 

parts: 

 

 A displacement part equivalent to the displacement 

used in the classical plate theory (CPT). 

 A displacement component owing to the shear 

deformation which is included via undetermined 

integral. 

 The shear strains in z direction are zero in the bottom 

and top faces of the plates. 

 

(1) The vertical displacement w in z direction is 

considered to be a function of y and x coordinates. 

(2) The nanoplate is subjected to the vertical load only. 

 

The displacement field of the cubic shear deformation 

model is expressed as below (Abualnour et al. 2018) 
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The coefficients k1 and k2 depends on the geometry. In 

this work, the shape function is considered based on the 

cubic function given by 
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and u0 (x, y), v0 (x, y), w0 (x, y), θ (x, y) and φz (x, y) are the 

five variables displacement functions of middle surface of 

the plate. 

With the linear supposition of von-Karman strain, the 

displacement strain field will be as what follows 
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The integrals presented in the above equations shall be 

resolved by a Navier type solution and can be expressed as 

follows 
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where the coefficients A′ and B′ are expressed according to 

the type of solution employed, in this case by using Navier. 

Therefore, A′ and B′are written as follows 
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where α and β are defined in expression (29). 

The Hamilton’s principle is utilized to determine the 

equation of motion. The Hamilton’s principle in case of 

local form is obtained as what follows (Al-Basyouni et al. 

2015, Bourada et al. 2015, Attia et al. 2015, Yahia et al. 

2015, Bellifa et al. 2016, Benadouda et al. 2017, Zidi et al. 

2017, Klouche et al. 2017, Hachemi et al. 2017, Fourn et al. 

2018) 
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where δ is the variation operator, U is the strain energy, and 

K is the kinetic energy. 

The variation of strain energy of the plate is given by 
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where A is the top surface and the stress resultants N, M, 

and S are expressed by 
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The variation of kinetic energy is expressed as 
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where dot-superscript convention indicates the differentia-

tion with respect to the time variable t; ρ (z) is the mass 

density; and (I0, J0, I1, I2, J1, J2, K2, K3) are mass inertias 

expressed as 
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Substituting the expressions for δU and δK from Eqs 

(18) and (19) into Eq. (20) and integrating by parts and 

collecting the coefficients of δu0, δv0, δw0, δθ, and δφz , the 

following equations of motion of the plate are obtained as 
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2.4 The nonlocal elasticity model for FG nano-plate 
 

The constitutive relations of nonlocal theory for a FG 

nano-plate using Eq. (6) can be written as 
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where 
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Integrating Eq. (20) over the plate’s cross-section area 

yields the force–strain and the moment–strain of the 

nonlocal refined FG nano-plates as follows 
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Where the cross-sectional rigidities are defined as 

follows 
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The nonlocal equations of motion of FG nano-plates in 

terms of the displacement can be obtained by substituting 

Eqs. (24a) and (24b), into Eq. (21) as follows 
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where dij, dijl and dijlm are the following differential 

operators 
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3. Solution procedures 
 

Here, based on the Navier type procedure, an analytical 

solution of the governing equations for dynamic of a simply 

supported FG nanoplate is presented. The displacement 

functions are written as product of undetermined 

coefficients and known trigonometric functions to respect 

the governing equations and the conditions at x = 0, a and y 

= 0, b. The following displacement fields are assumed to be 

of the form 

194



 

Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT 

 

0
 

0

 
0

1 1  

 

cos(  )sin(  )

sin(  ) cos(  )

sin(  )sin(  )

sin(  )sin(  )

sin(  )sin(  )

i t
mn

i t
mn

i t
mn

m n i t
mn

i tz
mn

U e x yu

V e x yv

w W e x y

X e x y

Y e x y











 

 

 

  


 

 

 

 
   
   
    

   
   
   
    

 



 

(28) 

 

where (Umn, Vmn, Wmn, Xmn, Ymn) are the unknown Fourier 

coefficients. 

with 
 

am /     and   bn /   (29) 

 
Inserting Eq. (28) into Eqs. (26), leads to 
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4. Numerical results and discussions 
 
In this work, two separate parts are considered; in the 

first part, have been examined and validated isotropic 

rectangular nano-plate, and in the second part, it does for 

FG one. 
 

4.1 Isotropic rectangular nano-plate 
 

Only homogeneous plate (n = 0) is employed in this part 

for the verification. 

Tables 2-4 provide the first three non-dimensional 

frequency and Frequency Ratios (FR) for simply supported 

boundary condition with different values of aspect ratio (η = 

b/a), specified values of non-dimensional scale parameter (ζ 

= μ/a) and the thickness to length ratio h/a = 0.1 on 

rectangular nano-plates. The natural frequency parameters 

written in non-dimensional form 𝛽 = 𝜔𝑎2 𝜌ℎ/𝐷,  D = 

Eh3 / 12(1 ‒ v2) are the flexural rigidity. The nano-plate is 

made of the following material properties: E = 210 GPa, v = 

0.3 and ρ = 7800 (kg/m3). The computed frequencies based 

on the proposed nonlocal cubic shear deformation theory 

are compared with those given by Hosseini-Hashemi et al. 

(2013b) based on Mindlin Plate Theory (MPT) and those 

reported by Khorshidi et al. (2015) based on exponential 

shear deformation theory. Also, the Frequency Ratio (FR) 

expression between the nonlocal and local non-dimensional 

frequencies is given as what follows 
 

NL

L
FR






 

(32) 

 

where βNL is the non-dimensional nonlocal frequency 

parameter, and βL is the non-dimensional local frequency 

parameter. 

It can be seen from Tables 2-4, that the obtained values 

for non-dimensional nonlocal frequency parameter βNL are 

in good agreement with those provided by Khorshidi et al. 

(2015) and Hosseini-Hashemi et al. (2013b). The 

introduction of stretching thickness effect makes the 

nanoplate more stiffness. 
 

4.2 FGM plate 
 

Table 5 presents a comparison of the frequency 

p a r a me te r s  𝛽 = 𝜔ℎ 𝜌𝑐/𝐸𝑐  f o r  A L/A L 2 O 3  sq u a r e 

moderately thick plates with those provided by Hosseini- 
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Table 2 The variations of the non-dimensional frequency ( 𝛽 = 𝜔𝑎2 𝜌ℎ/𝐷) and the frequency ratio (FR) for the nonlocal 

plate (m = 1, n = 1) 

 Method 
 ζ = 0 ζ = 0.2 ζ = 0.4 ζ = 0.6 ζ = 0.8 

βNL FR FR FR FR FR 

η = 0.6 

Present (εz ≠ 0) 35.0858 1.0000 0.6335 0.3789 0.2633 0.2005 

Present (εz = 0) 35.0045 1.0000 0.6335 0.3789 0.2633 0.2005 

Khorshidi et al. (2015) 35.015 1.0000 0.6335 0.3789 0.2633 0.2005 

Hosseini-Hashemi et al. (2013b) 35.0643 1.0000 0.6335 0.3789 0.2633 0.2005 

η = 0.8 

Present (εz ≠ 0) 24.2431 1.0000 0.7051 0.4451 0.3146 0.2412 

Present (εz = 0) 24.2034 1.0000 0.7051 0.4451 0.3146 0.2412 

Khorshidi et al. (2015) 24.2084 1.0000 0.7051 0.4451 0.3146 0.2412 

Hosseini-Hashemi et al. (2013b) 24.2330 1.0000 0.7050 0.4451 0.3146 0.2412 

η = 1 

Present (εz ≠ 0) 19.0902 1.0000 0.7475 0.4904 0.3512 0.2708 

Present (εz = 0) 19.0653 1.0000 0.7475 0.4904 0.3512 0.2708 

Khorshidi et al. (2015) 19.0684 1.0000 0.7475 0.4904 0.3512 0.2708 

Hosseini-Hashemi et al. (2013b) 19.0840 1.0000 0.7475 0.4904 0.3512 0.2708 
 

Table 3 The variations of the non-dimensional frequency ( 𝛽 = 𝜔𝑎2 𝜌ℎ/𝐷) and the frequency ratio (FR) for the nonlocal 

plate (m = 2, n = 1) 

