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Abstract.  In the present study, the objective is to detect the structural damages using the responses obtained from 
the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process 
due to responses’ noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the 
noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, 
the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are 
placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this 
procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as 
well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the 
suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective 
Independence (EI) method, and a mass weighting version of EI. In the examples, young’s modulus, density, and 
cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have 
demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the 
optimal sensor placement in the structures. 
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1. Introduction 

 
Optimal sensor placement (OSP) is one of the  essential criteria in Structural Health Monitoring 

(SHM) methods (Laory et al. 2012). SHM methods are combined with OSP techniques to perform 
several purposes: identify structural parameters, detect structural damages, and update the finite 
element model (He et al. 2014). Zhou et al. (2015a) presented the theoretical framework of 
optimal wireless sensor placement in SHM. In this study, the energy-aware wireless sensor 
placement was formulated as a discrete optimization problem and a Hybrid Discrete Firefly 
Algorithm (HDFA) was developed to solve this complex optimization algorithm. Yi et al. (2015) 
proposed a novel OSP algorithm called Adaptive Monkey Algorithm (AMA) to cope with the 
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sensor placement problem for target location under constraints of computing efficiency and 
convergence stability. In this method, a dual-structure coding method was used instead of the 
traditional coding method. Hosseini-Toudeshky and Amjad (2021) studied the optimization of 
sensor placement for SHM systems. In this study, attention was paid to the lamb wave or guided 
wave-based SHM. By using detection theory and the Bayes risk framework, the expected cost 
(loss) of decision making or Bayes risk to the SHM system was minimized and the optimal 
detector was obtained. 

Structural damage detection using finite element model updating by evolutionary algorithms is 
an active research focus that is proceeding by researchers; but this subject lacks a comprehensive 
survey. To achieve this purpose, a review of the critical aspects of structural damage detection 
using the finite element model updating is presented (Alkayem et al. 2018). One of the major 
concerns in SHM is to infer the procedure of structural conditions from the responses and the 
responses collected from sensors. SHM’s objectives are to detect structural damages with high 
accuracy, as well as to extend the useful life of structures. Ghiasi et al. (2016) proposed a new 
strategy for structural damage detection using least square support vector machines based on a new 
combinational kernel. Kaveh and Zolghadr (2015) formulated an approach for damage detection as 
an inverse optimization problem. In this approach, the amounts of damage to each element were 
considered as the optimization variables. The objective function was based on setting these 
variables such that the characteristics of the modal correspond to the experimentally measured 
characteristics of the actual damaged structure. Dinh-Cong et al. (2017) presented an efficient 
multi-stage optimization method for the damage detection in plate-like structures. In this method, 
the objective function was based on changes in the flexibility of the structure and a modified 
differential evolution algorithm was used for many stages of damage detection. Shyamala et al. 
(2018) proposed a damage detection method using the Support Vector Machine (SVM) algorithm 
that worked step by step by first locating and then determining the severity of the damage. The 
SVM algorithm uses simulations of only a limited number of damage scenarios and trains the 
algorithm in such a way that it detects damage at unknown locations by recognizing the pattern of 
changes in dynamic responses. In this study, a rectangular fiber reinforced plastic composite plate 
was investigated both numerically and experimentally to observe the efficiency of the SVM 
algorithm for damage detection. Khatir et al. (2019) presented a two-stage method for damage 
detection in beam-like structures. In this method, a new damage index was proposed to locate the 
damaged elements. Ghiasi et al. (2019) proposed an efficient three-stage method for damage 
detection of large-scale space structures by employing a forward substructuring approach, modal 
strain energy, and Enhanced Bat Algorithm (EBA) optimization. Ghannadi et al. (2020) studied the 
efficiency of grey wolf optimization algorithm for damage detection. In this study, the residual 
force vector based on expended mode shapes was considered as an objective function. Kahya et al. 
(2021) proposed automated model updating for the identification and location of damage in 
laminated composite beams. To simulate damage, the material moduli and the mass density of the 
beam were chosen as uncertain parameters and the sensitivity analysis was performed based on 
estimation of the Bayesian parameter. Crack locations were determined by evaluating changes in 
these parameters. 

OSP techniques obtain a lower number of degrees of freedom (DOFs) to record the structural 
responses; therefore, the structural damage detection is achieved at a lower cost. In this regard, 
Kammer (1991) provided the Effective Independence (EI) method based on maximizing the 
determinant of the Fisher Information Matrix (FIM). In this method, the sensor positions were 
classified according to their contribution to the linear independence of the target modal partitions. 

