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1. Introduction 

 

Thermal buckling is the geometrical instability induced 

in the structural member due to the in-plane loading and the 

structural configuration may deviate from the equilibrium 

path. However, the initiation of buckling does not indicate 

the final failure of that structure and it can withstand extra 

amount of load even after the excess deformation. To 

examine the thermal buckling responses the laminated and 

functionally graded composite structure, a number of 

research articles have been published (Szekrenyes 2014, 

Moradi-Dastjerdi et al. 2017, Han et al. 2017, Rafiee et al. 

2018). Zenkour (2005) implemented the various types of 

displacement dependent shear deformation theories to 

compute the buckling load parameter of the functionally 

grated material (FGM) composite sandwich plate. Similarly, 

the mechanical buckling responses of the cracked thin 

composite plate is analyzed under the tensile and 

compressive loading (Brighenti 2005a, b). Further, the 

boundary element method is adopted to explore the 

buckling load parameters of composite structure under the 

in-plane mechanical loading (Baiz and Aliabadi 2007). The 

thermal post-buckling characteristic of the isotropic 

material (steel) and laminated composite (graphite/epoxy 

composite) plates based on the higher-order shear 

deformation theory (HSDT) were computed and validated 

with the experimental result (Amabili and Tajahmadi 2012, 

Reddy et al. 2013, Bouadi et al. 2018, Torabi et al. 2019). 
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The thermomechanical post-buckling response of the FGM 

composite plate was computed by employing the HSDT and 

von-Karman geometrical nonlinearity (Rafiee et al. 2013; 

Bakora and Tounsi 2015). An extensive literature review of 

the bending, vibration and buckling behaviors of the FGM 

composite was performed in 2015 (Swaminathan et al. 

2015). 

Further, the first time in 2009, the functionally graded 

concept has been implemented to illustrate the mechanical 

static behavior of the graded carbon nanotube reinforced 

composite (CNTRC) (Shen 2009). The thermal buckling 

and post-buckling responses of the functionally graded 

carbon nanotube reinforced composite (FG-CNTRC) were 

estimated using Reddy‟s HSDT kinematic model (Shen and 

Zhang 2010), in which one uniformly distributed carbon 

nanotube (CNT) and three functionally graded CNT 

distribution patterns were used and the effective material 

properties of the composite were estimated by a 

micromechanics model. Using the similar micromechanics 

model, the mechanical buckling and post-buckling 

responses of the FG-CNTRC were estimated under uniaxial 

tensile mechanical load under thermal environment (Shen 

and Zhu 2010). Later, this work was extended for the 

cylindrical shell geometry and computed the mechanical 

bucking load of the FG-CNTRC cylindrical panel by 

employed the higher-order polynomial equation (Shen 

2011). The thermal buckling was also calculated for the 

cylindrical shell panel (Shen 2012, Nejati et al. 2017). 

From the numerical results, it is found that the thermal and 

mechanical buckling, as well as post-buckling responses, 

improve with the higher CNT volume fraction. In addition 

to the above, the nonlocal Timoshenko beam model used to 

examine the buckling behavior of CNT (Zidour et al. 2014). 
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Also, Timoshenko beam theory was employed to estimate 

the vibration behavior of the CNT. The mechanical buckling 

performance of the FG-CNTRC plate was computed using 

the FSDT kinematics by assumed that the single walled 

carbon nanotubes were aligned along the length or 

randomly oriented (Mehrabadi et al. 2012, Farzam and 

Hassani 2018). In which, the effective properties of the 

composite material were investigated by Mori-Tanaka 

method or the rule of mixture. The buckling responses of 

the CNT reinforced annular and circular section composite 

based on the HSDT kinematics were computed using the 

finite element method (FEM) (Maghamikia and Jam 2011). 