 Method 
 ζ = 0 ζ = 0.2 ζ = 0.4 ζ = 0.6 ζ = 0.8 

βNL FR FR FR FR FR 

η = 0.6 

Present (εz ≠ 0) 60.3530 1.0000 0.5216 0.2923 0.1997 0.1511 

Present (εz = 0) 60.1243 1.0000 0.5216 0.2923 0.1997 0.1511 

Khorshidi et al. (2015) 60.1556 1.0000 0.5216 0.2923 0.1997 0.1511 

Hosseini-Hashemi et al. (2013b) 60.2869 1.0000 0.5216 0.2923 0.1997 0.1511 

η = 0.8 

Present (εz ≠ 0) 50.3554 1.0000 0.5594 0.3197 0.2194 0.1663 

Present (εz = 0) 50.1930 1.0000 0.5594 0.3197 0.2194 0.1663 

Khorshidi et al. (2015) 50.2147 1.0000 0.5594 0.3197 0.2194 0.1663 

Hosseini-Hashemi et al. (2013b) 50.3100 1.0000 0.5594 0.3197 0.2194 0.1664 

η = 1 

Present (εz ≠ 0) 45.6216 1.0000 0.5799 0.3353 0.2308 0.1752 

Present (εz = 0) 45.4869 1.0000 0.5799 0.3353 0.2308 0.1752 

Khorshidi et al. (2015) 45.5048 1.0000 0.5799 0.3353 0.2308 0.1752 

Hosseini-Hashemi et al. (2013b) 45.5845 1.0000 0.5799 0.3353 0.2308 0.1752 
 

Table 4 The variations of the non-dimensional frequency ( 𝛽 = 𝜔𝑎2 𝜌ℎ/𝐷) and the frequency ratio (FR) for the nonlocal 

plate (m = 2, n = 2) 

 Method 
 ζ = 0 ζ = 0.2 ζ = 0.4 ζ = 0.6 ζ = 0.8 

βNL FR FR FR FR FR 

η = 0.6 

Present (εz ≠ 0) 122.0595 1.0000 0.3789 0.2005 0.1352 0.1018 

Present (εz = 0) 121.2246 1.0000 0.3789 0.2005 0.1352 0.1018 

Khorshidi et al. (2015) 121.356 1.0000 0.3789 0.2005 0.1352 0.1018 

Hosseini-Hashemi et al. (2013b) 121.7770 1.0000 0.3789 0.2006 0.1352 0.1018 

η = 0.8 

Present (εz ≠ 0) 87.3788 1.0000 0.4451 0.2412 0.1635 0.1233 

Present (εz = 0) 86.9235 1.0000 0.4451 0.2412 0.1635 0.1233 

Khorshidi et al. (2015) 86.9898 1.0000 0.4451 0.2412 0.1635 0.1233 

Hosseini-Hashemi et al. (2013b) 87.2357 1.0000 0.4451 0.2412 0.1635 0.1233 
 

196



 

Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT 

 

 

 

 

 

 

 

Table 4 Continued 

 Method 
 ζ = 0 ζ = 0.2 ζ = 0.4 ζ = 0.6 ζ = 0.8 

βNL FR FR FR FR FR 

η = 1 

Present (εz ≠ 0) 70.1122 1.0000 0.4904 0.2708 0.1843 0.1393 

Present (εz = 0) 69.8093 1.0000 0.4904 0.2708 0.1843 0.1393 

Khorshidi et al. (2015) 69.8517 1.0000 0.4904 0.2708 0.1843 0.1393 

Hosseini-Hashemi et al. (2013b) 70.0219 1.0000 0.4904 0.2708 0.1844 0.1393 
 

Table 5 The comparison of the natural frequency parameter (𝛽 = 𝜔ℎ 𝜌𝑐ℎ/𝐸𝑐) for AL/AL2O3 square plates (η = 1) 

h/a (m,n) Method 
n 

0 0.5 1 4 10 

0.05 (1, 1) 

Present (εz ≠ 0) 0.0148 0.0126 0.0115 0.0100 0.0095 

Present (εz = 0) 0.0148 0.0125 0.0113 0.0098 0.0094 

Khorshidi et al. (2015) 0.0148 0.0125 0.0113 0.0098 0.0094 

Hosseini-Hashemi et al. (2010) 0.0148 0.0128 0.0115 0.0101 0.0096 

Zhao et al. (2009) 0.0146 0.0124 0.0112 0.0097 0.0093 

0.1 

(1, 1) 

Present (εz ≠ 0) 0.0578 0.0494 0.0449 0.0389 0.0368 

Present (εz = 0) 0.0577 0.0490 0.0442 0.0381 0.0364 

Khorshidi et al. (2015) 0.0577 0.0490 0.0442 0.0381 0.0364 

Matsunaga (2008) 0.0577 0.0492 0.0443 0.0381 0.0364 

Hosseini-Hashemi et al. (2010) 0.0577 0.0492 0.0445 0.0383 0.0363 

Zhao et al. (2009) 0.0568 0.0482 0.0435 0.0376 0.3592 

(1, 2) 

Present (εz ≠ 0) 0.1381 0.1184 0.1077 0.0923 0.0868 

Present (εz = 0) 0.1376 0.1174 0.1059 0.0903 0.0856 

Khorshidi et al. (2015) 0.1377 0.1174 0.1059 0.0902 0.0856 

Matsunaga (2008) 0.1381 0.1180 0.1063 0.0904 0.0859 

Zhao et al. (2009) 0.1354 0.1154 0.1042 - 0.085 

(2, 2) 

Present (εz ≠ 0) 0.2122 0.1825 0.1660 0.1409 0.1318 

Present (εz = 0) 0.2113 0.1807 0.1631 0.1378 0.1301 

Khorshidi et al. (2015) 0.2114 0.1808 0.1632 0.1377 0.1300 

Matsunaga (2008) 0.2121 0.1819 0.1640 0.1383 0.1306 

Zhao et al. (2009) 0.2063 0.1764 0.1594 - 0.1289 

0.2 

(1, 1) 

Present (εz ≠ 0) 0.2122 0.1825 0.1660 0.1409 0.1318 

Present (εz = 0) 0.2113 0.1807 0.1631 0.1378 0.1301 

Khorshidi et al. (2015) 0.2114 0.1808 0.1632 0.1377 0.1300 

Matsunaga (2008) 0.2121 0.1819 0.1640 0.1383 0.1306 

Hosseini-Hashemi et al. (2010) 0.2112 0.1806 0.1650 0.1371 0.1304 

Zhao et al. (2009) 0.2055 0.1757 0.1587 0.1356 0.1284 

(1, 2) 

Present (εz ≠ 0) 0.4660 0.4042 0.3677 0.3047 0.2812 

Present (εz = 0) 0.4623 0.3987 0.3607 0.2980 0.2771 

Khorshidi et al. (2015) 0.4629 0.3993 0.3611 0.2976 0.2772 

Matsunaga (2008) 0.4658 0.4040 0.3644 0.3000 0.2790 

(2, 2) 

Present (εz ≠ 0) 0.6760 0.5893 0.5365 0.4381 0.4009 

Present (εz = 0) 0.6691 0.5807 0.5254 0.4284 0.3948 

Khorshidi et al. (2015) 0.6691 0.5807 0.5254 0.4280 0.3947 

Matsunaga (2008) 0.6753 0.5891 0.5444 0.4362 0.3981 
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Table 7 The frequency parameter (𝛽 = 𝜔𝑎2 𝜌𝑐ℎ/𝐸𝑐) for 

AL/ZrO2 plates (δ = 0.2, n = 1) 

b

a
 2 1.5 1 2/3 0.5 

Present εz ≠ 0 3.2091 3.6702 4.9411 7.5878 10.9096 

Present εz = 0 3.1796 3.6354 4.8909 7.5005 10.7682 

Khorshidi 

et al. (2015) 
3.1198 3.3720 4.9325 6.9551 9.9853 

 

 

 

Hashemi et al. (2010), Zhao et al. (2009), Khorshidi et al. 