60



 
 
 
 
 
 

An approach for optimal sensor placement based on principal component analysis … 

Iteratively, positions that do not contribute significantly to linear independence were eliminated. 
The FIM was also weighted with a mass matrix obtained from a finite element model. This 
research aimed to develop and investigate the use of an iterative Guyan expansion for mass 
weighting of target modes for OSP purposes (Kammer and Peck 2008). General methods for OSP 
often take advantage of dynamic parameters such as mode shapes and the natural frequencies. 
Researchers’ trust was traditionally based on these methods and the finite element model analysis 
in the low frequency range. These methods are ineffective in the mid-frequency range due to the 
numerous mode shapes and high modal aggregation. In this aspect, a method for OSP was 
presented by Rao et al. (2014) in the mid frequencies. In the mentioned study, a typical procedure 
and a set of experimental data were considered to identify the modal parameters of the material. 
Since experimental results are usually affected by errors and are limited in number, it is essential to 
specify sensor locations to record the most informative data. Zhou et al. (2015b) adopted an 
uncertainty metric for the identified structural parameters as a performance measure for OSP. Also, 
OSP was formulated as the multi-objective optimization problem and the Nondirective Movement 
Glowworm Swarm Optimization (NMGSO) algorithm was proposed to identify the effective 
Pareto optimal sensor configurations. Yi et al. (2017) presented a holistic approach including a 
three-dimensional optimal criterion and solution method to find the optimal locations to implement 
triaxial sensors. In this approach, the three-dimensional optimal criterion was established by 
combining the three-dimensional modal guarantee criterion and the redundancy function. The 
Hierarchical Wolf Algorithm (HWA) was developed by mimicking the swarm intelligence 
embedded in the wolf pack to efficiently find the optimal triaxial sensor configuration with the 
proposed optimal three-dimensional criterion. Wang and Yang (2017) investigated the relationship 
between the error of damage identification and the sensitivity matrix. In this study, an index was 
defined according to the perturbation amplify effect, then an OSP method was proposed based on 
the minimization of that index. A novel method for OSP was presented by Chisari et al. (2017) that 
was based on the definition of the representativeness of the data with respect to the global 
displacement field. This method employed an optimization procedure based on the Genetic 
Algorithm (GA) and permitted any sensor layout assessment, regardless of the actual inverse 
problem solution. In another research, an OSP strategy was developed by Zhang et al. (2017) for 
multi-setup modal identification. As an optimality criterion, the information entropy was adopted 
in the stated research, which is a scalar measure of uncertainty in the Baysian framework. Zhou et 
al. (2019) treated an optimal configuration of the wireless sensor network for structural health 
monitoring as a discrete optimization problem. They introduced a new swarm intelligence 
algorithm called machine learning firefly algorithm by integrating the original firefly algorithm 
with the Lévy flight and machine learning mechanism to solve this optimization problem. A useful 
function was provided by Dinh-Cong et al. (2018) for OSP and damage detection in laminated 
composite structures. In this role, the space required to optimize sensor placement was initially 
reduced through an Iterated Improved Reduced System (IIRS) method. Afterward, the OSP 
problem was solved by Jaya’s algorithm. The objective function was defined from the correlation 
between the flexibility matrix obtained from an original finite element model and the 
corresponding matrix calculated from the IIRS. A robust method was proposed by Yang et al. 
(2018) for OSP under uncertainty conditions. The non-probability performance was used to avoid 
creating errors in incomplete data. In this research, the FIM was obtained based on the modal 
analysis. Additionally, an unbiased state of several studies in the area of optimal sensor placement 
for SHM applications was presented by Ostachowicz et al. (2019). In the mentioned research, at 
first, the definition of the OSP problem was presented; subsequently, each step of the optimization 
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was described. On the other hand, Tan and Zhang (2020) investigated a comprehensive review of 
computational methodologies for OSP. In this review, the formulation of the OSP issue was 
initially introduced; subsequently, various existing optimization methodologies were summarized 
and introduced in detail; specifically, evolutionary algorithms and their improved variants were 
examined. In one of the studies, a procedure to select an optimal number of sensor placement 
based on a comparison between the probability of damage occurrence and the probability of 
detecting damage was suggested by Lofrano et al. (2020). In this paper, the non-localized damage 
was described using a Gaussian distributed random damage parameter. Liu et al. (2020) proposed 
a sensor placement framework based on the Deflection Influence Line (DIL) analysis for the 
optimal design of damage detection-oriented BHM system. They were explored the change of 
global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage to 
improve damage detection accuracy. They developed a new sensor placement framework based on 
the Fisher information matrix. 

Shi et al. (2020) proposed an OSP method based on a Weighted Standard Deviation Norm 
(WSDN) index. In this study, the OSP procedure was performed by minimizing the WSDN index. 
Other OSP criteria, including condition number, information entropy, and standard deviation norm 
were analyzed in this paper for comparison with the proposed method. Altunisik et al. (2021) 
investigated the OSP for dynamic characteristics identification of arch dams. For this purpose, a 
prototype arch dam was constructed in laboratory conditions. In this study, enhanced frequency 
domain decomposition and stochastic subspace identification methods were used to extract 
experimental dynamic characteristics and the OSP were specified using the effective independence 
method. Das and Dhang (2022) presented a damage detection method based on efficient multi-
stage optimization method with a limited number of sensors. In this method, a finite element 
model was developed to simulate the response of the actual structure. The limited sensor condition 
for this finite element model was obtained by the modal reduction method. 

