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Abstract.  The paper presents damage detection techniques for structural health monitoring of bridges 
incorporating computer vision derived measurements. The feasibility of the techniques is demonstrated on a 
numerical model of a bridge girder. The girder is subjected to a load induced by a slowly moving truck. Multiple 
damage scenarios are simulated. Damage detection is carried out on the four types of response (i.e., deflection, 
inclination angle, strain and curvature) computed from the numerical model. The robustness of vision measurement 
approach for damage detection is validated at different levels of added measurement noise. The noise is expressed as 
the pixel resolution achievable with the image processing algorithm at multiple camera field of views applied to 
target motions. Damage detection and location accuracies are influenced by damage extent, added measurement 
noise and type of response. The study shows that deflections and strains outperform inclination angles and curvatures 
detecting damages in noisy measurements. Strains are the best type of response for damage detection and location 
when high measurement resolutions (e.g., 1/500 pixels) can be achieved. 
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1. Introduction 

 
Bridges are vital elements of civil infrastructure. Their continuous and safe operation is 

important for their users and avoidance of delays and detours. Bridge condition assessment 
predominantly relies on regular visual bridge inspections, which are time and labour consuming, 
and subjective (Brownjohn 2007). Delays in detecting and recognizing structural faults or 
damages can be expected, especially considering that principal inspections, during which an 
inspection team accesses and examines critical components of the bridge within a touching 
distance, are carried out every six years (Highways Agency et al. 2018). For example, the 
London’s Hammersmith flyover was suddenly closed for emergency repairs in December 2011 
following an inspection, in which an already substantial cable corrosion and weakening caused by 
water ingress were discovered (Transport for London 2011). Bridge inspections can be 
complemented with the analysis of structure’s load and response mechanism, which can be 
obtained using suitable monitoring systems. Usually, monitoring systems employ contact sensors 
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such as fibre optic sensors, inclinometers, and strain gauges (Reagan et al. 2018). Sophisticated 
and dense sensor systems are installed on important bridges to the nation’s infrastructure. For 
example, the Queensferry Crossing in Scotland is equipped with approximately 1,000 sensors 
monitoring wind, temperature, corrosion, motion and strain (Infrastructure Intelligence 2017). 

The installation, operation and maintenance of monitoring systems are expensive, therefore, 
bridge condition assessment of short to medium span bridges with a low volume of traffic still 
relies predominantly on visual inspections (Brownjohn et al. 2016). For example, the cost of 
installing a structural health monitoring (SHM) system (in 2008) on the new I-35W St. Anthony 
Falls Bridge in the USA cost $73,000, with further annual maintenance costs of $35,000 (Dalia et 
al. 2018). These prohibitive costs present an opportunity for cost-effective monitoring systems 
offering reliable condition assessment of bridges. Vision-based monitoring systems, which consists 
of a fixed image acquisition device(s) and image processing software, have vast potential to 
become ubiquitous SHM systems (Lydon et al. 2019, Shao et al. 2020). Setting up a camera 
system, in general, requires no working at heights nor direct access to the bridge, and causes no or 
little traffic disruptions. 

Measurement collection with and applications of computer vision (CV) systems for bridge 
monitoring have been well researched at local and global levels (Xu and Brownjohn 2017, Feng 
and Feng 2018, Dong and Catbas 2020). Professional cameras with adequate lenses, camcorders, 
action cameras and smartphones are all suitable for accurate measurement collection (Zaurin and 
Catbas 2010, Fukuda et al. 2013, Brownjohn et al. 2017, Kromanis et al. 2019). Structural 
response is extracted from image frames of a bridge under loading using either proprietary 
software (e.g., Video GaugeTM (Imetrum 2020)), open source software (e.g., QUBDisp (Lydon et 
al. 2019) and DeforMonit (Kromanis and Al-Habaibeh 2017)) or other image processing 
algorithms that detect and track targets in image frames. The majority of studies have focussed on 
displacement measurement of a single target (i.e., localised sensing) on a bridge (Ribeiro et al. 
2014). For example, Khuc and Catbas (2017) employed fast retina key-point algorithm to match 
detected key points at a nut on a steel girder. Brownjohn et al. (2017) used the Dynamic 
Monitoring System with a template matching and super resolution image-based patented algorithm 
(Potter and Setchell 2014, Imetrum 2020) to measure mid-span deflections of the Humber and 
Tamar bridges. However, one of the main strengths of vision-based monitoring is the ability to 
track motions of multiple targets (i.e., distributed sensing) (Ji et al. 2020, Xu et al. 2018). 
Limitations for the achievable measurement resolution can depend on, but are not limited to, the 
image processing algorithm and camera field of view. For example, reasonable measurement 
accuracies, while capturing the entire bridge in a single field of view with cost-effective cameras, 
can be achieved only for short span bridges with high deflections (Xu et al. 2018, Chu et al. 2019, 
Kromanis 2020). However, accurate response measurement along the length of the entire bridge is 
required for accurate condition assessment of bridges. 

Measurement collection and analysis approaches are decided upon the bridge testing method: 
dynamic (e.g., vibration-based), static (e.g., traffic) and quasi-static (e.g., temperature). Dynamic 
testing is the most developed method for vibration-based damage identification in bridges 
(Doebling et al. 1998). However, it has some limitations and certain conditions must be satisfied to 
achieve accurate and reliable results. Firstly, very high measurement accuracy has to be achieved 
to capture higher order vibration modes, which my require employment of multiple synchronized 
cameras. Secondly, temperature affect vibration properties, therefore requiring temperature 
measurements, preferably distributed temperature measurements. Although these requirements can 
be met, they may imply high costs and may be challenging at in-situ conditions. Quasi-static 
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testing requires long-term measurements. Only a few studies have explored performance of long-
term videogrammetry (Park et al. 2015, Zhou et al. 2019), which is still in its infancy and, 
therefore, outside of the scope of the study. Static testing maintains the advantage of requiring only 
stiffness properties, which can be obtained easily and may yield more reliable results for damage 
detection than dynamic testing (Bakhtiari-Nejad et al. 2005). 