(2015) and Matsunaga (2008) when n = 0, 0.5, 1, 4 and 10. 

In addition, the corresponding mode shapes m and n, 

representing the number of half-waves in the x and y 

directions, respectively, are given for any of the frequency 

parameters 𝛽 . 
In Table 6, a comparison of the results (𝛽 = 𝜔ℎ  

 𝜌𝑚/𝐸𝑚 ) for AL/ZrO2 square plates with those of 2D 

HSDT (Matsunaga 2008), 3D theory by using the power 

series procedure (Vel and Batra 2004), finite element HSDT 

method (Pradyumna and Bandyopadhyay 2008), finite 

element FSDT method (Hosseini-Hashemi et al. 2008), an 

analytical FSDT solution (Hosseini-Hashemi et al. 2010) 

and HSDT solution Khorshidi et al. (2015) is demonstrated. 

From Tables 5 and 6, it can be confirmed that there is a very 

good agreement among the results confirming the high 

accuracy of the proposed analytical formulation. The effect 

of the geometric ratio η = b/a on the frequency parameters 

𝛽 = 𝜔𝑎2 𝜌𝑐ℎ/𝐸𝑐  of a rectangular Al/ZrO2 plate (δ = h/a = 

0.2, n = 1) is shown in Table 7. 

From Table 7, it can be deduced that with a reduction in 

the aspect ratio, the frequency parameter increases due to 

the increase of the stiffness of the plate. It can be also 

observed that the stretching effect increases the frequency 

parameter. 

In Table 8, the influences of different parameters on the 

non-dimensional frequencies of the rectangular FG 

nanoplate are presented. From these results, it is found that 

by increasing the scale parameter, the rate of variation of 

non-dimensional frequencies diminishes, because by 
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Fig. 2 The influences of the aspect ratio and the scale 

parameter on the non-dimensional frequency 
 

 

increasing the scale parameter, the strain energy diminishes, 

and it causes a reduction of the rigidity of the plates. 

In Fig. 2, the influences of the aspect ratio and the scale 

parameter on the non-dimensional frequency of the 

rectangular nanoscale plates are illustrated. It is 

demonstrated that with an increase in the ratio b/a, the non-

dimensional frequency increases. It is observed that for the 

lower ratios of b/a, the effect of the scale parameters 

diminishes. 

In Fig. 3, the influences of the scale parameter on the 

frequency ratio of the nano-plates are demonstrated for 

different modes of vibration. From these results, it seems 

that the frequency ratios for the lower modes are more than 

those for the higher modes. 

Fig. 4 demonstrates the influence of the gradient index 

on the dimensionless two first frequencies of FG nano-plate 

(SUS304/ Si3N4) with a/h = 10 for different values of the 

small scale parameter. It can be observed that the 

dimensionless frequency diminishes as the gradient index 

increases. This is due to the fact that an increase in the 

Table 6 The comparison of the fundamental frequency parameter (𝛽 = 𝜔ℎ 𝜌𝑐ℎ/𝐸𝑐) for AL/ZrO2 square plates (η = 1) 

Method 

0n 
 

1n 
 

2.0  

10

1
  1.0  05.0  1.0  2.0  2n 

 
3n 

 
5n 

 

Present εz ≠ 0 0.5424 0.0672 0.0160 0.0624 0.2300 0.2285 0.2290 0.2295 

Present εz = 0 0.5380 0.0671 0.0158 0.0619 0.2277 0.2257 0.2263 0.2272 

Khorshidi et al. (2015) 0.4629 0.0577 0.0158 0.0619 0.2278 0.2288 0.2301 0.2327 

Matsunaga (2008) 0.4658 0.0577 0.0158 0.0619 0.2285 0.2264 0.2270 0.2281 

Vel and Batra (2004) 0.4658 0.0577 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225 

HSDT(a) 0.4658 0.0578 0.0157 0.0613 0.2257 0.2237 0.2243 0.2253 

FSDT(a) 0.4619 0.0577 0.0162 0.0633 0.2333 0.2325 0.2334 0.2334 

Hosseini-Hashemi et al. (2010) 0.4618 0.0576 0.0158 0.0611 0.2270 0.2249 0.2254 0.2265 
 

(a) Pradyumna and Bandyopadhyay (2008) 
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Table 8 The effect of the non-dimensional nonlocal parameter ζ and the gradient index n on the non 

dimensional frequencies 𝛽 = 𝜔ℎ 𝜌𝑐ℎ/𝐸𝑐of the rectangular FG nanoplate (AL/AL2O3) 

ζ 
b

a
 

a

h
 Method 

Gradient index 

0 5 10 

0.0 

0.5 

0.2 

Present εz ≠ 0 0.1381 0.0909 0.0868 

Present εz = 0 0.1376 0.0891 0.0856 

Khorshidi et al. (2015) 0.2114 0.1357 0.0856 

0.1 

Present εz ≠ 0 0.0365 0.0244 0.0234 

Present εz = 0 0.0365 0.0239 0.0231 

Khorshidi et al. (2015) 0.0365 0.0239 0.0231 

1.0 

0.2 

Present εz ≠ 0 0.2122 0.1386 0.1318 

Present εz = 0 0.2113 0.1358 0.1301 

Khorshidi et al. (2015) 0.2310 0.1356 0.1300 

0.1 

Present εz ≠ 0 0.0578 0.0384 0.0368 

Present εz = 0 0.0577 0.0377 0.0364 

Khorshidi et al. (2015) 0.0577 0.0377 0.0364 

0.1 

0.5 

0.2 

Present εz ≠ 0 0.1306 0.0858 0.0819 

Present εz = 0 0.1299 0.0841 0.0808 

Khorshidi et al. (2015) 0.1299 0.1239 0.0808 

0.1 

Present εz ≠ 0 0.0345 0.0230 0.0221 

Present εz = 0 0.0345 0.0226 0.0218 

Khorshidi et al. (2015) 0.0345 0.0226 0.0218 

1.0 

0.2 

Present εz ≠ 0 0.1939 0.1266 0.1205 

Present εz = 0 0.1931 0.1241 0.1189 

Khorshidi et al. (2015) 0.1932 0.1239 0.1188 

0.1 

Present εz ≠ 0 0.0528 0.0351 0.0337 

Present εz = 0 0.0527 0.0344 0.0332 

Khorshidi et al. (2015) 0.0527 0.0344 0.0332 

0.2 

0.5 

0.2 

Present εz ≠ 0 0.1130 0.0744 0.0710 

Present εz = 0 0.1126 0.0730 0.0701 

Khorshidi et al. (2015) 0.1127 0.0728 0.0700 

0.1 

Present εz ≠ 0 0.0299 0.0199 0.0191 

Present εz = 0 0.0299 0.0196 0.0189 

Khorshidi et al. (2015) 0.0299 0.0196 0.0189 

1.0 

0.2 

Present εz ≠ 0 0.1586 0.1036 0.0985 

Present εz = 0 0.1579 0.1015 0.0972 

Khorshidi et al. (2015) 0.1580 0.1014 0.0972 

0.1 

Present εz ≠ 0 0.0432 0.0287 0.0275 

Present εz = 0 0.0431 0.0282 0.0272 

Khorshidi et al. (2015) 0.0431 0.0282 0.0272 

0.3 0.5 

0.2 

Present εz ≠ 0 0.0950 0.0626 0.0597 

Present εz = 0 0.0948 0.0613 0.0589 

Khorshidi et al. (2015) 0.0948 0.0613 0.0589 

0.1 

Present εz ≠ 0 0.0252 0.0168 0.0161 

Present εz = 0 0.0251 0.0165 0.0159 

Khorshidi et al. (2015) 0.0251 0.0165 0.0159 
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gradient index leads to a decrease in the stiffness of the FG 

nano-plate. 