Researchers have considered the uncertainty of structural parameters in OSP and the damage 
detection process in recent years. The uncertainty on structural parameters is considered as the 
difference between the actual physical parameters of structures and the categories of the structural 
analysis. In most cases, finding a solution for the OSP issue is challenging as it requires 
performing an optimization procedure under the mentioned uncertainties. In this aspect, a novel 
algorithm was developed for OSP under uncertainty conditions in a reliable monitoring system by 
Pourali and Mosleh (2013). The effects of the uncertainty parameters in the OSP techniques were 
investigated for structural modal analysis by Castro-Triguero et al. (2013). In another study, the 
role of modeling errors and uncertainty parameters were examined in sensor placement 
optimization (or nearly optimization) for SHM and modal tests by Vincenzi and Simonini (2017). 
Furthermore, Kim et al. (2018) introduced a stochastic EI method for OSP under uncertainty 
conditions. This method reported to have the best linear independence of the structural mode 
shapes. In another research, an assessment-guided optimal sensor placement algorithm was 
proposed based on the least mean square root by Liu et al. (2018). The results of this algorithm 
demonstrated that the obtained OSP algorithm contained the best orthogonality of mode shapes. 

In the present study, a novel method for OSP is proposed based on noise reduction in the 
responses recorded from the sensors in uncertainty conditions. Initially, the effect of noise on the 
response of the sensors is reduced by Principal Component Analysis (PCA) method. Afterward, 
the OSP is determined by reducing errors in the damage detection process. The OSP problem is 
considered a numerical problem. For this purpose, the damage detection equation based on 
sensitivity analysis is geometrically considered as a linear mapping of the response changes space 
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to the damaged space. Therefore, the existing noise of the recorded responses of the sensors is 
mapped to the damaged space; therefore, the accuracy of the damage detection process is reduced. 
In the proposed method, OSP aims to map the minimum noise level to the damaged space and 
increase the accuracy of the damage detection process. 

The sensitivity analysis for the damage detection problem is investigated in Section 2 of the 
current paper, and the principal component analysis is briefly illustrated in Section 3. Furthermore, 
the study’s novel OSP algorithm is proposed in Section 4, and three criteria for evaluating the OSP 
are offered in Section 5. Finally, Section 6 investigates the numerical results of the proposed 
method for a truss bridge, a space dome and a double-layer grid. In addition, the proposed method 
is validated by a three-story and two-bay experimental frame structure. The conclusions of the 
study are presented in the last section. 

 
 

2. Sensitivity Analysis (SA) 
 
The damage causes changes in the responses recorded from sensors in the structures. The 

response vector in the damaged structure is a nonlinear function of the damage vector. Therefore, 
the problem of damage detection is defined as follows 

 𝝓ௗ = 𝝓(𝒁),     𝒁 = ሼ𝑧ଵ, 𝑧ଶ, … , 𝑧௡ሽ் 0 ൑ 𝑧௜ ൑ 1 (1)
 

where Z is the damage vector, and n represents the number of structural elements. The values of zi 
= 0 and zi = 1 indicate the damage rate of ith element in healthy and damaged states, respectively. 
The vector 𝝓ௗ = ሼ𝜙ௗଵ, 𝜙ௗଶ, … , 𝜙ௗ௠ ሽ் is the structural response vector to the existing damage 
and 𝝓(𝒁) = ሼ𝜙ଵ(𝒁), 𝜙ଶ(𝒁), … , 𝜙௠(𝒁) ሽ்  is the structural response vector to hypothetical 
damages at m DOFs in which the sensors are placed; this vector can be obtained from the 
analytical model of the structure. In this study, the eigenvectors in the target modes are used as 
structural responses in the damage detection problem. 

To solve Eq. (1), the Taylor expansion 𝝓(𝒁) is used as follows 
 𝝓ௗ = 𝝓௛ + 𝜕𝝓𝜕𝒁 ∆𝒁 + ⋯ (2)
 
In this equation, 𝝓௛ is an indicator of the eigenvector of the healthy structure. Using the first 

two components of the Taylor expansion, Eq. (2) is expressed as 
 ∆𝝓 = 𝝓ௗ − 𝝓௛ = 𝜕𝝓𝜕𝒁 ∆𝒁, 𝑺 = 𝜕𝝓𝜕𝒁 ⇒ ∆𝝓 = 𝑺. ∆𝒁 = 𝑺(𝒁 − 𝒁଴) (3)
 

where 𝒁଴ is damage vector of the healthy structure, so it is a zero vector, and S is the sensitivity 
matrix (Naseralavi et al. 2010). 

 
 

3. Principal Component Analysis (PCA) 
 
Due to existing the error probability derived from the visibility or failure of the sensors, the 

data recorded from the sensors is generally noisy. One of the methods to reduce the mentioned 
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noise is to apply the Principal Component Analysis (PCA) method. PCA is a general mathematical 
technique that is widely applied to analyze data set problems. PCA was initially introduced by 
Pearson (1901). In this method, an orthogonal space of target data is acquired to transmit initial 
data to a new cross-correlations coordinate system. After the PCA transfer, the orthogonal space is 
divided into two sub-spaces: the main and noisy sub-spaces. To obtain the indicated principal and 
noisy sub-spaces, the covariance matrix is utilized. The principal components of the PCA space are 
called pcs, and these components correspond to the largest eigenvalues of the covariance matrix 
that are orthogonal and non-relevant. The matrix has been assumed to represent the recorded 
responses of m sensors on the damaged structure 𝝓ௗ as follows 