The dynamic buckling behavior of the CNTRC beam 

under three combined loads (thermal, electrical and 

mechanical) was computed by Yang et al. (2015). Zhang et 

al. (2015a) analyzed the buckling behavior of the graded 

composite plate reinforced with the single-walled carbon 

nanotube (SW-CNT) and resting on the elastic foundation 

by employing the element-free IMLS-Ritz method. Also, 

the element free method was implemented to demonstrate 

the buckling behavior of the FG-CNTRC skew plate (Lei et 

al. 2015, Zhang et al. 2015b). Further, the bending, 

buckling and vibration behavior of the graded CNT 

reinforced beam were estimated with non-uniform 

temperature load (Mayandi and Jeyaraj 2015). The 

mechanical buckling behavior of the CNTRC conical shell 

panel was highlighted under uniaxial compressive load 

(Ansari and Torabi 2016) by implementing Hamiton‟s 

principle and generalized differential quadrature method. 

Further, buckling and vibration characteristics of the 

annular composite plate reinforced with the CNT were 

computed under thermal load (Ansari et al. 2017). The first-

order shear deformation theory (FSDT) kinematics used to 

figure out the buckling and post-buckling critical 

temperature of the CNT reinforced composite plate 

(Mirzaei and Kiani 2016). Additionally, FSDT kinematics 

implemented to computed the mechanical buckling of the 

nanotube-reinforced graded composite plate under parabolic 

loading condition (Kiani 2017). The mechanical and 

thermal buckling load parameter of the truncated conical 

structure reinforced with graded CNT were computed by 

employing Galerkin method (Duc et al. 2017). The 

influence of the CNT agglomeration on the buckling and 

frequency load parameters of the composite plate reinforced 

via CNT were computed by considering the nonlocal effect 

based on the Eringen‟s nonlocal theory (Kolahchi and 

Cheraghbak 2017). Kolahchi (2017) implemented the 

nonlocal theories to demonstrate the vibration, flexural and 

buckling characteristics of the nano-plate. Additionally, 

many other research works have been presented to highlight 

the bending, vibration and buckling characteristics of the 

different type composite structure such as laminated, FGM 

and FG-. Today, composite structure analysis is divided in 

mainly two ways, first improve the mathematical model or 

analysis technique to obtain the realistic responses with 

minimum time of computation and secondly improve the 

desired responses by introducing new material or 

modification of the structure. Tounsi and co-authors have 

done remarkable work to reduce the number of variables of 

the shear deformation theories and computed the vibration, 

bending and buckling responses of different type composite 
structures (Berrabah et al. 2013, Draiche et al. 2014, 

Hamidi et al. 2015). 

The extensive review reveals that sufficient research 

works have been establish the bending, buckling and 

vibration behavior of the CNTRC structure using different 

available shear deformation theories. However, most of the 

works are based on the FSDT and only few works have 

been presented for the buckling analysis of the FG-CNTRC. 

Based on the authors‟ knowledge buckling behavior of the 

FG-CNTRC based on the HSDT kinematics in conjunction 

with FEM is not available in open literature. To fulfil such 

gap, thermal instability of the FG-CNTRC shell panel based 

on the HSDT mid-plane kinematics has been evaluated via 

FEM and highlighted the effect of various design parameter 

on the thermal instability of composite shell panel 

reinforced with single-walled carbon nanotube (SWCNT). 

It is assumed that the material properties are graded along 

transverse direction and evaluated using the extended rule 

of mixture. The final form of governing equilibrium 

equation solved computationally via the home-made FE 

code in MATLAB environment. The reliability and 

accuracy of the computed buckling temperature data 

verified through proper comparison study including the 

convergence test. Finally, the applicability of the derived 

multiscale numerical model is highlighted by solving 

variable numerical examples and deliberated with 

simultaneous reasons. 

 

 

2. Theory and formulations 
 

buckling temperature under thermal environment. Fig. 1 

depicted the geometry of the FG-CNTRC shell panel with 

curvature R1 and R2 about X and Y-axis, respectively. In 

composite structure analysis, number of research works are 

going on to increase the critical buckling temperature of the 

composite structure and it can be attained by improving the 

geometrical configuration and material distribution patterns. 