 

 

5. Conclusions 
 

The size-dependent dynamic properties of FG nano-

plate are analytically studied by using a simple cubic refined 
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Fig. 3 The effects of the aspect ratio and the nonlocal 

parameter on the non-dimensional frequency 

 

 

plate model based on the nonlocal differential constitutive 

relations of Eringen. The kinematic of the present theory is 

modified by considering undetermined integral terms in in-

plane displacements which results in a reduced number of 

variables compared with other HSDT of the same order. 

Comparing the obtained results with those found in the 

literature for FG nano-plates demonstrates a high stability 

and accuracy of the present solution. What presented herein 
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Fig. 4 Influence of the gradient index (n) and the scale 

parameter (μ) on dimensionless frequency for a 

simply supported square FG plate with a / h = 10: 

(a) first frequency; (b) second frequency 

Table 8 Continued 

ζ 
b

a
 

a

h
 Method 

Gradient index 

0 5 10 

0.3 1.0 

0.2 

Present εz ≠ 0 0.1273 0.0831 0.0791 

Present εz = 0 0.1268 0.0815 0.0781 

Khorshidi et al. (2015) 0.1269 0.0814 0.0780 

0.1 

Present εz ≠ 0 0.0347 0.0231 0.0221 

Present εz = 0 0.0346 0.0226 0.0218 

Khorshidi et al. (2015) 0.0346 0.0226 0.0218 

0.4 

0.5 

0.2 

Present εz ≠ 0 0.0801 0.0527 0.0503 

Present εz = 0 0.0798 0.0517 0.0497 

Khorshidi et al. (2015) 0.0798 0.0516 0.0496 

0.1 

Present εz ≠ 0 0.0212 0.0142 0.0136 

Present εz = 0 0.0212 0.0139 0.0134 

Khorshidi et al. (2015) 0.0212 0.0139 0.0134 

1.0 

0.2 

Present εz ≠ 0 0.1040 0.0679 0.0646 

Present εz = 0 0.1036 0.0666 0.0638 

Khorshidi et al. (2015) 0.1037 0.0665 0.0638 

0.1 

Present εz ≠ 0 0.0283 0.0189 0.0181 

Present εz = 0 0.0283 0.0185 0.0178 

Khorshidi et al. (2015) 0.0283 0.0185 0.0178 
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Fig. 4 Continued 

 

 

demonstrates the influences of the variations of the scale 

parameter, the ratio of the thickness to the length, the 

gradient indexes and the aspect ratio on the frequency 

values of a FG nano-plate. It is demonstrated that the 

frequency ratio diminishes with increasing the mode 

number and the value of the scale parameter, and also 

increasing the gradient index causes the non-dimensional 

frequencies to decrease. 

 

 

References 
 
Aagesen, M. and Sorensen, C. (2008), “Nanoplates and their 

suitability for use as solar cells”, Proceedings of Clean Technol., 

109-112. 

Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., 

Mahmoud, S.R. and Alwabli, A.S. (2017), “An efficient 

hyperbolic shear deformation theory for bending, buckling and 

free vibration of FGM sandwich plates with various boundary 

conditions”, Steel Compos. Struct., Int. J., 25(6), 693-704. 

Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2018), “A novel quasi-3D trigonometric plate 

theory for free vibration analysis of advanced composite 

plates”, Compos. Struct., 184, 688-697. 

Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., 

Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), “A new 

hyperbolic two-unknown beam model for bending and buckling 

analysis of a nonlocal strain gradient nanobeams”, J. Nano Res., 

57, 175-191. 

Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. 

(2016), “Size-dependent mechanical behavior of functionally 

graded trigonometric shear deformable nanobeams including 

neutral surface position concept”, Steel Compos. Struct., Int. J., 

20(5), 963-981. 

Aifantis, E. (1999), “Strain gradient interpretation of size effects”, 

Int. J. Fract., 95, 299-314. 

Akbaş, Ş.D. (2016), “Forced vibration analysis of viscoelastic 

nanobeams embedded in an elastic medium”, Smart Struct. 

Syst., Int. J., 18(6), 1125-1143. 

Akbas, S.D. (2018), “Forced vibration analysis of cracked 

functionally graded microbeams”, Adv. Nano Res., Int. J., 6(1), 

39-55. 

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), “Size 

dependent bending and vibration analysis of functionally graded 

micro beams based on modified couple stress theory and neutral 

surface position”, Compos. Struct., 125, 621-630. 

Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), “Free 

vibration characteristics of a functionally graded beam by finite 

element method”, Appl. Math. Model., 35(1), 412-425. 

Asghari, M. and Taati, E. (2013), “A size-dependent model for 

functionally graded micro-plates for mechanical analyses”, J. 

Vib. Cont., 19, 1614-1632. 

Atmane, H.A., Tounsi, A. and Bernard, F. (2017), “Effect of 

thickness stretching and porosity on mechanical response of a 

functionally graded beams resting on elastic foundations”, Int. 

J. Mech. Mater. Des., 13(1), 71-84. 

Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. 

(2015), “Free vibration analysis of functionally graded plates 

with temperature-dependent properties using various four 

variable refined plate theories”, Steel Compos. Struct., Int. J., 

18(1), 187-212. 

Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, 

A.S. (2018), “A refined four variable plate theory for 

thermoelastic analysis of FGM plates resting on variable elastic 

foundations”, Struct. Eng. Mech., Int. J., 65(4), 453-464. 

Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., 

Tounsi, A. and Mahmoud, S.R. (2018), “Dynamic and bending 

analysis of carbon nanotube-reinforced composite plates with 

elastic foundation”, Wind Struct., Int. J., 27(5), 311-324. 

Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), 

“Buckling of symmetrically laminated plates using nth-order 

shear deformation theory with curvature effects”, Steel Compos. 

Struct., Int. J., 21(6), 1347-1368. 

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Bég, 

O.A. (2014), “An efficient and simple higher order shear and 

normal deformation theory for functionally graded material 

(FGM) plates”, Compos. Part B, 60, 274-283. 

Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2018), “A new 3-unknown hyperbolic shear 

deformation theory for vibration of functionally graded 

sandwich plate”, Earthq. Struct., Int. J., 14(2), 103-115. 

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), “Hygro-

thermo-mechanical bending of S-FGM plates resting on 

variable elastic foundations using a four-variable trigonometric 

plate theory”, Smart Struct. Syst., Int. J., 18(4), 755-786. 

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2015), “On vibration properties of functionally 

graded nano-plate using a new nonlocal refined four variable 

model”, Steel Compos. Struct., Int. J., 18(4), 1063-1081. 

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, 
A. (2016), “Bending and free vibration analysis of functionally 
graded plates using a simple shear deformation theory and the 
concept the neutral surface position”, J. Braz. Soc. Mech. Sci. 
Eng., 38, 265-275. 

Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and 
Mahmoud, S.R. (2017a), “A nonlocal zeroth-order shear 
deformation theory for nonlinear postbuckling of nanobeams”, 
Struct. Eng. Mech., Int. J., 62(6), 695-702. 

Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, 
S.R. (2017b), “An efficient and simple four variable refined 
plate theory for buckling analysis of functionally graded plates”, 
Steel Compos. Struct., Int. J., 25(3), 257-270. 

Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and 
Mahmoud, S.R. (2017), “An efficient shear deformation theory 
for wave propagation in functionally graded material beams 
with porosities”, Earthq. Struct., Int. J., 13(3), 255-265. 

Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and 
Tounsi, A. (2017), “A novel quasi-3D hyperbolic shear 
deformation theory for functionally graded thick rectangular 
plates on elastic foundation”, Geomech. Eng., Int. J., 12(1), 9-
34. 

201



 

Sabrina Boutaleb et al. 

Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. 

and Mahmoud, S.R. (2018), “A new quasi-3D sinusoidal shear 

deformation theory for functionally graded plates”, Struct. Eng. 

Mech., Int. J., 65(1), 19-31. 

Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), “A novel five 

variable refined plate theory for vibration analysis of 

functionally graded sandwich plates”, Mech. Adv. Mater. 

Struct., 23(4), 423-431. 

Bensaid, I. (2017), “A refined nonlocal hyperbolic shear 

deformation beam model for bending and dynamic analysis of 

nanoscale beams”, Adv. Nano Res., Int. J., 5(2), 113-126. 

Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), “Dynamic 

analysis of higher order shear-deformable nanobeams resting on 

elastic foundation based on nonlocal strain gradient theory”, 

Adv. Nano Res., Int. J., 6(3), 279-298. 

Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 

(2017), “Free vibration analysis of embedded nanosize FG 

plates using a new nonlocal trigonometric shear deformation 

theory”, Smart Struct. Syst., Int. J., 19(6), 601-614. 

Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and 

Tounsi, A. (2018), “A new nonlocal HSDT for analysis of 

stability of single layer graphene sheet”, Adv. Nano Res., Int. J., 

6(2), 147-162. 

Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. 

(2017), “A nonlocal quasi-3D theory for bending and free 

flexural vibration behaviors of functionally graded 

nanobeams”, Smart Struct. Syst., Int. J., 19(2), 115-126. 

Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), “A 

refined hyperbolic shear deformation theory for thermal 

buckling analysis of cross-ply laminated plates”, Mech. Res. 

Commun., 73, 117-126. 

Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018), “Closed-

from solutions for thermal buckling analyses of advanced 

nanoplates according to a hyperbolic four-variable refined 

theory with small-scale effects”, Acta Mech., 229(5), 2251-

2265. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), 

“Thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations”, Steel 

Compos. Struct., Int. J., 14(1), 85-104. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. 

(2016), “Thermal stability of functionally graded sandwich 

plates using a simple shear deformation theory”, Struct. Eng. 

Mech., Int. J., 58(3), 397- 422. 

Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and 

Mahmoud, S.R. (2018), “Improved HSDT accounting for effect 

of thickness stretching in advanced composite plates”, Struct. 

Eng. Mech., Int. J., 66(1), 61-73. 

Boukhari, A., Ait Atmane, H., Houari, M.S.A., Tounsi, A., Adda 

Bedia, E.A. and Mahmoud, S.R. (2016), “An efficient shear 

deformation theory for wave propagation of functionally graded 

material plates”, Struct. Eng. Mech., Int. J., 57(5), 837-859. 

Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., 

Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), “A simple 

quasi-3D HSDT for the dynamics analysis of FG thick plate on 

elastic foundation”, Steel Compos. Struct., Int. J. 

[To be published] 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. 

(2016), “A nonlocal zeroth-order shear deformation theory for 

free vibration of functionally graded nanoscale plates resting on 

elastic foundation”, Steel Compos. Struct., Int. J., 20(2), 227-

249. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A 

new simple shear and normal deformations theory for 

functionally graded beams”, Steel Compos. Struct., Int. J., 

18(2), 409-423. 

Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, 

S.R. (2018), “A novel refined plate theory for stability analysis 

of hybrid and symmetric S-FGM plates”, Struct. Eng. Mech., 

Int. J., 68(6), 661-675. 

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. 

and Tounsi, A. (2019), “Dynamic investigation of porous 

functionally graded beam using a sinusoidal shear deformation 

theory”, Wind Struct., Int. J., 28(1), 19-30. 

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. 

(2014), “A novel higher order shear and normal deformation 

theory based on neutral surface position for bending analysis of 

advanced composite plates”, Int. J. Comput. Meth., 11(6), 

1350082. 

Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R. 

(2016), “On thermal stability of plates with functionally graded 

coefficient of thermal expansion”, Struct. Eng. Mech., Int. J., 

60(2), 313-335. 

Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., 

Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), 

“Analytical study of bending and free vibration responses of 

functionally graded beams resting on elastic foundation”, Struct. 

Eng. Mech. [To be published] 

Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. 

and Bensattalah, T. (2018), “Vibration analysis of nano beam 

using differential transform method including thermal effect”, J. 

Nano Res., 54, 1-14. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 

“Thermal buckling analysis of cross-ply laminated plates using 

a simplified HSDT”, Smart Struct. Syst., Int. J., 19(3), 289-297. 

Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, 

A.A. (2015), “Critical buckling load of chiral double-walled 

carbon nanotube using non-local theory elasticity”, Adv. Nano 

Res., Int. J., 3(4), 193-206. 

Chen, Y., Lee, J.D. and Eskandarian, A. (2004), “Atomistic 

viewpoint of the applicability of microcontinuum theories”, Int. 

J. Sol. Struct., 41, 2085-2097. 

Dash, S., Sharma, N., Mahapatra, T.R., Panda, S.K. and Sahu, P. 

(2018), “Free vibration analysis of functionally graded 

sandwich flat panel”, IOP Conf. Series: Materials Science and 

Engineering, 377, 012140. 

Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), “A refined 

theory with stretching effect for the flexure analysis of 

laminated composite plates”, Geomech. Eng., Int. J., 11(5), 671-

690. 

Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), “Static 

and dynamic behavior of nanotubes-reinforced sandwich plates 

using (FSDT)”, J. Nano Res., 57, 117-135. 

Ebrahimi, F. and Salari, E. (2015), “Size-dependent thermo-

electrical buckling analysis of functionally graded piezoelectric 

nanobeams”, Smart Mater. Struct., 24(12), 125007. 

Ebrahimi, F. and Rastgoo, A. (2008a), “Free vibration analysis of 

smart annular FGM plates integrated with piezoelectric layers”, 

Smart Mater. Struct., 17(1), 015044. 

Ebrahimi, F. and Rastgo, A. (2008b), “An analytical study on the 

free vibration of smart circular thin FGM plate based on 

classical plate theory”, Thin-Wall. Struct., 46(12), 1402-1408. 

Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009a), “A theoretical 

analysis of smart moderately thick shear deformable annular 

functionally graded plate”, Eur. J. Mech. -A/Solids, 28(5), 962-

973. 

Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009b), “Geometrically 

nonlinear vibration analysis of piezoelectrically actuated FGM 

plate with an initial large deformation”, J. Mech. Sci. Tech., 
23(8), 2107-2124. 

Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), “Thermo-

mechanical vibration analysis of functionally graded 

micro/nanoscale beams with porosities based on modified 

couple stress theory”, Adv. Mater. Res., Int. J., 6(3), 279-301. 

202



 

Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT 

Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), “Influence of 

porosity and axial preload on vibration behavior of rotating FG 

nanobeam”, Adv. Nano Res., Int. J., 5(2), 141-169. 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., Int. J., 63(5), 585-595. 

Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), “The 

buckling of piezoelectric plates on Pasternak elastic foundation 

using higher order shear deformation plate theories”, Smart 

Struct. Syst., Int. J., 21(1), 113-122. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), “Free 

vibration analysis of functionally graded size-dependent 

nanobeams”, Appl. Math. Computat., 218, 7406-7420. 

Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), 

“Determination of neutral axis position and its effect on natural 

frequencies of functionally graded macro/nanobeams”, Compos. 