 𝝓ௗ = ቎ 𝜙ଵଵ೏ ⋯ 𝜙ଵ௣೏⋮ ⋱ ⋮𝜙௠ଵ೏ ⋯ 𝜙௠௣೏቏ = [𝝓ଵௗ 𝝓ଶௗ … 𝝓௣ௗ], 𝝓௝ௗ = [ 𝜙ଵ௝೏ 𝜙ଶ௝೏ … 𝜙௠௝೏]் (4)

 
where 𝜙௜௝೏ is the ith component of the eigenvector in the jth mode in the damaged structure, and 
p represents the number of target modes. To apply PCA, 𝑚ഥ௜ which is indicator of the average of 
data recorded from the sensors in the ith DOF, is initially calculated 

 𝑚ഥ௜ = 1𝑝 ෍ 𝜙௜௝೏
௣

௝ୀଵ  (5)

 
The normalized matrix of 𝝓ௗ, which is called D matrix, is as follows 
 𝑫 = ቎ 𝑑ଵଵ ⋯ 𝑑ଵ௣⋮ ⋱ ⋮𝑑௠ଵ ⋯ 𝑑௠௣቏, 𝑑௜௝ = 𝜙௜௝೏ − 𝑚ഥ௜ (6)

 
Furthermore, the covariance matrix of the normalized data is obtained according to the 

following equation 𝑪 = 1𝑝 − 1 𝑫𝑫் (7)

 
Eigenvalues and eigenvectors of the C matrix are obtained, and the eigenvectors corresponding 

to the largest value are the same as pcs (Hotelling 1993). In this study, the pcs obtained from the 
responses of the damaged structure contain the largest variance and, therefore, retain the essential 
information of 𝝓ௗ matrix. The maximum variance contains the first few principal components, 
while the remaining less essential components include the measurement noise (Zhang et al. 2019). 
In this study, the number of principal components to take in the analysis is considered m. 

 
 

4. The proposed algorithm for the OSP based on Principal Component Analysis 
and Sensitivity Analysis (PCA-SA) 
 
There is a challenging problem in the damage detection process that due to the noise in the 

recorded structural responses from the sensors and the limited number of sensors, the damage 
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detection results are often not accurate. In this sense, if a sufficient amount of data is used in the 
damage detection process, the accuracy of the detected damages will increase. 

According to Eq. (3), the damage is obtained as follows 
 ∆𝒁 = 𝑺ା. (∆𝝓 + 𝜗) (8)
 

where 𝑺ା is pseudo-inverse of the sensitivity matrix, and 𝜗 is a noise vector that has a normal 
Gaussian distribution. In this study, a normal distribution of the noise vector with zero mean and 
covariance matrix of Im×m is considered. This noise is geometrically considered as a sphere unit. 

Mathematically, in any linear equation such as A.x = b, the matrix A maps the vector space x to 
the vector space b. Similarly, in Eq. (3), the matrix S maps the vector space ∆Z (called ΔZ space) 
to the vector space ∆𝝓 (called ∆𝝓 space). By Eq. (8), the pseudo-inverse matrix, 𝑺ା, will 
inverse result in an inverse mapping from space ∆𝝓 to the space ∆Z. The normal noise 
covariance matrix I in space ∆𝝓 with inverse mapping changes to the covariance matrix of 𝑺ା. 𝑰. 𝑺ା்in the space ∆Z. This noise is geometrically considered as an ellipsoid. If the volume of 
this ellipsoid decreases in the space ∆Z, the damage detection results will be equal to a more 
accurate value. Therefore, the sensors should be placed on DOFs where the mapped noise of the ∆Z space becomes minimum (Beygzadeh et al. 2014). The OSP problem can be expressed as 
follows Minimize Volume ቀ𝑺ା ∙ 𝑰. 𝑺ା்ቁsubject to |𝑆̅| = 𝑛𝑠 (9)

 
where 𝑆̅ ≡ ሼ𝑖, 𝑖 ∈ 𝑁𝐷𝑂𝐹ሽ is a set of sensors; NDOF represents the to tal number of DOFs that 
can be replaced by sensors, and ns is the number of available sensors. The symbol |Sത| is the size 
of the set 𝑆̅. Since the properties of a pseudo-inverse matrix are benefit, then the optimization 
problem can be expressed as 

 Minimize Volume (𝑺. 𝑰. 𝑺்)subject to |𝑆̅| = 𝑛𝑠 (10)

 
According to Eq. (10), the set Sത is chosen from the DOFs corresponding to the largest volume 

of covariance matrix 𝑺. 𝑰. 𝑺் in space ∆𝝓. If the covariance ellipsoid has the largest volume in 
space ∆𝝓, this projection of covariance on any vector of space ∆𝝓 has the most significant value. 
Therefore, the space ∆𝝓 consists of some DOFs found by using the optimization problem. The 
projection of the covariance ellipsoid in this space has the highest value. Hence, the optimization 
problem in Eq. (10) is expressed as follows 

 Maximize 𝑝𝑟𝑜𝑗ௌመ𝑺. 𝑰. 𝑺்subject to 𝑆መ = [𝑒ଵ, 𝑒ଶ, … , 𝑒௡௦] (11)

 
where ei represents a unit vector for the ith vector of the space ∆𝝓, in which the ith element is 
equal to one and the other elements are zero. Moreover, ns indicates the number of available 
sensors. The projection of the covariance matrix is obtained from the following equation 

 𝑝𝑟𝑜𝑗ୗ෠ 𝑺. 𝑰. 𝑺் = 𝑆መ. 𝑆መିଵ. 𝑺. 𝑰. 𝑺் (12)
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The optimization problem in the Eq. (11) is considered a numerical problem. The projection of 
a covariance matrix in any DOF is calculated according to Eq. (12). The DOFs are sorted 
corresponding to the decreasing projection values. 