In the present study, four different CNT grading patterns 

and four type shell geometries are used to obtain the 

thermal stability of the FG-CNTRC shell panel. The 

geometry of the curved shell panel can be defined with 

respect to curvature such as cylindrical (CYL - in which one 

radius is R and other is infinite), spherical (SPH – both 

 

 

 

Fig. 1 Geometry of curved shell panel 
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curvatures are equal to R), elliptical (ELL - one curvature is 

double of the other curvature, Rx = 0.5Ry = R) and 

hyperbolic (HYP - both curvatures are opposite sign, Rx = -

Ry = R). CNT distributions is used in four different types 

such as: UD (CNTs are uniformally distributed in XY-

plane), FG-X (CNTs are maximum at the top and bottom 

surface and zero at the middle of of composit panel),  FG-

O (CNTs are maximum at the mid-plane and gradually 

decreses toward the top and bottom surfaces) and FG-V 

(CNTs maximum at the top surface and gradually decreases 

toward the bottom surface). The mathematical expression 

for the CNT distribution can better understand from 

mathematical expression as follows 
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𝑉𝑁𝑇
∗  represents the total CNT volume fraction within the 

composite, however 𝑉𝑁𝑇represents the graded CNT volume 

fraction varying in Z-direction. 

Due to the grading of the CNT volume fraction in Z-

direction, other material properties also graded according to 

the CNT volume fraction. To evaluate the graded material 

properties of the composite, the rule of mixture was 

implemented with effectiveness parameters of the CNT, 

such as 
 

1 1 1C NT NT m mE V E V E 
 (2) 

 

 

(3) 

 

 

(4) 

 

where, E11 and E22 are the elastic modulus along the fiber, 

and normal of fibers, respectively. G12 represents for the 

modulus of rigidity and “V” represents for the volume 

fraction. The subscript “NT”, “m” and „C‟ represents for the 

nanotube, matrix and CNT/matrix composite, respectively. 

Additionally, ƞ1, ƞ2 and ƞ3 are the effectiveness parameters 

for the CNT within the composite and these are obtained by 

comparing the results of molecular dynamic simulation 

results and the rule of mixture results (Shen 2012). 

Similarly, the other material properties density (ρC), 

Poisson‟s ratio (υ12C) and coefficients of thermal expansion 

(α1C and α2C) are computed using the formulae explained in 

reference 
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In present analysis, it is assumed that the material 

properties of the each element (CNT and polymer) are the 

function of temperature. Also, assumed that the temperature 

is graded in the normal direction of shell panel with two 

different type temperature distributions namely, uniformly 

distributed temperature (UDT) and linearly distributed 

temperature (LDT). In the UDT profile temperature is 

assumed to be constant over the entered composite plate. 

However, in the case of the LDT, the temperature profile is 

assumed to linearly increase from the bottom surface (room 

temperature, T0 = 300 K) to the top surface of the composite 

(Fazzolari 2015). 
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The numerical model of the SWCNT/polymer 

composite shell structure is formulated via the HSDT mid-

plane kinematics. The global displacement component (ux, 

uy and uz) of a point in the composite shell panel are 

function of 9-unknown parameters (ux0, uy0, uz0, φx, φy, ψx, 

ψy, θx and θy,) (Pandya and Kant 1988). The displacement 

field of the composite shell panel is obtained using Taylor‟s 

series and defined as 
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(10) 

 

where, ux0, uy0 and uz0 are the midplane displacements 

component of any point in three mutual perpendicular 

directions along the X, Y and Z-directions, respectively. φx 

and φy are midplane rotational terms and (ψx, ψy, θx and θy) 

are higher order terms. These unknown parameters are 

defined as ux0 = ux, uy0 = uy, uz0 = uz, 𝜑𝑥 =
𝜕𝑢𝑥

𝜕𝑧
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𝜕𝑧3  , when z = 0. 