Struct., 99, 193-201. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), “Static 

and stability analysis of nonlocal functionally graded 

nanobeams”, Compos. Struct., 96, 82-88. 

Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and 

Yavuz, M. (2016), “On the static stability of nonlocal 

nanobeams using higher-order beam theories”, Adv. Nano Res., 

Int. J., 4(1), 51-64. 

Eringen, A.C. (1972), “Nonlocal polar elastic continua”, Int. J. 

Eng. Sci., 10, 1-16. 

Eringen, A.C. (1983), “On differential equations of nonlocal 

elasticity and solutions of screw dislocation and surface waves”, 

J. Appl. Phys., 54, 4703-4710. 

Eringen, A.C. and Edelen, D. (1972), “On nonlocal elasticity”, Int. 

J. Eng. Sci., 10, 233-248. 

Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2017), “A four variable refined nth-order shear 

deformation theory for mechanical and thermal buckling 

analysis of functionally graded plates”, Geomech. Eng., Int. J., 

13(3), 385-410. 

Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018a), “On 

vibrations of porous FG nanoshells”, Int. J. Eng. Sci., 133, 1-14. 

Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018b), “Dynamic 

analysis of graded small-scale shells with porosity distributions 

under transverse dynamic loads”, Eur. Phys. J. Plus, 133, 348. 

Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, 

A. and Mahmoud, S.R. (2018), “A novel four variable refined 

plate theory for wave propagation in functionally graded 

material plates”, Steel Compos. Struct., Int. J., 27(1), 109-122. 

Ghorbanpour Arani, A., Kolahchi, R. and Vossough, H. (2012), 

“Buckling analysis and smart control of SLGS using elastically 

coupled PVDF nanoplate based on the nonlocal Mindlin plate 

theory”, Physica B: Condensed Matter, 407(22), 4458-4465. 

Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, A., Tounsi, A. 

and Mahmoud, S.R. (2017), “A new simple three-unknown 

shear deformation theory for bending analysis of FG plates 

resting on elastic foundations”, Steel Compos. Struct., Int. J., 

25(6), 717-726. 

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. 

(2015), “A sinusoidal plate theory with 5-unknowns and 

stretching effect for thermomechanical bending of functionally 

graded sandwich plates”, Steel Compos. Struct., Int. J., 18(1), 

235-253. 

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda 

Bedia, E.A. (2014), “A new quasi-3D hyperbolic shear 

deformation theory for the static and free vibration analysis of 

functionally graded plates”, ASCE J. Eng. Mech., 140, 374-383. 

Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Bedia, 

E.A. (2008), “Sound wave propagation in single-walled carbon 

nanotubes using nonlocal elasticity”, Phys. E, 40, 2791-2799. 

Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. 

(2017), “Numerical study and experimental validation of 

dynamic characteristics of delaminated composite flat and 

curved shallow shell structure”, J. Aerosp. Eng., 30(5), 

04017045. 

Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. 

(2010), “Free vibration of functionally graded rectangular plates 

using first-order shear deformation plate theory”, Appl. Math. 

Model, 34, 1276-1291. 

Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. 

(2013a), “An exact analytical solution for free vibration of 

functionally graded circular/annular Mindlin nanoplates via 

nonlocal elasticity”, Compos. Struct., 103, 108-118. 

Hosseini-Hashemi, S., Zare, M. and Nazemnezhad, R. (2013b), 

“An exact analytical approach for free vibration of Mindlin 

rectangular nanoplates via nonlocal elasticity”, Compos. Struct., 

100, 290-299. 

Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. 

(2016), “A new simple three-unknown sinusoidal shear 

deformation theory for functionally graded plates”, Steel 

Compos. Struct., Int. J., 22(2), 257-276. 

Huang, C., Yang, P. and Chang, M. (2012), “Threedimensional 

vibration analyses of functionally graded material rectangular 

plates with through internal cracks”, Compos. Struct., 94, 2764-

2776. 

Iijima, S. (1991), “Helical microtubules of graphitic carbon”, 

Nature, 354, 56-58. 

Janghorban, M. (2016), “Static analysis of functionally graded 

rectangular nanoplates based on nonlocal third order shear 

deformation theory”, Int. J. Eng. Appl. Sci. (IJEAS), 8(2), 87-

100. 

Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2018), “Post-buckling analysis of shear-

deformable composite beams using a novel simple two-

unknown beam theory”, Struct. Eng. Mech., Int. J., 65(5), 621-

631. 

Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. 

and Houari, M.S.A. (2018), “Buckling analysis of orthotropic 

nanoscale plates resting on elastic foundations”, J. Nano Res., 

55, 42-56. 

Kar, V.R. and Panda, S.K. (2016a), “Geometrical nonlinear free 

vibration analysis of FGM spherical panel under nonlinear 

thermal loading with TD and TID properties”, J. Thermal 

Stress., 39(8), 942-959. 

Kar, V.R. and Panda, S.K. (2016b), “Nonlinear thermomechanical 

deformation behaviour of P-FGM shallow spherical shell 

panel”, Chinese J. Aeronaut., 29(1), 173-183. 

Karami, B., Janghorban, M. and Tounsi, A. (2017), “Effects of 

triaxial magnetic field on the anisotropic nanoplates”, Steel 

Compos. Struct., Int. J., 25(3), 361-374. 

Karami, B., Janghorban, M. and Tounsi, A. (2018a), “Variational 

approach for wave dispersion in anisotropic doubly-curved 

nanoshells based on a new nonlocal strain gradient higher order 

shell theory”, Thin-Wall. Struct., 129, 251-264. 

Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. 

(2018b), “A size-dependent quasi-3D model for wave dispersion 

analysis of FG nanoplates”, Steel Compos. Struct., Int. J., 28(1), 

99-110. 

Karami, B., Janghorban, M. and Tounsi, A. (2018c), “Nonlocal 

strain gradient 3D elasticity theory for anisotropic spherical 

nanoparticles”, Steel Compos. Struct., Int. J., 27(2), 201-216. 

Karami, B., Janghorban, M. and Tounsi, A. (2018d), “Galerkin's 

approach for buckling analysis of functionally graded 

anisotropic nanoplates/different boundary conditions”, Eng. 

Comput. [In press] 

Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. 

(2019a), “Resonance behavior of functionally graded polymer 

203



 

Sabrina Boutaleb et al. 

composite nanoplates reinforced with grapheme nanoplatelets”, 

Int. J. Mech. Sci., 156, 94-105. 

Karami, B., Janghorban, M. and Tounsi, A. (2019b), “On exact 

wave propagation analysis of triclinic material using three 

dimensional bi-Helmholtz gradient plate model”, Struct. Eng. 

Mech., 69(5), 487-497. 

Karami, B., Janghorban, M. and Tounsi, A. (2019c), “Wave 

propagation of functionally graded anisotropic nanoplates 

resting on Winkler-Pasternak foundation”, Struct. Eng. Mech., 

Int. J., 7(1), 55-66. 

Katariya, P.V. and Panda, S.K. (2018), “Numerical evaluation of 

transient deflection and frequency responses of sandwich shell 

structure using higher order theory and different mechanical 

loadings”, Eng. Comput. [In press] 

Katariya, P.V. and Panda, S.K. (2019), “Frequency and deflection 

responses of shear deformable skew sandwich curved shell 

panel: A Finite Element Approach”, Arab. J. Sci. Eng., 44(2), 

1631-1648. 

Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017a), 

“Prediction of nonlinear eigenfrequency of laminated curved 

sandwich structure using higher-order equivalent single-layer 

theory”, J. Sandw. Struct. Mater. [In press] 

Katariya, P.V., Panda, S.K, Hirwani, C.K., Mehar, K. and Thakare, 

O. (2017b), “Enhancement of thermal buckling strength of 

laminated sandwich composite panel structure embedded with 

shape memory alloy fibre”, Smart Struct. Syst., Int. J., 20(5), 

595-605. 

Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017c), 

“Nonlinear thermal buckling behaviour of laminated composite 

panel structure including the stretching effect and higher-order 

finite element”, Adv. Mater. Res., Int. J., 6(4), 349-361. 

Katariya, P.V., Das, A. and Panda, S.K. (2018a), “Buckling 

analysis of SMA bonded sandwich structure – using FEM”, IOP 

Conf. Series: Materials Science and Engineering, 338, 012035. 

Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018b) “Bending 

and vibration analysis of skew sandwich plate”, Aircraft Eng. 

Aerosp. Technol., 90(6), 885-895. 

Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), 

“Geometrically nonlinear deflection and stress analysis of skew 

sandwich shell panel using higher-order theory”, Eng. Comput., 

35(2), 467-485. 

Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), 

“Bending, buckling and vibration of size-dependent functionally 

graded annular microplates”, Compos. Struct., 94, 3250-3257. 

Ke, L.L., Yang, J., Kitipornchai, S., Bradford, M.A. and Wang, 

Y.S. (2013), “Axisymmetric nonlinear free vibration of size-

dependent functionally graded annular microplates”, Compos. 

Part B: Eng., 53, 207-217. 

Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A new nonlocal trigonometric shear 

deformation theory for thermal buckling analysis of embedded 

nanosize FG plates”, Struct. Eng. Mech., Int. J., 64(4), 391-402. 

Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. 

and Mahmoud, S.R. (2019), “Analytical modeling of bending 

and vibration of thick advanced composite plates using a four-

variable quasi 3D HSDT”, Eng. Comput. [In press] 

Khorshidi, K., Asgari, T. and Fallah, A. (2015), “Free vibrations 

analysis of functionally graded rectangular nano-plates based on 

nonlocal exponential shear deformation theory”, Mech. Adv. 

Compos. Struct., 2, 79-93. 

Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, 

S.R. (2017), “An original single variable shear deformation 

theory for buckling analysis of thick isotropic plates”, Struct. 

Eng. Mech., Int. J., 63(4), 439-446. 

Kocaturk, T. and Akbas, S.D. (2012), “Post-buckling analysis of 

Timoshenko beams made of functionally graded material under 

thermal loading”, Struct. Eng. Mech., Int. J., 41(6), 775-789. 

Koiter, W.T. (1969), “Couple-stresses in the theory of elasticity, I 

& II”, J. Philosoph. Transact. Royal Soc. London B, 67, 17-44. 

Kumar, Y. and Lal, R. (2013), “Prediction of frequencies of free 

axisymmetric vibration of twodirectional functionally graded 

annular plates on Winkler foundation”, Eur. J. Mech. A Solid, 

42, 219-228. 

Lam, D.C.C., Yang, F., Chong, A.C.M. and Tong, P. (2003), 

“Experiments and theory in strain gradient elasticity”, J. Mech. 

Phys. Solids, 51, 1477-1508. 

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, 

O. and Mahmoud, S.R. (2015), “Bending and buckling analyses 

of functionally graded material (FGM) size-dependent 

nanoscale beams including the thickness stretching effect”, 

Steel. Compos. Struct., Int. J., 18(2), 425-442. 

Li, L, Li, X. and Hu, Y. (2016), “Free vibration analysis of 

nonlocal strain gradient beams made of functionally graded 

material”, Int. J. Eng. Sci., 102, 77-92. 

Ma, M., Tu, J.P., Yuan, Y.F., Wang, X.L., Li, K.F., Mao, F. and 

Zeng, Z.Y. (2008), “Electrochemical performance of ZnO 

nanoplates as anode materials for Ni/Zn secondary batteries”, J. 

Power Sources, 179, 395-400. 

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new 

hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, sandwich 

and laminated composite plates”, Appl. Math. Model., 39, 2489-

2508. 

Malekzadeh, P. and Beni, A.A. (2010), “Free vibration of 

functionally graded arbitrary straight-sided quadrilateral plates 

in thermal environment”, Compos. Struct., 92, 2758-2767. 

Malekzadeh, P. and Heydarpour, Y. (2012), “Free vibration 

analysis of rotating functionally graded cylindrical shells in 

thermal environment”, Compos. Struct., 94, 2971-2981. 

Matsunaga, H. (2008), “Free vibration and stability of functionally 

graded plates according to a 2-D higher-order deformation 

theory”, Compos. Struct., 82, 499-512. 

Mehar, K. and Panda, S.K. (2016), “Geometrical nonlinear free 

vibration analysis of FG-CNT reinforced composite flat panel 

under uniform thermal field”, Compos. Struct., 143, 336-346. 

Mehar, K. and Panda, S.K. (2018), “Nonlinear finite element 

solutions of thermoelastic flexural strength and stress values of 

temperature dependent graded CNT-reinforced sandwich 

shallow shell structure”, Struct. Eng. Mech., Int. J., 67(6), 565-

578. 

Mehar, K., Panda, S.K. and Patle, B.K. (2017), “Thermoelastic 

vibration and flexural behavior of FG-CNT reinforced 

composite curved panel”, Int. J. Appl. Mech., 9(4), 1750046. 

Mehar, K., Panda, S.K. and Patle, B.K. (2018a), “Stress, 

deflection, and frequency analysis of CNT reinforced graded 

sandwich plate under uniform and linear thermal environment: 

A finite element approach”, Polym. Compos., 39(10), 3792-

3809. 

Mehar, K., Mahapatra, T.R, Panda, S.K., Katariya, P.V. and 

Tompe, U.K. (2018b), “Finite-element solution to nonlocal 

elasticity and scale effect on frequency behavior of shear 

deformable nanoplate structure”, J. Eng. Mech., 144(9), 

04018094. 

Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, 

E.A. and Mahmoud, S.R. (2019), “An analytical solution for 

bending, buckling and vibration responses of FGM sandwich 

plates”, J. Sandw. Struct. Mater., 21(2), 727-757. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

Int. J., 25(2), 157-175. 

Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), “An 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

204



 

Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT 

boundary conditions”, J. Sandw. Struct.Mater., 16(3), 293-318. 

Miller, R.E. and Shenoy, V.B. (2000), “Size-dependent elastic 

properties of nanosized structural elements”, Nanotechnology, 

11, 139. 

Mindlin, R. and Tiersten, H. (1962), “Effects of couple-stresses in 

linear elasticity”, Arch. Rational Mech. Anal., 11, 415-448. 

Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., 

Tounsi, A. and Mahmoud, S.R. (2018), “A novel shear 

deformation theory for buckling analysis of single layer 

graphene sheet based on nonlocal elasticity theory”, Smart 

Struct. Syst., Int. J., 21(4), 397-405. 

Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “Vibration analysis of nonlocal 

advanced nanobeams in hygro-thermal environment using a 

new two-unknown trigonometric shear deformation beam 

theory”, Smart Struct. Syst., Int. J., 20(3), 369-383. 

Murmu, T. and Pradhan, S. (2009a), “Buckling analysis of a 

single-walled carbon nanotube embedded in an elastic medium 

based on nonlocal elasticity and Timoshenko beam theory and 

using DQM”, Phys. E, 41, 1232-1239. 

Murmu, T. and Pradhan, S. (2009b), “Thermo-mechanical 

vibration of a single-walled carbon nanotube embedded in an 

elastic medium based on nonlocal elasticity theory”, Comput. 

Mater. Sci., 46, 854-859. 

Narendar, S. (2011), “Buckling analysis of micro-/nano-scale 

plates based on two-variable refined plate theory incorporating 

nonlocal scale effects”, Compos. Struct., 93, 3093-3103. 

Nie, G. and Zhong, Z. (2007), “Semi-analytical solution for three-

dimensional vibration of functionally graded circular plates”, 

Comput. Method Appl. M, 196, 4901-4910. 