In the present study, uncertainty conditions are simulated using the Monte Carlo simulation 
(Robert and Casella 2010). Monte Carlo simulation (MCS) requires a large number of simulations 
and high computational costs. In this paper, the uncertainty parameters are introduced into the 
Monte Carlo method by taking 1000 analysis samples; furthermore, the computational cost or time 
for structural analysis is also considered appropriate. In this sense, Young’s modulus, density, and 
cross-sectional area of the elements vary in each sample. 

In this regard, the proposed OSP algorithm which is called PCA-SA is presented as follows: 
 
Set i = 1, the number of simulations (iteration = 1000), the number of target modes (p), the 

number of available sensors (ns) 
Repeat 
    Consider uncertainty parameters: Ai, ρi, Ei 
    Model the structure and perform modal analysis by OpenSees software 
    Calculate the OSP using PCA-SA algorithm 

PCA-SA algorithm 
Set j = 1, the number of DOFs (m), Q and G vectors with the number of m × 1 size 
Select p eigenvectors 
Impose measurement noise to eigenvectors 
Reduce the noise using PCA method 
Repeat 
Calculate matrix S and fi = 𝒑𝒓𝒐𝒋𝐒෠𝐒. 𝐈. 𝐒𝐓 using Eq. (12) 
Increase j by one unit 
Until j = m 
Qi = The values fi arranged in a decreasing order 
Gi = The DOF corresponding to Qi 
OSP = G1 to Gns 

Increase i by one unit 
Until i = iteration 
Compute the possibility of selecting each DOF as the OSP in samples 
Select the DOFs with the most repeated OSP possibility 
 
 

5. Assessment criteria 
 
To evaluate the results of the proposed algorithm for optimal sensor placement, three criteria 

have been considered: 
 
5.1 Fisher Information Matrix (FIM) 
 
This algorithm aims to find the best DOFs that maintain linear independence between the mode 

shapes. Initially, the modal matrix is derived from the complete finite element model. Since all the 
responses of all DOFs of a finite element model cannot be measured; therefore, the rotational 
DOFs and the degrees that cannot be measured are eliminated from the modal matrix. Similarly, all 
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the mode shapes cannot be measured empirically, as well; therefore, a series of target mode shapes 
are chosen optimally. Since each row in the modal matrix corresponds to one degree of freedom, 
some DOFs (rows) are preserved. In the full modal matrix, the columns corresponding to the target 
mode shapes are kept. Consequently, the Fisher information matrix is defined as follows 

 𝐹𝐼𝑀 = 𝝓்𝝓 (13)
 
If the determinant of the FIM matrix is zero, the columns of the modal matrix will be linearly 

dependent. Therefore, this method aims to select the best DOFs that maximize the determinant of 
the FIM matrix (Castro-Triguero et al. 2013). 

 
5.2 Modal Assurance Criterion (MAC) 
 
In general, the purpose of this criterion is to achieve a relationship between 𝝓௜ and 𝝓௝ mode 

shapes. The components of the MAC matrix are (Castro-Triguero et al. 2013) 
 𝑀𝐴𝐶௜௝ = (𝝓௜் 𝝓௝)ଶ(𝝓௜் 𝝓௜)(𝝓௝் 𝝓௝) (14)

 
If an element of this matrix is zero, the vectors 𝝓௜ and 𝝓௝ will be uncorrelated, and if the 

value is one, the two modes will be completely correlated. In this paper, the MAC matrix is 
calculated in some DOFs. Therefore, the diagonal components of this matrix are always one, and 
the others are between zero and one. The best sensor placement has the lowest values for off-
diagonal components. To obtain a qualitative measurement of the sensors, the root mean square 
(RMS) can be obtained for off-diagonal elements of the matrix. 

 

𝑅𝑀𝑆 = ඪ 1𝑝(𝑝 − 1) ෍ ෍(𝑀𝐴𝐶௜௝)ଶ௣
௝ୀଵ௝ஷ௜

௣
௜ୀଵ , 𝑖 = 1, … , 𝑝, 𝑗 = 1, … , 𝑝 (15)

 
where p represents the number of target modes. The value of this parameter for a suitable sensor 
placement gains a lower value than the other sensor placements (Castro-Triguero et al. 2013). 

 
5.3 Singular Value Decomposition ratio (SVD) 
 
In the modal matrix of the structure, the special values can be divided as (Castro-Triguero et al. 

2013) 𝝓௠ൈ௣ = 𝑼௠ൈ௣𝑷ഥ௣ൈ௣𝑽௣ൈ௣்  (16)
 
The matrix 𝑷ഥ is a diagonal matrix, in which the elements of the main diagonal are the 

eigenvalues obtained from the modal matrix. If the mode shape vectors are linearly dependent; 
thus, there is at least one zero value in the eigenvalues. To compare the obtained sensor placements, 
the smallest value of the largest values in the eigenvalues represents the best sensor position. 
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Fig. 1 31-bar truss bridge
 
 

Table 1 Active DOFs in truss bridge 

Node Horizontal 
DOF 

Vertical 
DOF Node Horizontal 

DOF 
Vertical 

DOF 
2 1 2 9 15 16 
3 3 4 10 17 18 
4 5 6 11 19 20 
5 7 8 12 21 22 
6 9 10 13 23 24 
7 11 12 14 25 - 
8 13 14    
 
 

6. Numerical results 
 
In this section, a truss bridge, a space dome, and a double-layer grid are considered  and studied. 