In static testing, structural displacements, strains, inclination angles and curvatures form the 
basis for damage detection (Chen et al. 2005, Gauthier et al. 2008, Abdo 2011, Kromanis and 
Liang 2018). Curvatures, and inclination angles, for example, are derivatives of deflections, which 
are directly related to bending moment and flexural rigidity. A change in the flexural rigidity 
affects structural response, which indicates a change in bridge conditions. This relationship can be 
exploited for damage detection. The performance of condition assessment methods is firstly 
studied on numerical models, then employed in the laboratory environment and, finally, considered 
for the use on full-scale structures. 

Chen et al. (2005) proposed a damage localisation and structural identification technique that 
utilises the Grey relation coefficient. This technique detects and defines outliers as a damage 
sensitive feature in the curvature of the beam along its length. The technique was validated on a 
numerical model of a cantilever beam showing that as little as 7% stiffness loss of a section is 
detected, located and quantified. Abdo (2012) carried out a numerical study for two types of beams 
using the Grey relation analysis to detect and located damages from displacement curvatures. The 
robustness of the method was also tested with added measurement noise. Lee and Eun (2008) 
introduced an analytical method for damage detection by utilizing displacement curvature. The 
method was validated on 1.0 m long cantilever beam with sever damages, i.e., 67% stiffness loss 
and measured by four displacement sensors. These techniques require high measurement accuracy 
and were not evaluated using a computer vision-based system, which may produce measurement 
errors hindering structural damage. 

Recent studies have also investigated the feasibility of computer vision-based SHM. Feng et al. 
(2015) developed a vision sensor for multipoint displacement monitoring based on an advanced 
template matching algorithm. Feng and Feng (2016) employed the vision sensor to verify the 
feasibility of output-only damage detection using vehicle-induced displacements and mode shape 
curvature index in a laboratory study. A 1.6 m simply supported steel beam was excited with 
hammer impacts at intact and damage states (20% section stiffness reduction). Damage location 
was accurately detected. However, the motion range of vertical displacements at the midspan was 
almost 30 mm (i.e., 15 mm amplitude). 15 mm deflection in 1.6 m is L/106, where L is the length 
of the span. Erdenebat et al. (2018) proposed the deformation area difference (DAD) method using 
deflections, inclination angles and curvatures for condition assessment of bridges. The method 
resolves the problem of unknown initial structural conditions by using numerical or theoretical 
models with known initial conditions as a reference system. The method is able to detect local 
stiffness reductions starting from 23.8% as validated using numerical and laboratory models with 
vision-based measurement (Erdenebat et al. 2018, 2019). The application of the DAD method was 
also demonstrated on a newly constructed bridge, where, of course, no damage was detected 
(Erdenebat and Waldmann 2020). The method is suitable for load tests, when the applied load 
remains stationary, while a multitude of images of parts of the bridge with bar-coded targets are 
captured. The images are later stitched using a proprietary software from which target 
displacements are computed. The photogrammetry method is not applicable for collecting 
measurements while vehicles are crossing the bridge. The method also did not include strain 
measurements as a damage sensitive feature. The implementation of some of the reviewed 
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methods may require much information about the structure (e.g., material properties, boundary 
conditions, geometry) and load on it (e.g., load location, amount, distribution). A bridge condition 
assessment approach (i.e., measurement collection and interpretation) requiring as little 
information about the structure and its geometry as possible, but being accurate and reliable for 
damage identification, therefore is sought by researchers and is attractive for asset owners. 

In this paper, a damage detection approach for CV-SHM of bridge condition assessment is 
proposed and validated on a numerical model. The premise is that accurate structural response of 
short to medium span bridges can be obtained with cost-effective cameras and available image 
processing algorithms. Response is measured along the length of the entire bridge. Provided that 
the required measurement resolution is achieved, the performance assessment (damage detection) 
of the bridge can be carried out at regular inspections, maintenance or safety monitoring events. 
The approach is validated on a numerical model, which is a girder of a single span concrete bridge 
found in highways. The robustness of damage detection is assessed using multiple damage 
scenarios and added measurement noise, which is inevitably present in field measurements. The 
requirements of measurement resolution for in-situ applications are discussed, and conclusions are 
drawn. 

 
 

2. Computer vision-based SHM of bridges 
 
A damage detection approach for CV-SHM of bridges is proposed. Fig. 1 illustrates the steps in 

the approach. Consumer-grade cameras such as action cameras and smartphones are used during 
bridge inspections or other measurement collection events to capture image frames of a bridge 
subjected to known loads (e.g., load truck). Cameras are focused on either the entire bridge or at a 
selected part(s) of it. Structural response such as deflection and strain, along the length of the 
bridge, is computed from each image frame. Absolut maximum response values at each target 
location are extracted. These form the bridge response along its length; from here on referred to as 
bridge response. The bridge response at the first inspection is assumed to represent baseline 
conditions of the bridge. In each new measurement collection event, bridge response is obtained 
and compared to baseline bridge response for condition assessment. Collected data is stored for the 
asset owner’s reference and retrieved when needed. The derivation and analysis of response for 
condition assessment are described in the following sections. 

 
 

 
Fig. 1 Vision-based condition assessment of bridges
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Fig. 2 Generation of structural response

 
 
2.1 Structural response 
 
Fig. 2 illustrates the computation of response for computer vision-based monitoring. Image 

frames of a bridge under traffic loads are collected. A target displacement, which is the movement 
that a target (𝑇) makes between time step 𝑡 = 0 and 𝑡 = 𝑖, is calculated by analysing frames with 
image processing algorithms and software such as Moir method (Ri et al. 2020), QUBDisp, 
DeforMonit and VG software (Kromanis et al. 2019). Structural response (in this study: deflection, 
inclination angle, strain and curvature) is computed from displacements of targets. Vertical 
deflections (𝛿) are products of displacements of a single target in y-axis and a scale factor (SF), 
which converts pixels to engineering units (e.g., mm). Strains (𝜀) and inclination angles (𝜃) are 
derived from movements of a target pair. The derivation of a curvature function requires at least 
three targets. Strains, inclination angles and curvatures can be computed for any combination of 
targets. Time-histories for all response types and target combinations are created and prepared for 
bridge condition assessment. Steps involved in the derivation of all types of response are discussed 
below. 