The Eq. (10) can be rewritten in the matrix form as 
 

    1 0H 
 (11) 

 

where, {λ} = {ux uy uz}
T is the represent for the 

displacement of any point within the composite, {λ0} = {ux0 

uy0 uz0 φx φy ψx ψy θx θy}
T is the vector of displacement at z = 

0 and [H1] is known as thickness co-ordinate matrix 
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The strain-displacement field of polymer composite 

structure reinforced with CNT is 
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By substituting the displacement terms ux, uy and uz in 

above equation. 
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where, [H2]5×20 = [I1 z×I1 z2×I1 z3×I1] is the thickness 

coordinate matrix and  𝜀  =  𝜀𝑥
0  𝜀𝑦

0  𝜀𝑥𝑦
0   𝜀𝑥𝑧

0   𝜀𝑦𝑧
0   𝑘𝑥

1  𝑘𝑦
1    

𝑘𝑥𝑦
1   𝑘𝑧𝑥

1   𝑘𝑦𝑧
1    𝑘𝑥

2  𝑘𝑦
2   𝑘𝑥𝑦

2   𝑘𝑧𝑥
2   𝑘𝑦𝑧

2   𝑘𝑥
3  𝑘𝑦

3   𝑘𝑥𝑦
3   𝑘𝑧𝑥

3   𝑘𝑦𝑧
3  =

 𝐵 {𝜆0}. [I1] is a unit matrix of 5×5. 

The thermoelastic constitutive relations of the graded 

composite structure reinforced with the CNT can be written 

as 
 

11 12 11

21 22 22

66

44

55

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xx

yy yy

xy xy

zx zx

yz yz

C C

C C

C T

C

C

  

  

 

 

 

       
       
                                                    

or    ijC T        

(15) 

 

where, C11 = E1C/(1 ‒ υ12Cυ21C), C12 = υ12CE2C/(1 ‒ υ12Cυ21C), 

C22 = E2C/(1 ‒ υ12Cυ21C), C66 = G12C, C44 = G13C and C55 = 

G23C. G13 = G12 and G23C = 1.2×G12 are shear modulus. „ΔT‟ 

represent for the temperature change. 

The total strain energy of the composite structure 

calculated as 
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The FG-CNTRC composite plate subjected in-plane 

thermal load and obtained as 
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The in-plane thermal work done of the composite can 

computed as 
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is the 

geometric strain terms at mid-plane and [HG]6×24 = [I1 z×I1 

z2×I1 z3×I1] is a thickness co-ordinate matrix, respectively. 
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  denoting a 24×24 

material property matrix. 

From last few decades, uses of FEM for structural 

analysis have been increased because it is suitable to solve 

complicated problem. Now, FEM has been used to find the 

buckling response of the FG-CNTRC. In which, an 

isoparametric element of 9-noded with 9-degrees of 

freedom at each node is employed to divide the composite 

panel in a number of the element. 

The displacement vector at {λ0} mid-plane of composite 

in terms of shape function can be written as follows (Cook 

et al. 2009) 
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where, Ni is the interpolation function corresponding of „ith‟ 

node  and   𝜆0𝑖 = [𝑢𝑥0𝑖
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𝜃𝑦𝑖 ]
𝑇 is the displacement vector of „ith‟ node. 

 𝜀 𝐿  and  𝜀 𝐺  are the strain vectors at z = 0 can be 

written in the form of {λ0i} 
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    0  L iB 
 (20) 

 

    0  G G iB 
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where, [B] and [BG] are contained the interpolation function 

and differential operators. 

The variational principle has been espoused to find the 

equilibrium governing equation for buckling analysis and 

written as 
 

( ) 0TU W    
 (22) 

 

By rearranging the equilibrium governing Eq. (22), it 

can be written in the form of eigen-value and eigen-vector 

as 

     [ ] 0L cr GK K  
 

(23) 

 

where, γcr represent for the load factor of critical buckling. 