In order to evaluate the efficiency of the proposed method for OSP, the obtained results are 
compared with the results of three other algorithms, including Average Driving Point Residue 
(ADPR), Effective Independence (EI) method, and a mass weighting version of EI (EI-mass) (Liu 
et al. 2018). In addition, the three comparative criteria described in Section 5 are evaluated, and 
the results of the algorithms are compared with each other.  In this study, a noise level of 5% is 
imposed on the mode shapes of the structures. 

 
6.1 Truss bridge 
 
The truss bridge presented in Fig. 1 has 31 members, 14 nodes, and 25 DOFs (Castro-Triguero 

et al. 2013). The active DOFs in this truss have been shown in Table 1. 
In this example, the first ten modes are used to form the modal matrix. A normal distribution of 

Young’s modulus, density, and cross-sectional area of members are considered the uncertainty 
parameters. The mean and distribution of the uncertainty parameters are presented in Table 2 
(Castro-Triguero et al. 2013). 

 
 

Table 2 Uncertainty parameters 
Parameter Mean Covariance 

Young’s modulus (GPa) 70 8 
Mass density (kg/m3) 2800 4 

Cross-sectional area (m2) 0.0025 5 
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(a) PCA-SA (b) ADPR 
 

 
(c) EI (d) EI-mass 

Fig. 2 Probability of the sensor placement
 
 

Table 3 DOFs corresponding to the optimal sensor placement 
Algorithm DOF 
PCA-SA 1 4 8 10 12 14 18 20 23 25 
ADPR 1 8 10 12 14 16 18 20 23 25 

EI 1 4 10 12 14 16 18 20 23 25 
EI-mass 1 4 10 12 14 16 18 19 20 23 
 
 

Table 4 Assessment criteria for the obtained sensor placement 

Criteria 
Algorithm 

PCA-SA ADPR EI EI-mass 
FIM 4.65E+0.4 3.68E+0.4 3.56E+0.4 2.97E+0.4 
RMS 0.0577 0.0727 0.0613 0.0614 
SVD 0.041 0.0088 0.04 0.04 

 
 
In this structure, it is assumed that there are ten sensors available. The probability of choosing 

each degree of freedom as one of the ten sensor positions is shown in Fig. 2. According to these 
figures, ten optimal sensor placement with the highest probability has been shown in Table 3. 

For each position obtained from Table 3, the three assessment criteria are calculated and 
demonstrated in Table 4. 

According to Table 4, the FIM value obtained by the PCA-SA algorithm is higher than the other 
algorithms; therefore, this algorithm maintains linear independence between the mode shapes. In 
addition, the RMS value obtained by the PCA-SA algorithm is lower than the other algorithms, 
indicating that the off-diagonal elements of the MAC matrix have the lowest value in this 
algorithm. Moreover, the SVD values obtained by PCA-SA, EI, and EI-mass are almost similar 
and are higher than the ADPR value. Finally, the results reveal that the accuracy of PCA-SA is 
considerably better  
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Fig. 3 52-bar space dome
 
 

Table 5 Active DOFs in space dome 

Node DOF in 
 X-direction 

DOF in 
 Y-direction 

DOF in  
Z-direction Node DOF in 

 X-direction
DOF in  

Y-direction 
DOF in  

Z-direction
1 1 2 3 8 22 23 24 
2 4 5 6 9 25 26 27 
3 7 8 9 10 28 29 30 
4 10 11 12 11 31 32 33 
5 13 14 15 12 34 35 36 
6 16 17 18 13 37 38 39 
7 19 20 21     
 
 

than the other algorithms. Furthermore, the effect of noise on the responses recorded from sensors 
is less than the other algorithms. 

 
6.2 Space dome 
 
A 52-bar space dome is considered according to Fig. 3. The elements of this steel structure 

represent the following characteristics: Young’s modulus E = 70 GPa; density ρ = 2770 kg / m3; 
and cross-sectional area A = 0.0050 m2 (Beygzadeh et al. 2014) . 

This structure has 21 nodes and each node has three DOFs. The active DOFs corresponding to 
each node are shown in Table 5. The DOFs of nodes 14, 15, 16, 17, 18, 19, 20, and 21 are 
constrained; It is worth mentioning that the structure has 39 active DOFs . 

In this structure, the first ten modes are employed to form the modal matrix. The normal 
distribution characteristics for the uncertainty parameters are given in Table 6. 