 
Vertical deflections. Displacements of a target in each image frame (time step), when 

converted to engineering units, are deflections of the structure at the location of measurement 
collection. For horizontal structures, vertical deflections (𝛿) are considered. A change of a target 
position in y-axis (∆𝑦௜), which is calculated from the target location in the first and 𝑖th image 
frames (𝑦଴ and 𝑦௜), assuming that pixels are converted to engineering units, is 𝛿 at 𝑖th time step 
(see Eq. (1)). 𝛿௜ = ∆𝑦௜ = 𝑦଴ − 𝑦௜ (1)

 

Strains. Strain (𝜀) is measured for a pair of targets. Eq. (2) can be used to calculate 𝜀 at 𝑖th 
time step (𝜀௜), which is the change of the length (𝛥𝑙) over the original length (𝑙଴) between two 
targets 𝑇௞ and 𝑇௠. The distance between targets (or length 𝑙) is computed from their 𝑥 and 𝑦 
coordinates (see Eq. (3)). Strain is unitless, therefore, 𝑥 and 𝑦 coordinates can be either in pixel 
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or other measurement space. 
 𝜀௜ = 𝛥𝑙௜𝑙଴ = 𝑙௜ − 𝑙଴𝑙଴  (2)

 𝑙 = ඥ(𝑥்௞ − 𝑥்௠)ଶ + (𝑦்௞ − 𝑦்௠)ଶ (3)
 
Inclination angles. The angle (tangent relationship) (𝛼) between two targets 𝑇௞ and 𝑇௠ is 

computed using Eq. (4). 𝜃௜ is the residual between 𝛼 in the first and 𝑖th time steps (see Eq. (5)). 
 𝛼 = tanିଵ ൬𝑦்௞ − 𝑦்௠𝑥்௞ − 𝑥்௠൰ (4)

 𝜃௜ = 𝛼଴ − 𝛼௜ (5)
 
Curvatures. The curvature technique involves fitting a curve on a set of coordinate points of at 

least three targets. In this study, a univariate quadratic function is considered (see Eq. (6)), which 
is suitable for deriving the quadratic coefficient (𝑎), linear coefficient (𝑏) and constant (𝑑) 
representing a curve fitted on three points of interest (or targets). 𝑎 determines the degree of 
curvature of the quadratic fit, therefore, it becomes the damage-sensitive feature. Any target 
combination is possible. The curvature (𝑐) for 𝑖th time step is the residual of quadratic coefficients 
at the first and 𝑖th time step (see Eq. (7)). 

 𝑓(𝑥) = 𝑎𝑥ଶ + 𝑏𝑥 + 𝑑 (6)
 𝑐௜ = 𝑎଴ − 𝑎௜ (7)
 
2.2 Damage detection and location 
 
Damage sensitive feature (𝑒௥,௝) is derived from bridge response at any location. It expressed as 

the ratio of the change in bridge response (∆𝑟௝), which is the difference between the baseline 
bridge response (𝑟଴) and new bridge response (𝑟௝), to 𝑟଴ (see Eq. (8)). The response symbol is set 
as the subscript to differentiate between types of response. For example, 𝑒ఋ,௝ is the damage 
feature derived from deflection (𝛿) at the 𝑗th measurement collection event. 𝑒 ≈ 0 indicates that 
the performance of the structure has not changed. 𝑒 ≫ 0 indicates that the structure is damaged. 
Damage indicating threshold(s) (𝛾) can be case-specific. In this study, the structure is said to be 
damaged if 𝑒 > 5%. Damage is located where 𝑒 values spike. 

 e௥,௝ = ∆𝑟௝𝑟଴ = 𝑟௝ − 𝑟଴𝑟଴  (8)
 
An illustrative example of damage detection technique from the vision measurement is given in 

Fig. 3. Bridge vertical deflection is measured at a number of targets. Deflections along the length 
of the bridge are computed for each measurement step 𝑡. The maximum deflection (𝛿௠௔௫) value at 
each target location, which is the maximum structural response at a target (i.e., 𝑟௠௔௫), is extracted. 𝑟௠௔௫ values form the deformed shape of the bridge along its length, which here is referred to as 
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Fig. 3 Damage detection technique from vertical deflections

 
 

bridge response (𝑟ఋ). This also applies to other types of response such as strains, inclination angles 
and curvatures. Bridge response at the first measurement collection event is set as the baseline 
bridge response (𝑟ఋ,଴), against which other bridge response measurements (𝑟ఋ,௝) are evaluated (see 
Eq. (8)). Damage feature (𝑒ఋ) is calculated from 𝑟ఋ,଴ and 𝑟ఋ,௝. It is assessed for damages by 
setting a threshold 𝛾. 𝑒 values exceeding 𝛾 indicate the damage location(s). 

 
2.3 Measurement pre-processing 
 
In-situ vision measurements are accompanied with measurement noise. Some of the factors 

influencing measurement quality are camera stability, camera field of view and resolution, pixel 
resolution of the image processing algorithm, and environmental effects (e.g., haze, reflection, 
shade). It is therefore imperative to treat target displacement histories for noise. This can be done 
by applying suitable moving average filters, firstly, to the displacement (in x and y axes) 
measurements and, lastly, to the derived response measurement. Only after response is pre-
processed, the bridge response (𝑟) can be computed. 

 
 

3. Numerical study 
 
A numerical model is employed to validate the proposed approach. A girder of a bridge, which 

is subjected to a truck load and six damage scenarios, is introduced. Response is generated and 
analysed. Different intensities of measurement noise are added to the response to represent 
realistic in-situ measurements. Noisy response is denoised and analysed. 

 
3.1 Numerical model 
 
The model is a simply supported beam structure, which is a representative of a typical 

reinforced concrete girder found in highway bridges. The girder is 12 m long with a depth of 1.2 m 
and a breadth of 0.5 m (See Fig. 4) modelled in ANSYS. It has four rows of 50 eight-node plane 
stress elements (Plane 183, ANSYS Inc. (2018)). Each element is 0.24 m long, 0.3 m wide and 
0.5 m thick. The bridge is subjected to a load from a slowly moving 25 tonne, three axle rigid 
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Fig. 4 A sketch of the numerical model and load locations at 50th measurement step 
 
 

Table 1 Damage location scenarios 
Damage location scenario D1 D2 D3 D4 D5 D6 

Damaged element(s) E1 E2 E3 E1, E2 E1, E3 E1, E2, E3 
 
 

truck. The load is distributed between several girders. The load application is simulated as a series 
of sequentially applied load steps. As an example, axle loads on the modelled girder at 50th load 
step are shown in Fig. 4. 