Support conditions used for numerical analysis are: 
 

(a) For simply supported conditions (S): 
 

ux= uz = φx = θx = ψx = 0 at  y = 0, b and 

uy = uz = φy = θy = ψy = 0 at  x = 0, a 
 

(b)  For clamped conditions (C): 
 

ux = uy = uz = φx = φy = θx = θy = ψx = ψy = 0 

for  y = 0, b  and  x = 0, a. 

 

 

3. Results and discussion 
 

To buckling temperature analysis, the material 

properties of the CNT fiber and PMMA (poly (methyl 

 

 

Table 1 Effective parameter of the CNT (Shen and Xiang 

2013, Mehar et al. 2019) 

𝑉𝑁𝑇
∗  η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 
 

 

 

methacrylate) matrix are assumed as temperature dependent 

and taken as same as in (Shen and Zhu 2010): ρ = 1150 

kg/m3, Em = (35.2 – 0.034T) × 108 Pa and αm = 4.5(1 + 

0.0005 ∆T) ×10-5, where, ∆T = T – T0 and T0 = 300 K. The 

material properties of the CNT are provided in Eq. (24) and 

effectiveness parameters are explai1ned in Table 1 (Mirzaei 

and Kiani 2016). 
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(24) 

 

A personalized computer code has been established 

using MATLAB computer language to observe the critical 

buckling temperature and solved via FEM. The accuracy 

and reliability of the developed numerical model are 

checked by convergence and comparison studies. 

 

3.1 Convergence and comparison study 
 

FEA gives approximate result and the approximation 

can be improved by increase the number of the element. 

Conversely, the cost of computational will grow up when 

mesh size rises. In order to maintain the the accuaracy with 

minimum computational cost, the convergence study is an 

essential process. 

Fig. 2 shows the convergence rate of the FG-CNTRC 

structure for two type thermal field (UDT and LDT) and 

four type shell geometries (CYL, SPH, HYP and ELL) with 

variable mesh size. In which other design parameters are 

fixed FG-X, R/a = 5, a/h = 50, a/b = 1 and 𝑉𝑁𝑇
∗  = 0.17. The 

convergence analysis, indicate that the 6×6 mesh size is the 

optimal mesh size to maintain the balance between accuracy 

and computational cost for thermal buckling analysis. 

Further, in order to assure the efficacy of newly 

developed graded finite element model, the critical buckling 

temperature of the FG-CNTRC plate is computed for three 

grading patterns and compared with the previously 

published result of Mirzaei and Kiani (2016). Fig. 3 

depicted the comparison of of the buckling temperature for 

three CNT volume fraction and three grading configura- 
 

 

  

(a) UDT (b) LDT 

Fig. 2 Convergence of the buckling temperature of CNTRC 
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Fig. 3 Comparison of buckling temperature of FG-CNTRC 

plate 
 

 

 

tions. The figure depicted that the numerical results 

obtained using the present developed HSDT kinematic 

model and results of literature conforming with each other 

for all grading configurations. 
 

3.2 Numerical analysis 
 

After examine the required convergence and the 

comparison of the critical buckling parameters under the 

variable temperature loading, the analysis further extends to 
 

 

 

 

(a) UDT 

 

 

(b) LDT 

Fig. 4 Critical buckling temperature of CNTRC structure 

for variable curvature ratio 

show the effect of different design related input values on 

the buckling temperature. The critical thermal buckling 

responses computed using the current multiscale higher-

order model for the said input variables and depicted in 

Figs. 4-7. 

In curved shell structure, the curvature ratio depicts a 

major role on the stiffness of shell structure. To declare the 

same, the thermal stability of uniformly distributed CNTRC 

structure has been analyzed for five vales of curvature ratio 

(R/a = 1, 2, 5, 10 and 25) and four different shell panel 

(SPH, ELL, CYL and HYP) under two different thermal 

field (UDT and LDT) and other design parameters taken as 

a/h = 50, a/b = 1, 𝑉𝑁𝑇
∗  = 0.17. Fig. 4 depicted that the 

critical buckling temperature of the CNTRC structure 

decreases when the curvature ratio increases. Also, the 

results indicate that the critical temperature values are 

higher for the LDT while compared to the UDT. 