Nix, W.D. and Gao, H. (1998), “Indentation size effects in 

crystalline materials: a law for strain gradient plasticity”, J. 

Mech. Phys. Solids, 46, 411-425. 

Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), 

“Application of nonlocal continuum models to 

nanotechnology”, Int. J. Eng. Sci., 41, 305-312. 

Pradhan, S. and Phadikar, J. (2009), “Small scale effect on 

vibration of embedded multilayered graphene sheets based on 

nonlocal continuum models”, Phys. Lett. A, 373, 1062-1069. 

Pradyumna, S. and Bandyopadhyay, J. (2008), “Free vibration 

analysis of functionally graded curved panels using a higher-

order finiteelement formulation”, J. Sound Vib., 318, 176-192. 

Rahmani, O. and Pedram, O. (2014), “Analysis and modeling the 

size effect on vibration of functionally graded nanobeams based 

on nonlocal Timoshenko beam theory”, Int. J. Eng. Sci., 77, 55-

70. 

Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, 

Z.Z. and Koratkar, N. (2010), “Fracture and fatigue in graphene 

nanocomposites”, small, 6, 179-183. 

Reddy, J. (2007), “Nonlocal theories for bending, buckling and 

vibration of beams”, Int. J. Eng. Sci., 45, 288-307. 

Reddy, J. (2011), “Microstructure-dependent couple stress theories 

of functionally graded beams”, J. Mech. Phys. Solids, 59, 2382-

2399. 

Reddy, J. and Pang, S. (2008), “Nonlocal continuum theories of 

beams for the analysis of carbon nanotubes”, J. Appl. Phys., 

103, 023511. 

Sahoo, S.S., Panda, S.K. and Sen, D. (2016), “Effect of 

delamination on static and dynamic behavior of laminated 

composite plate”, AIAA Journal, 54(8), 2530-2544. 

Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), “Experimental 

and numerical investigation of static and free vibration 

responses of woven glass/epoxy laminated composite plate”, 

Proceedings of the Institution of Mechanical Engineers, Part L: 

Journal of Materials: Design and Applications, 231(5), 463-

478. 

Sakhaee-Pour, A., Ahmadian, M. and Vafai, A. (2008a), 

“Applications of single-layered graphene sheets as mass sensors 

and atomistic dust detectors”, Solid State Commun., 145, 168-

172. 

Sakhaee-Pour, A., Ahmadian, M. and Vafai, A. (2008b), “Potential 

application of single-layered graphene sheet as strain sensor”, 

Solid State Commun., 147, 336-340. 

Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), “A 

novel and simple higher order shear deformation theory for 

stability and vibration of functionally graded sandwich plate”, 

Steel Compos. Struct., Int. J., 25(4), 389-401. 

Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), “A 

new quasi-3D HSDT for buckling and vibration of FG plate”, 

Struct. Eng. Mech., Int. J., 64(6), 737-749. 

Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), 

“Thermal buckling analysis of SWBNNT on Winkler 

foundation by non local FSDT”, Adv. Nano Res., Int. J., 7(2), 

89-98. 

Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. 

(2018), “Thermal transportation behaviour prediction of 

defective graphene sheet at various temperature: A Molecular 

Dynamics Study”, Am. J. Nanomater., 6(1), 34-40. 

Shahsavari, D., Karami, B. and Li, L. (2018), “A high-order 

gradient model for wavepropagation analysis of porous FG 

nanoplates”, Steel Compos. Struct., Int. J., 29(1), 53-66. 

Shen, H.S. and Zhang, C.L. (2010), “Torsional buckling and 

postbuckling of double-walled carbon nanotubes by nonlocal 

shear deformable shell model”, Compos. Struct., 92, 1073- 

1084. 

Singh, V.K. and Panda, S.K. (2017), “Geometrical nonlinear free 

vibration analysis of laminated composite doubly curved shell 

panels embedded with piezoelectric layers”, J. Vib. Control, 

23(13), 2078-2093. 

Tang, Y. and Liu, Y. (2018), “Effect of van der Waals force on 

wave propagation in viscoelastic double-walled carbon 

nanotubes”, Modern Phys. Lett. B, 32(24), 1850291. 

Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, 

A., Bousahla, A.A. and Mahmoud, S.R. (2019), “Vibration 

analysis of different material distributions of functionally 

graded microbeam”, Struct. Eng. Mech., Int. J., 69(6), 637-649. 

Toupin, R.A. (1962), “Elastic materials with couple-stresses”, 

Arch. Rational Mech. Anal., 11, 385-414. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. 

(2013), “A refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates”, 

Aerosp. Sci. Tech., 24, 209-220. 

Ungbhakorn, V. and Wattanasakulpong, N. (2013), “Thermo-

elastic vibration analysis of third order shear deformable 

functionally graded plates with distributed patch mass under 

thermal environment”, Appl. Acoust., 74, 1045-1059. 

Vel, S.S. and Batra, R. (2004), “Three-dimensional exact solution 

for the vibration of functionally graded rectangular plates”, J. 

Sound Vib., 272, 703-730. 

Wang, L. (2009), “Dynamical behaviors of double walled carbon 

nanotubes conveying fluidaccounting for the role of small 

length scale”, Comput. Mater. Sci., 45, 584-588. 

Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), 

“Nonlinear vibration analysis of an embedded multi-walled 

carbon nanotube”, Adv. Nano Res., Int. J., 6(2), 163-182. 

Yahia, S.A., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. 

(2015), “Wave propagation in functionally graded plates with 

porosities using various higher-order shear deformation plate 

theories”, Struct. Eng. Mech., Int. J., 53(6), 1143-1165. 

Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, 

M.S.A. (2018), “A novel nonlocal refined plate theory for 

stability response of orthotropic single-layer graphene sheet 

resting on elastic medium”, Smart Struct. Syst., Int. J., 21(1), 

15-25. 

205



 

Sabrina Boutaleb et al. 

Ye, C., Bando, Y., Shen, G. and Golberg, D. (2006), “Thickness-

dependent photocatalytic performance of ZnO nanoplatelets”, J. 

Phys. Chem. B, 110, 15146-15151. 

Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. 

(2018), “Dynamic analysis of nanoscale beams including 

surface stress effects”, Smart Struct. Syst., Int. J., 21(1), 65-74. 

Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, 

S.R. (2018), “Novel quasi-3D and 2D shear deformation 

theories for bending and free vibration analysis of FGM plates”, 

Geomech. Eng., Int. J., 14(6), 519-532. 

Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), “New 2D and 

quasi-3D shear deformation theories for free vibration of 

functionally graded plates on elastic foundations”, Compos. 

Part B, 159, 231-247. 

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), 

“A mechanical response of functionally graded nanoscale beam: 

an assessment of a refined nonlocal shear deformation theory 

beam theory”, Struct. Eng. Mech., Int. J., 54(4), 693-710. 

Zhao, X., Lee, Y. and Liew, K.M. (2009), “Free vibration analysis 

of functionally graded plates using the element-free kp-Ritz 

method”, J. Sound Vib., 319, 918-939. 

Zidi, M., Tounsi, A., Houari, M.S.A. and Bég, O.A. (2014), 

“Bending analysis of FGM plates under hygro-thermo-

mechanical loading using a four variable refined plate theory”, 

Aerosp. Sci. Tech., 34, 24-34. 

Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, 

S.R. (2017), “A novel simple two-unknown hyperbolic shear 

deformation theory for functionally graded beams”, Struct. Eng. 

Mech., Int. J., 64(2), 145-153. 

Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. 

(2018), “A novel higher-order shear deformation theory for 

bending and free vibration analysis of isotropic and 

multilayered plates and shells”, Steel Compos. Struct., Int. J., 

26(2), 125-137. 

 

 

CC 

 

 

206