Damage scenarios are created by reducing the value of Young’s modulus (or stiffness) of an 
element (𝐸) or a combination of elements. Fig. 4 shows selected elements for damage (𝐸௜, 𝑖 =1,2,3) and their locations. Six damage location scenarios (𝐷s) are listed in Table 1. The reduction 
of element stiffness (or damage severity (𝑆)) by 10%, 50%, and 100% are considered and referred 
to as 𝑆ଵ, 𝑆ଶ, and 𝑆ଷ. These correspond to 2.5%, 12.5%, and 25% stiffness reduction of the girder 
cross-section, respectively. Damage scenario 𝑆ଵ𝐷ସ , for example, denotes 10% reduction of 
stiffness in 𝐸ଵ and 𝐸ଶ. A total of 18 damage scenarios are simulated. 

Nodal displacements along the bottom of the girder are extracted at each load step. Only the 
corner nodes of the eight-node elements are selected for the computation of response. Mid-nodes 
are not considered. Their nodal displacements for damaged elements have strong evidence of 
damage, which is immediately discernible in the bridge response along the length of the girder. 
The selected nodes are considered to be targets on the real structure. 

Response time histories (or the influence line) derived from the target or a set of targets are 
shown in Fig. 5. The largest deflections (in mm), strains (in 𝜇𝜀) and curvatures (unitless, therefore 

 
 

 
Fig. 5 Response histories of (a) deflection; (b) strain; and (d) curvature at the mid- span of the girder; 

and (c) inclination angle next to the left support derived from nodal displacements. ‘x’ marks the 
maximum absolute response value
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expressed in 𝑛 or 10-9) are at the mid-span of the girder. The highest inclination angles (in 𝜇rad) 
are close to the right support of the girder. 

 
3.2 Damage detection 
 
The maximum response (𝑟௠௔௫) for each target location(s) is extracted forming the girder 

response (𝑟) along its length. Damage detection is demonstrated on all four types of response: 
deflection (𝑟ఋ), strain (𝑟ఌ), inclination angle (𝑟ఏ) and curvature (𝑟௖). Damage scenarios 𝑆ଵ𝐷ଶ and 𝑆ଶ𝐷ହ are used as demonstrators. Fig. 6 (top) plots 𝑟 values along the length of the girder. Plots of 𝑟ఋ  and 𝑟ఏ  for undamaged and damaged girder show no discernible differences. Strains and 
curvatures are more sensitive to locale damages than deflections and inclination angles, which is 
indicated by spikes in 𝑟ఌ and 𝑟௖ values for the damaged structure. Spikes indicate damages and 
their locations. Values of inclination angle along the length of the girder change from positive 
(clockwise inclination) to negative (anticlockwise inclination). Inclination angles at the left 
support are larger than at the right support. This can be explained with the load distribution (i.e., 
axel loads) on the girder, see Fig. 4. ∆𝑟 values along the length of the girder show changes in girder response, which suggest for 
damage(s) and its(their) location (Fig. 6 (middle)). Changes in ∆𝑟ఌ and ∆𝑟௖ are significant for 𝑆ଶ𝐷ହ, but for 𝑆ଵ𝐷ଶ the peak at the middle of the girder is small (although noticeable). ∆𝑟ఋ for 𝑆ଵ𝐷ଶ spikes, though with a small maximum value, at the mid-section of the girder, where the 
damage is located. ∆𝑟ఋ indicates damage location for 𝑆ଶ𝐷ହ, when it peaks between 3 m and 9 m 
of the girder length. ∆𝑟ఏ for both damage scenarios shifts abruptly at damage locations. The trend 
of ∆𝑟ఏ is different from the others, therefor a different technique for generating the damage 
sensitive feature (𝑒ఏ) is required. 

Fig. 6 (bottom) plots values of the damage sensitive feature along the length of the girder. 
Damage threshold 𝛾 is set at 5%. 𝑒ఋ for 𝑆ଵ𝐷ଶ and 𝑆ଶ𝐷ହ do not exceed 2%, which indicates 
that the damage sensitive feature does not exceed the confidence bound. Although 𝑒ఋ peaks at 
damage locations. 𝑒ఌ for both selected damage scenarios exceed 𝛾. The peaks correctly indicate 
damage locations. Damage in 𝑆ଵ𝐷ଶ is not significant enough for 𝑒௖ to exceed 𝛾, however, for 𝑆ଶ𝐷ହ, 𝑒௖ surpasses 𝛾 significantly at both damage locations.  

A case-specific derivation of 𝑒ఏ  is proposed in Eq. (9). A moving window approach is 
employed to obtain 𝑒ఏ,௚ at the 𝑔௧௛ response measurement location along the length of the girder. 𝑒ఏ is computed as the ratio of the range of ∆𝑟ఏ (𝑞௡) to the mean of 𝑟ఏ (𝑟̅ఏ) for 𝑛 number of 
consecutive response measurements. To compute 𝑒ఏ at the 𝑔௧௛ response location, values to its 
left and right are selected so that the 𝑔௧௛ response location is in the middle. Therefore 𝑛 needs to 
be an odd integer, larger or equal to 3. Large 𝑛 values round 𝑞௡ and 𝑟̅ఏ hindering damage 
locations, thus damages close to supports may not be revealed. However small 𝑛 values can be 
sensitive to small, local changes to the response and provide 𝑒ఏ values that frequently exceed the 
damage threshold. The selection of 𝑛 depends on the number of distributed targets (𝑓) on the 
structure and distance between them. In this study 𝑛 is set to 5. Although 𝑒ఏ peaks above 2% at 
damage locations for both scenarios, the damage threshold is not breached. 

 𝑒ఏ,௚ = ௤೙,೒௥̅ഇ,೙,೒ , ቐ(௡ିଵ)ଶ < 𝑔 < 𝑓 − (௡ିଵ)ଶ𝑛 ≥ 3𝑛 = ሼ2𝑘 + 1 ∶ 𝑘 ∈ ℤሽ  (9)
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Fig. 6 From left to right: deflection, strain, inclination angle and curvature along the length of the girder. 