It is assumed that 12 sensors are available. The probability of choosing each degree of freedom 
as one of the 12 sensor positions is shown in Fig. 4. According to these figures, 12 optimal sensor 
positions are the DOFs with the maximum probability presented in Table 7. For each position 
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Table 6 Uncertainty parameters 
Parameter Mean Covariance 

Young’s modulus, GPa 70 8 
Mass density, kg/m3 2770 4 

Cross-sectional area, m2 0.005 10 
Cross-sectional area, m2 0.005 10 

 
 

(a) PCA-SA (b) ADPR 
 

 
(c) EI (d) EI-mass 

Fig. 4 Probability of the sensor placement
 
 

Table 7 DOFs corresponding to the optimal sensor placement 
Algorithm DOF 

PCA-SA 
3 9 12 15 16 18 

23 24 28 30 35 36 

ADPR 
3 9 12 15 16 18 

23 24 28 30 35 36 

EI 
3 9 12 15 16 18 

21 24 28 30 36 39 

EI-mass 
3 9 12 15 16 18 

21 24 28 30 36 39 
 
 

Table 8 Assessment criteria for the obtained sensor placement 

Criteria 
Algorithm 

PCA-SA ADPR EI EI-mass 
FIM 4.16E+0.4 4.16E+0.4 1.64E+0.4 1.64E+0.4 
RMS 0.0102 0.0102 0.0102 0.0102 
SVD 0.2101 0.2101 0.2098 0.2098 
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Fig. 5 200-bar double layer grid
 
 

obtained from Table 7, the three assessment criteria are evaluated and displayed in Table 8. 
According to Table 7, the OSPs obtained by the PCA-SA and ADPR algorithms are similar. A 

comparison of the FIM value in Table 8 indicates that the optimal sensor placements obtained by 
the PCA-SA and ADPR algorithms are more accurate than the EI and EI-mass algorithms. The 
mentioned point reflects that the PCA-SA and ADPR algorithms better maintain the linear 
independence between the mode shapes than other algorithms. In this example, the RMS value in 
all algorithms is similar; therefore, this criterion is not suitable for comparing the evaluated 
algorithms of this example. Moreover, the SVD value obtained by PCA-SA and ADPR is higher 
than the other algorithms. Ultimately, the results of the proposed algorithm are suitable for OSP. 

 
6.3 Double-layer grid 
 
In this section, a 200-bar double-layer grid shown in Fig. 5 is considered. The characteristics of 

the elements of this steel structure are: Young’s modulus E = 20 GPa; and density ρ = 2770 kg / m3 
(Beygzadeh et al. 2014) . 

This structure has 61 nodes, and each node has three DOFs. The DOFs of nodes 7, 11, 51, and 
55 are constrained; Moreover, the structure has 171 active DOFs. In this structure, 20 modes are 
employed to form the modal matrix. The normal distribution characteristics for the uncertainty 
parameters are given in Table 9. 

It is assumed that 30 sensors are available. The probability of choosing each degree of freedom 
as one of the 30 positions of sensors is obtained from Fig. 6. Within these figures, 30 sensor 
positions with the highest probability are considered optimal, which are shown in Table 10. 

 
 

Table 9 Uncertainty parameters 
Parameter Mean Covariance 

Young’s modulus, GPa 20 8 
Mass density, kg/m3 2770 4 
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Table 10 DOFs corresponding to the optimal sensor placement 
Algorithm DOF 

PCA-SA 

3 6 9 12 15 18 24 
27 30 39 45 57 63 78 
81 93 96 111 114 117 129 

144 147 150 156 159 162 165 
171 168      

ADPR 

3 6 9 12 15 18 24 
45 54 63 69 72 78 81 
84 90 93 96 102 105 111 

120 129 144 150 156 162 165 
168 171      

EI 

3 6 9 12 15 18 36 
42 51 57 60 63 69 75 
78 81 84 90 96 102 108 

111 117 123 126 129 135 141 
150 171      

EI-mass 

6 9 12 15 36 42 45 
51 60 69 72 75 78 81 
84 90 93 96 102 105 108 

111 114 117 126 135 141 144 
150 171      

 
 
 
 
 

 
(a) PCA-SA

 

 

(b) ADPR

Fig. 6 Probability of the senor placement
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(c) EI
 

 

(d) EI-mass

Fig. 6 Continued
 
 

Table 11 Assessment criteria for the obtained sensor placement 

Criteria 
Algorithm 

PCA-SA ADPR EI EI-mass 
FIM 5.871e+13 4.452e+13 1.635e+13 3.688e+12 
RMS 0.0136 0.016 0.0153 0.0241 
SVD 0.116 0.103 0.0915 0.0660 

 
 
A comparison of the results obtained by the PCA-SA, ADPR, EI, and EI-mass algorithms, in 

Table 11 illustrates that the OSP obtained by PCA-SA is more accurate than the other mentioned 
algorithms. 

 
 

 
(a) Experimantal spatial frame (b) Finite elment model 

Fig. 7 A three-story experimental frame structure
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Table 12 Active DOFs in spatial frame 

Node DOF in 
 X-direction 

DOF in 
 Y-direction Node DOF in 

 X-direction
DOF in 

Y-direction Node DOF in 
X-direction 

DOF in 
Y-direction

1 1 2 7 13 14 13 25 26 
2 3 4 8 15 16 14 27 28 
3 5 6 9 17 18 15 29 30 
4 7 8 10 19 20 16 31 32 
5 9 10 11 21 22 17 33 34 
6 11 12 12 23 24 18 35 36 
 
 

Table 13 Uncertainty parameters 
Parameter Mean Covariance 

Young’s modulus, GPa 196 8 
Cross-sectional area, cm3 38.71 4 
 
 
6.4 Three-story experimental frame structure 
 
Sun and Büyüköztürk (2015) studied a three-story and two-bay experimental steel frame at the 

MIT structural laboratory to validate the OSP performance in SHM. This experimental spatial 
frame and its finite element model is shown in Fig. 7. The structure consists of 39 elements and 24 
nodes that the bottom nodes at the base are fixed. Each element of this frame has dimensions 5.08 
× 0.635 × 60.96 cm. The characteristics of the elements are: Young’s modulus E = 196 GPa; and 
density ρ = 7880 kg/m3. The total number of DOFs is 108 and just the 36 transitional DOFs (along 
the X- and Y-dimensions) are considered for OSP. The transitional DOFs corresponding to each 
node are shown in Table 12. 