Fig. 5 illustrated the consequence of length to thickness 

ratio on the thermal stability of the graded CNTRC 

cylindrical panel under the various thermal fields (UDT and 

LDT), R/a = 50, a/b = 1 and 𝑉𝑁𝑇
∗  = 0.17. It is understood 

that the cylindrical shell panel losses the stiffness with 

higher thickness ratio consequently the thermal 

performance of the composite structure degraded. The 

clamped shell buckling temperature values are higher for 

the of the clamped shell panel while compared to the simply 

supported shell panel. 

The buckling behavior analysis extended for the 

different CNT volume fraction (𝑉𝑁𝑇
∗  = 0.12, 0.17 and 0.28) 

and presented in Fig. 6 and it is visualized that the thermal 

stability of the curved shell panel increases with higher 
 

 

 

(a) UDT, SSSS 

 

 

(b) LDT, SSSS 

Fig. 5 Critical buckling temperature of CNTRC structure 

for various length to thickness ratio 

184



 

Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure 

 

 

(c) UDT, CCCC 
 

 

(d) LDT, CCCC 

Fig. 5 Continued 
 

 

CNT volume fraction irrespective of the shell 

geometries and the spherical shell geometries show the 

highest thermal stability. To examine the same, the 

geometrical properties are taken as R/a = 50, a/b = 1 and 

a/h = 50 with simply supported condition. 

Further, the buckling behavior of the shell panel is 

evaluated by varying the aspect ratio and presented in Table 

2 for five aspect ratios (a/b = 0.8, 1.1, 1.4, 1.7 and 2) and 

four grading configurations (UD, FG-X, FG-O and FG-V). 

The critical buckling temperature is calculated for a 

cylindrical shell panel with all edges clamped condition, 

R/a = 5 and a/h = 50. It can be understood from the table 
 

 

Table 2 Effect of aspect ratio on thermal instability of CNT 

reinforced cylindrical shell panel 

Aspect ratio 

(a/b) 

Grading patterns 

UD FG-X FG-O FG-V 

0.8 520.065 537.616 487.346 507.676 

1.1 530.773 549.017 493.525 517.006 

1.4 541.869 562.245 493.183 523.272 

1.7 546.064 564.956 506.317 533.352 

2 570.397 589.329 508.311 562.020 
 

 

 

that the higher temperature is required to buckle the graded 

CNTRC shell when aspect ratio is high. Because the width 

(b) of the shell panel decreases with higher aspect ratio 

(a/b) and shell panel are under clamped condition. 

 

 

4. Conclusions 
 

The critical buckling temperature of the FG-CNTRC 

shell panel is computed numerically using the currently 

proposed and derived HSDT displacement model. The 

governing equilibrium equation is obtained using the 

variational principle and solved through an own homemade 

code (MATLAB platform). Firstly, the convergence and 

comparison study has been conducted to build the necessary 

confidence and extended for the parametric analysis. 

Subsequent understanding related to the parametric analysis 

are discussed in point-wise form in the following lines. 
 

(1) The critical buckling temperature of the FG-

CNTRC shell panel increases with higher CNT 

volume fraction (𝑉𝑁𝑇
∗ ) and aspect ratio (a/b) of the 

composite shell panel. 

(2) The critical buckling temperature of the CNTRC 

shell panel is decreases with higher thickness ratio 

(a/h) and curvature ratio (R/a). 

(3) Spherical shell panel is the stiffest geometry and 

the critical buckling temperature of the spherical 

shell panel is maximum as compared to other used 

geometries. 

(4) The study indicates that to buckle the nanocom- 
 

 

  

(a) UDT (b) LDT 

Fig. 6 Effect of CNT volume fraction on critical buckling temperature of CNTRC 
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posite structure, a higher value of temperature 

required when panel is under the LDT in 

comparison to UDT. 

(5) The critical buckling temperature for the FG-X 

type graded composite is maximum and minimum 

for FG-O. 
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