From top to bottom: girder response (𝑟), change in girder response (∆𝑟) and damage sensitive 
feature (𝑒). Green dashed lines are response at no damage (only for response plots); blue and black 
lines are 𝑆ଵ𝐷ଶ and 𝑆ଶ𝐷ହ, respectively 

 
 

Table 2 Summary of damage detection 
Damage feature Damage severity 𝐷ଵ 𝐷ଶ 𝐷ଷ 𝐷ସ 𝐷ହ 𝐷଺ 𝑒ఋ 𝑆ଵ/𝑆ଶ/𝑆ଷ N/N/Y N/N/Y N/N/Y N/N/Y N/N/Y N/N/Y 𝑒ఌ 𝑆ଵ/𝑆ଶ/𝑆ଷ Y/Y/Y Y/Y/Y Y/Y/Y Y/Y/Y Y/Y/Y Y/Y/Y 𝑒ఏ 𝑆ଵ/𝑆ଶ/𝑆ଷ N/N/Y N/Y/P N/N/P N/P/Y N/N/P N/P/Y 𝑒௖ 𝑆ଵ/𝑆ଶ/𝑆ଷ N/Y/Y N/Y/Y N/Y/Y N/Y/Y N/Y/Y N/Y/Y 

Y – damage is detected; P – damage is partly detected; N – damage is not detected; 
 
 𝑞ఏ,௡,௚ = max௟,௠ୀଵ,…,௡൫∆𝑟ఏ,௚ି௟ିଵ − ∆𝑟ఏ,௚ି௠ିଵ൯ (10)
 𝑟̅ఏ,௡,௚ = 1𝑛෍ห𝑟ఏ,௚ି௟ିଵห௡

௟ୀଵ  (11)

 
The summary of damage detection is given in Table 2. If 𝑒௥ exceeds the damage thresholds at 

the damage location(s), the damage is said to be detected, if it does not then the damage is not 
detected. In instances when 𝑒௥ surpasses damage thresholds at no damage locations and also 
location where damages are created, damage is said to be partially detected. An example is 𝑒ఏ for 𝑆ଷ𝐷ହ, which is similar to 𝑆ଶ𝐷ହ (see Fig. 6), however, 𝑒ఏ values at 6 m length exceed the damage 
threshold although the girder is not damaged at its midspan. 

 
3.3 Added measurement noise 
 
Camera specifications are important for achieving accurate response measurements, which are 

compulsory for a reliable assessment of bridge conditions. This section investigates the choice of 
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the camera field of view and desirable measurement resolution. The increase of the field of view 
results in the decrease of the measurement resolution, i.e., increase of the measurement noise (𝜂). 
The achievable pixel resolution of the image processing algorithm is as important as the selection 
of the suitable field of view. Image processing algorithms are reported to achieve resolution 
between 1/2 and 1/100 pixels (further referred to as ଵଵ଴଴ 𝑝𝑥) (Feng et al. 2015), and claimed to 

reach even ଵହ଴଴ 𝑝𝑥 resolution using a patented algorithm (Potter and Setchell 2014, Imetrum 
2020). 

Results from Section 3.1 and 3.2 are used to guide the selection of 𝜂. It is added to x and y 
displacements of each target (i.e., nodal displacements of the numerical model), which are used to 
derive girder response, at each load step. 𝜂 is the product of the scale factor (𝑆𝐹) and pixel 
resolution (𝑃𝑅) (Eq. (12)). 𝑆𝐹 is the quotient of distance on the image (𝑑) and known physical 
dimension (𝐷), which here is expressed as millimetres per pixel (mm/px). 

 𝜂 = 𝑆𝐹 ∙ 𝑃𝑅 (12)
 𝑆𝐹 = 𝐷𝑑  (13)
 
The assumption is made that monitoring is performed with a 12 MP camera(s) (4096 × 3072 

pixel frame), which is(are) set perpendicular to the mid-span of the girder. Vertical and horizontal 
scale factors are assumed to be the same. Two horizontal field of views (𝐹ଵ = 12𝑚 and 𝐹ଶ =2.4𝑚) are selected. 𝐹ଵ covers the entire length of the girder. 𝑆𝐹 for 𝐹ଵ is 2.93 mm/px, as 
calculated using Eq. (13). With 1/500 pixels resolution 𝜂 is no larger than 5.9×10⁻³ mm. The 
distance (𝐷) between targets is 240 mm limiting the maximum strain error to ହ.ଽ×ଵ଴షయ௠௠ଶସ଴௠௠ × 10଺ =25𝜇. Such measurement accuracy is not sufficient for the detection of damages at 𝑆ଵ. The 
measurement accuracy for 𝐹ଶ is five times higher, giving 𝑆𝐹 = 0.6 mm/px, 𝜂 ≤ 1.2×10⁻³ mm and 
maximum of 5 μ error. With 𝐹ଶ at least five cameras are required to capture response of the entire 
girder. ଵହ଴଴ 𝑝𝑥 is the maximum cited measurement resolution (Potter and Setchell 2014, Imetrum 

2020). Achieving such high accuracy in-situ is challenging, therefore, three 𝑃𝑅s, ଵହ଴଴ 𝑝𝑥, ଵଵ଴଴ 𝑝𝑥 

and ଵଶ଴ 𝑝𝑥, are studied. They form three measurement noise level (𝑁௜, 𝑖 = 1,2,3), which are added 
to displacements collected at the two horizontal field of views. Combinations of added 
measurement noise and field of view are given in Table 3. For example, 𝑁ଵ𝐹ଵ corresponds to ଵହ଴଴ 𝑝𝑥 resolution accuracy (or measurement error) derived from a horizontal field of view that 
captures 12 m (i.e., the entire length) of the girder. 𝑁ଶ𝐹ଶ and 𝑁ଷ𝐹ଶ are the same as 𝑁ଵ𝐹ଵ and 𝑁ଶ𝐹ଵ, respectively, therefore they are not listed in the table and included in the study. 𝜂 limits are 
set in Eq. (14), and they follow random Gaussian distribution. 