In this structure, the first 7 modes are employed for the OSP problem. The normal distribution 
characteristics for the uncertainty parameters are given in Table 13. 

In this experimental test, the structure is instrumented with 18 triaxial piezo-electric 
accelerometers which are attached close to the 18 active nodes. A shaker mounted at node 18 is 
used to excite the structure along the X-direction as shown in Fig. 7(a). The excitation is 
considered as a Gaussian white noise sequence. The sampling rate of data acquisition is 6 kHz and 
22 s long data were recorded for analysis. The modal properties of the structure are first identified 
using the Frequency Domain Decomposition (FDD) based on all the nodal measurement. Sun and 
Büyüköztürk (2015) carried out the OSP of 10 sensors for the experimental frame structure based 
on two objective function, f1(ϑ) and f2(ϑ). The OSP for both cases are visualized in Table 14. 

In this study, the probability of choosing each degree of freedom as one of the 10 positions of 
sensors is obtained from Fig. 8. Within these figures, 10 sensor positions with the highest 
probability are considered optimal, which are shown in Table 14. 

According to Table 14, the OSPs obtained by the mentioned algorithms are similar in some 
DOFs. For each OSP obtained from Table 14, the three assessment criteria are evaluated according 
to Table 15. 
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(a) PCA-SA (b) ADPR 
 

(c) EI (d) EI-mass 

Fig. 8 Probability of the senor placement
 
 
 

Table 14 DOFs corresponding to the optimal sensor placement 
Algorithm DOF 

PCA-SA 
3 7 10 11 15 

21 25 28 29 33 

ADPR 
2 3 7 11 14 

21 25 29 31 33 

EI 
3 7 10 11 14 

20 25 2 30 33 

EI-mass 
2 3 10 11 15 

21 25 28 31 33 
f1(ϑ) 

(Sun and Büyüköztürk 2015) 
2 3 7 10 11 

12 14 21 25 29 
f2(ϑ) 

(Sun and Büyüköztürk 2015) 
3 7 10 11 14 

20 25 29 30 33 
 
 
 
 
A comparison of FIM values in Table 15 indicates that the OSP obtained by the PCA-SA 

algorithm is more accurate than the other algorithms. The mentioned point reflects that the PCA-
SA better maintains the linear independence between the mode shapes than the other algorithms. 
In this example, the RMS value in all algorithms is almost similar; although this criterion in PCA-
SA algorithm is a bit lower than the other algorithms. Furthermore, the SVD value obtained by 
PCA-SA is higher than the other algorithms. Ultimately, the results of the proposed algorithm are 
suitable for OSP. 
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Table 15 Assessment criteria for the obtained sensor placement 

Algorithm 
Criteria 

FIM RMS SVD 
PCA-SA 5.4616 0.4082 0.197 
ADPR 1.8741 0.4088 0.164 

EI 2.4651 0.4094 0.109 
EI-mass 4.9745 0.4092 0.117 

f1(ϑ) 
(Sun and Büyüköztürk 2015) 3.2484 0.04085 0.187 

f2(ϑ) 
(Sun and Büyüköztürk 2015) 1.8522 0.04086 0.174 

 
 

7. Conclusions 
 
In this study, a novel algorithm called PCA-SA is proposed for optimal sensor placement based 

on the minimum error rate in the structural damage detection process. The effect of uncertainty on 
the OSP is also studied. In this algorithm, modal data, PCA method and sensitivity analysis are 
employed. For this purpose, the effect of noise on the response of the sensors is initially reduced 
using the PCA method. Subsequently, the OSP is determined by reducing errors in the damage 
detection process based on sensitivity analysis. The results of this algorithm are compared with 
three other algorithms for OSP through numerical examples. The considered examples are a truss 
bridge, a space dome, and a double-layer grid. In these examples, the uncertainty is considered in 
the form of a normal Gaussian distribution on the geometric characteristics and materials, 
including Young’s modulus, density, and the cross-sectional area of structural elements. The noise 
is also imposed on the recorded responses of the sensors. In addition, three numerical criteria are 
assessed to evaluate and compare the obtained OSP. The comparison between the algorithms has 
illustrated that the OSP obtained by the proposed algorithm (PCA-SA) more appropriately 
maintains the linear independence between the mode shapes compared to the other algorithms. In 
the PCA-SA algorithm, the off-diagonal elements of the FIM matrix are lower than the other 
algorithms, and the eigenvectors are uncorrelated. Ultimately, the results indicate that the proposed 
algorithm represents a higher accuracy for OSP purposes than the other mentioned algorithms. 
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