 −0.5 ∙ (𝑆𝐹 ∙ 𝑃𝑅) < 𝜂 < 0.5 ∙ (𝑆𝐹 ∙ 𝑃𝑅) (14)
 
3.4 Response pre-processing 
 
Raw (or, in this study, with added measurement noisy) target displacements must be pre 
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Table 3 Combinations of added measurement noise and camera field of view 𝑵𝒊 𝑷𝑹 (px) 𝑭𝟏 (the entire length of the girder) 𝑭𝟐 (2.4 m of the girder) 𝑁ଵ 1500 −5.92 ∙ 10ିଷ𝑚𝑚 < 𝜂 < 5.92 ∙ 10ିଷ𝑚𝑚 −1.22 ∙ 10ିଷ𝑚𝑚 < 𝜂 < 1.22 ∙ 10ିଷ𝑚𝑚 𝑁ଶ 1100 −29.32 ∙ 10ିଷ𝑚𝑚 < 𝜂 < 29.32 ∙ 10ିଷ𝑚𝑚 The same as 𝑁ଵ𝐹ଵ 

𝑁ଷ 120 −1462 ∙ 10ିଷ𝑚𝑚 < 𝜂 < 1462 ∙ 10ିଷ𝑚𝑚 The same as 𝑁ଶ𝐹ଵ 

 
 

 
Fig. 7 Raw (blue line) and pre-processed (black line) displacements of a target at the midspan of the girder. 

Left to right: Vertical displacements at 𝑁ଵ𝐹ଵ, 𝑁ଷ𝐹ଵ, and horizontal displacements at 𝑁ଵ𝐹ଵ, 𝑁ଷ𝐹ଵ 
 
 

processed before structural response is derived, and the performance of the structure is assessed. In 
this study, response pre-processing is done in two stages. First, displacement histories (vertical and 
horizontal) for each target are smoothed with the moving average filter of 10 measurements. Then 
secondary response (i.e., strain, inclination angle and curvature) are derived from displacements. 
The response (𝑟) maybe be noisy, thus another round of measurement smoothing is applied before 
the change in response (∆𝑟) is computed and damage sensitive feature (𝑒) is derived. 

Response pre-processing is demonstrated on displacements from the girder at undamaged state. 
Fig. 7 shows raw vertical and horizontal displacements of a target at the mid-span of the girder at 𝑁ଵ𝐹ଵ  and 𝑁ଷ𝐹ଵ  combinations. Displacements at 𝑁ଵ𝐹ଵ  are very smooth with very little 
measurement noise in comparison to displacements at 𝑁ଷ𝐹ଵ. Displacements at 𝑁ଶ𝐹ଵ are less 
noisy than at 𝑁ଷ𝐹ଵ, but noisier than at 𝑁ଵ𝐹ଵ. Displacements at 𝑁ଵ𝐹ଶ appear to have almost no 
noise. For reasons of brevity plots of displacements at 𝑁ଶ𝐹ଵ and 𝑁ଵ𝐹ଶ are not shown. 

Secondary response is derived from pre-processed target displacements. Fig. 8 shows raw and 
pre-processed maximum deflection, strain, inclination angle and curvature histories at 𝑁ଵ𝐹ଵ and 𝑁ଷ𝐹ଵ. Only deflection measurement histories at 𝑁ଵ𝐹ଵ and 𝑁ଷ𝐹ଵ are similar to deflections 
computed directly from nodal displacement (with no added measurement noise) of the girder (see 
Fig. 5). Strain and inclination measurement histories at 𝑁ଵ𝐹ଵ resemble those shown in Fig. 5. The 
derivation of curvatures need very accurate coordinates of targets, and even slightest deviations 
from the correct values lead to large errors, which are evident in the plots. Pre-processing response 
is important when selecting the absolute maximum response value, which is used for the 
generation of the girder response. Examples are maximum inclination angle and strain values 
found in response histories at 𝑁ଵ𝐹ଵ. Maximum values from the raw response are much higher than 
those of pre-processed response. For reasons of brevity discussion of response at 𝑁ଶ𝐹ଵ and 𝑁ଵ𝐹ଶ 
are not included. They have similar description as target displacements for the two combinations 

102



 
 
 
 
 
 

Damage detection techniques for structural health monitoring of bridges from… 

 
Fig. 8 From left to right: Measurement histories of raw (blue line) and pre-processed (black line) deflections, 

strains and curvatures at the mid-span of the girder, and inclination angles next to the left support 
derived from pre-processed target displacements at 𝑁ଵ𝐹ଵ (top) and 𝑁ଷ𝐹ଵ (bottom) combinations. ‘x’ 
indicates the absolute maximum response value

 
 

of noise and field of view discussed above. 
 
3.5 Structural response 
 
Maximum response values (𝑟௠௔௫) for each target location (or a set of targets) are extracted 

from raw and pre-processed measurements. The girder response (𝑟) is formed along its length. Fig. 
9 shows girder response generated from both raw and pre-processed target movements at 𝑁ଵ𝐹ଵ 
and 𝑁ଷ𝐹ଵ combinations. 𝑟ఋ , at the selected scenarios, is smooth with no visible measurement 
error. Raw and pre-processed 𝑟ఌ at 𝑁ଷ𝐹ଵ are noisy and, in contrast to 𝑁ଵ𝐹ଵ, do not resemble the 
expected strain distribution at the bottom side of the girder (see Fig. 6 (top)). 𝑟ఏ at 𝑁ଵ𝐹ଵ is 
similar to that of 𝑟ఋ  (i.e., very smooth with no visible measurement noise), but at 𝑁ଷ𝐹ଵ it is 
noisy. A drop (or measurement shift), which may result in a false damage detection, at pre-
processed 𝑟ఏ is observed at the mid-span of the girder for the both combinations of measurement 
noise and field of view. Such trend can be related to the computation of the response, in which the 
maximum absolute response value at each measurement node (i.e., target) are selected, therefore 
resulting in a relatively large difference for the two targets at the mid-span of the girder. Both raw 
and pre-processed 𝑟௖  at 𝑁ଵ𝐹ଵ and 𝑁ଷ𝐹ଵ are noisy. Only 𝑟௖  at 𝑁ଵ𝐹ଵ vaguely resembles the 

 
 

 
Fig. 9 Girder response (𝑟) from raw (blue line) and pre-processed (black line) 𝑟௠௔௫ values at 𝑁ଵ𝐹ଵ 

(top) and 𝑁ଷ𝐹ଵ (bottom) combinations. From left to right: deflection (𝑟ఋ), strain (𝑟ఌ), inclination 
angle (𝑟ఏ) and curvature (𝑟௖) 
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expected girder curvature (see Fig. 6 (top)). The same approach is employed to compute girder 
response for all other damage scenarios at all combinations of measurement noise and camera field 
of view. 

 
3.6 Damage detection from noisy measurements 
 
Damage detection is performed on the pre-processed girder response (𝑟). Damage scenario 𝑆ଷ𝐷ହ at 𝑁ଵ𝐹ଵ and 𝑁ଷ𝐹ଵ combinations is selected as the demonstrator. Fig. 10 shows plots of the 

change in girder response (∆𝑟) and damage feature (𝑒). Fig. 9 suggests that only 𝑟ఋ  is marginally 
affected at 𝑁ଷ𝐹ଵ. The measurement noise for the other types of response is significant enough to 
hide damage. This is also discernible in ∆𝑟 plots (in Fig. 10 (top)), although ∆𝑟ఌ has identifiable 
peaks at damage locations. ∆𝑟 plots at 𝑁ଵ𝐹ଵ are much clearer than at 𝑁ଷ𝐹ଵ and resemble ∆𝑟 
plots in Fig. 6 (middle). Damage locations are marked either by spikes (∆𝑟ఌ, ∆𝑟௖, ∆𝑟ఋ) or shifts 
(∆𝑟ఏ) in ∆𝑟 plots. 𝑒ఋ values for the selected scenario exceed damage threshold and spike at damage locations. 𝑒ఌ 
spikes at damage locations, however measurement noise affects the reliability of damage detection. 
The damage threshold is surpassed at undamaged locations, especially at 𝑁ଷ𝐹ଵ. 𝑒ఏ at 𝑁ଷ𝐹ଵ is 
very strongly affected by measurement noise. The values exceed damage threshold across the 
entire length of the girder. However, 𝑒ఏ at 𝑁ଵ𝐹ଵ has very little noise, which make damage 

 
 

 
Fig. 10 ∆𝑟 and 𝑒 for deflection, inclination, strain and curvature (from left to right) at damage scenarios 𝑆ଷ𝐷ହ at 𝑁ଵ𝐹ଵ (black lines) and 𝑁ଷ𝐹ଵ (blue lines) combinations. Red dashed line is the damage 

threshold 
 
 

Table 4 Damage detection performance at added measurement noise 
Damage 
severity e Noise and field of 

view combinations 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 𝑫𝟓 𝑆ଵ 𝑒ఌ 𝑁ଵ𝐹ଵ/𝑁ଵ𝐹ଶ/𝑁ଶ𝐹ଵ/𝑁ଷ𝐹ଵ Y/N/N/N Y/N/N/N Y/N/N/N Y/N/N/N Y/N/N/N𝑆ଵ, 𝑆ଶ 𝑒ఋ,𝑒ఏ,𝑒௖ All N N N N N 𝑆ଶ 𝑒ఌ 𝑁ଵ𝐹ଵ/𝑁ଵ𝐹ଶ/𝑁ଶ𝐹ଵ/𝑁ଷ𝐹ଵ Y/Y/N/N Y/Y/N/N Y/Y/N/N Y/Y/N/N Y/Y/N/N𝑆ଷ 𝑒ఋ, 𝑒ఌ All Y Y Y Y Y 𝑆ଷ 𝑒ఏ 𝑁ଵ𝐹ଵ/𝑁ଵ𝐹ଶ/𝑁ଶ𝐹ଵ/𝑁ଷ𝐹ଵ Y/Y/N/N Y/Y/N/N Y/Y/N/N Y/Y/N/N Y/Y/N/N𝑆ଷ 𝑒௖ 𝑁ଵ𝐹ଵ/𝑁ଵ𝐹ଶ/𝑁ଶ𝐹ଵ/𝑁ଷ𝐹ଵ Y/N/Y/Y Y/N/Y/Y Y/N/Y/Y Y/N/Y/Y Y/N/Y/Y
N – damage not detected; Y – damage detected; 
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Fig. 11 𝑒ఌ for damage location scenarios 𝐷ଵ, 𝐷ଷ, 𝐷ସ, and 𝐷଺ (left to right) at damage severity 𝑆ଵ 

at 𝑁ଵ𝐹ଶ (top), and 𝑆ଶ at 𝑁ଵ𝐹ଵ (middle) and 𝑁ଵ𝐹ଶ (botom)
 
 

locations identifiable, and its values seldom exceed the damage threshold. The effect of added 
measurement noise is severely affecting damage detection using 𝑒௖  at 𝑁ଵ𝐹ଵ  and 𝑁ଷ𝐹ଵ . 𝑒௖ 
values frequently exceed the damage threshold. 

Damage detection performance for all damage scenarios at all combinations of added 
measurement noise and camera field of view are summarized in Table 4. At low damage severities 
(i.e., 𝑆ଵ and 𝑆ଶ) damages and their locations are detected only in strain measurements, when 
measurement noise is low (𝑁ଵ𝐹ଵ and 𝑁ଵ𝐹ଶ). Damage and its location(s) are detected from strain 
and displacement measurements at all combinations of measurement noise and camera field of 
view at damage severity 𝑆ଷ. Inclination angles and curvatures (𝑒ఏ and 𝑒௖) do not provide such 
good damage detection results. 

Fig. 11 plots 𝑒ఌ  values for damage scenarios, which are not presented previously, and 
combinations of measurement noise and field of view, at which damages and their location are 
detected. Even at 𝑁ଵ𝐹ଵ damages can be detected at 𝑆ଶ, although, at 𝑆ଶ𝐷ସ 𝑒ఌ values exceed the 
damage threshold slightly at no damage location. 

 
 

4. Discussion 
 
Findings from the numerical study and considerations for field applications of cost effective 

computer vision-based measurement are discussed. 
 
4.1 Damage detection in numerical simulations 
 
Target (nodal) displacements are used to compute response measurement histories from 

simulations of truck passages over the girder, when it is in healthy and damaged conditions. The 
absolute maximum response values of each target are selected to form girder response along its 
length. Damage sensitive features, which are derived from baseline and current girder response, 
are plotted along the length of the girder. In positions, where damage features exceed the damage 
threshold, which in this study is set at 5%, a damage is detected and located. Damage locations are 
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clearly discernible from damage feature plots, although they may not exceed the threshold. 
However, when the measurement noise is added to target displacements, damage detection is 
challenging, requiring pre-processing of target displacements before the derivation of response. 

Damage features computed directly from target displacements (deflections) are less sensitive to 
low severity damages than features computed from derivatives of target displacements (inclination 
angles, strains and curvatures) and breach the damage threshold only when damage severity is high 
(see Table 2). However, damages can be clearly discernible from the plots of damage features 
from deflections (for example, see Fig. 6). 

Damage features from strains are the most robust to noise, and small damages can be detected 
and accurately located (see Fig. 11). Although the girder response from inclination angles seems 
much smoother than that of curvatures, results in Table 4 show that damage features from 
curvatures detect more damage cases. This is related to the computation of damage feature from 
inclination angles. Damage features are computed to detect shifts rather than spikes in inclination 
angles. Damage features are derived from their neighbouring response (inclination angle) values 
(see Eqs. (9), (10), and (11)). Small values of neighbouring responses, especially when 
contaminated with measurement noise, result in high damage feature, leading to false damage 
location (see Fig. 10). 

 
4.2 Vision-based measurement challenges in field applications 
 
The success of vision-based measurement gaining trust in the engineering community lays 

within its ability to offer accurate and cost effective measurement of bridge response. Affordable 
cameras and open source image processing tools makes vision measurement an attractive option 
for short term measurement collection (Feng and Feng 2016, Dong and Catbas 2020). The 
challenge is to accurately capture sub-pixel movements of targets, which are influenced by many 
factures. A few of them being (i) camera resolution, (ii) camera or ground motion, (iii) 
environmental conditions, and (iv) target tracking algorithm. Having a stationary reference target 
in the camera field of view (or background) may help removing measurement error induced by 
camera motion subtraction (Luo et al. 2018, Dong et al. 2020b). Capturing traffic-induced 
response along the entire superstructure (i.e., deck) may require multiple cameras even for a short 
span bridge (Dong et al. 2020a). When bridge dynamic response is collected, then cameras have to 
be time- synchronised (Lydon et al. 2018). The techniques proposed in this paper do not require 
time synchronisation of vision measurement since the absolute maximum response at a target(s) 
location is selected as a damage feature. Besides for accurate and repeatable measurement at each 
event (e.g., annual inspections) cameras do not need to be placed in the same locations to the 
bridge providing that pixel motions are correctly converted to engineering units (e.g., mm, µε). 

Even for short span bridges, desirable measurement accuracies can be achieved only when 
cameras are close to the target or enhanced with zoom lenses. Scaling up distributed measurement 
collection of long-span bridges brings additional challenges. Long-span bridges are usually very 
important links in the transport network. Their closures or collapses, in the worst scenario, result in 
significant economic losses. For example, a one-day closure of a carriageway in Scotland can cost 
up to £650,000 (Hannan 2015), therefore the closure of the Forth Road Bridge in Edinburgh, UK, 
after finding structural faults in 2015, for a duration of almost three weeks, resulted in major losses 
of the Scottish economy. As mentioned in Introduction, many of these important structures are 
equipped with a dense sensor network for timely fault/damage detection. The usual case for 
deflection monitoring for long-span bridges is Global Positioning System (GPS) (Brownjohn et al. 
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2015). Vision measurements were taken as benchmark when evaluating a data fusion method for 
accurate deflections at a mid-span of a suspension bridge using GPS and acceleration data (Xu et 
al. 2017). Increasing the number of high-end professional cameras could enable collection of 
distributed measurements. However, the proposed CV-SHM approach requires bridge crossings 
with a load truck (or a known moving load), considering the usually traffic on large bridges, this 
would be expensive to organize. A forward look on CV-SHM is to develop autonomous and 
intelligent vision-based systems composed of robotic cameras (Kromanis and Forbes 2019), which 
are programmed to capture desired targets on the structure at triggering events such as crossings of 
heavy vehicles, which, for example, can also be detected with CCTV cameras. Readers are advised 
to have an insight into “A forward look for CV-SHM” in a review paper by Dong and Catbas 
(2020). 

 
 

5. Conclusions 
 
A combination of cost effective cameras and available image processing algorithms for the 

derivation of structural response could become an affordable SHM system, which can complement 
regular visual inspections of small to medium span bridges. Damage detection techniques can then 
be applied to analyse measured response for anomalies indicating damages. This study lays the 
foundation for damage detection techniques for computer vision-based SHM (CV-SHM) of 
bridges and evaluates its feasibility on numerical simulations. A concrete girder is modelled. 
Crossings of a load truck are simulated for a range of damage scenarios. Nodal displacements, 
which are targets in vision measurement, of the girder are obtained. Measurement noise, which is a 
combination of the camera field of view and image processing algorithms, is added to target 
displacements before the computation of structure’s response (deflection, strain, inclination angle 
and curvature) and damage sensitive features. In addition to already known factors that influence 
damage detection such as (i) type of response, (ii) damage intensity, (iii) measurement noise, and 
(iv) damage location, the following conclusions are drawn: 

 
● High measurement resolution is crucial for CV-SHM of bridges. Small damages can be 

detected, when no measurement noise is present, which is not the case in real world 
applications. Either achieving 1/500th pixel resolution (PR) with a fewer cameras or 1/100th 
PR with many more cameras is desirable for accurate response measurement. 

● The proposed damage detection techniques do not require a synchronized measurement 
collection, when multiple cameras are employed. Only the absolute maximum response 
values, which are extracted from influence lines, are need to derive bridge response. 

● Pre-processing target displacement histories is required to derive accurate structural 
response, from which bridge response and damage sensitive features are calculated. 

● Damage sensitive features derived from strains are found to outperform other types of 
structural response. At high PRs small damages (i.e., 2.5% stiffness reduction) can be 
detected. Strains are unitless and calculated from movements of two targets, therefore 
requiring no scaling, and thus making them a good option for field applications, providing 
that high PR is achieved. 

 
Future research will evaluate the proposed damage detection techniques on measurements from 

a laboratory setup. The setup will include a beam (undamaged and damaged), moving load and 
camera system. Work is also underway to elaborate damage detection and localisation for strain 
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measurements, which outperform other types of structural response. 
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