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Abstract.  In this paper an extension to the method for the identification of mechanical parameters of 
nonlinear systems proposed in Breccolotti and Materazzi (2007) for MDoF systems is presented. It can be 
used for damage identification purposes when damage modifies the linear characteristics of the investigated 
structure. It is based on the following two main features: the solution of the Fokker-Planck equation that 
describes the response probabilistic properties of the system when it is excited by external Gaussian loads; and 
a model updating technique that minimizes the differences between the response of the actual system and that 
of a parametric system used to identify the unknown parameters. Numerical analysis, that simulate virtual 
experimental tests, are used in the paper to show the capabilities of the method and to analyse the conditions 
required for its application. 
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1. Introduction 
 

Most of the nowadays identification techniques, as reported for instance in the works by Doebling 

et al. (1996), Hoon et al. (2003) and in the special section of the IASC-ASCE Structural Health 

monitoring benchmark (Bernal and Beck 2004), are based on the determination of natural 

frequencies, modal shapes and damping even if other theories and methods are nowadays available 

(Li et al. 2014). These methods are suitable to study the damage represented by local cracks when it 

can be reasonably accepted the hypothesis that cracks are always open during the motion of the 

system (Patil and Maiti 2003, Lin et al. 2002, Kim and Stubbs 2003). 

On the contrary, these methods are unreliable when the cracks, crossed by steel reinforcement, 

alternatively open and close during vibration, as it happens for instance in prestressed and reinforced 

concrete structures. This behaviour gives rise to changes in the dynamic response of the damaged 

structural element (Breccolotti et al. 2008). 

The non-linearity of damaged reinforced concrete elements was recently studied jointly in the 

time-frequency domain by Owen et al. (2001) and by Neild et al. (2001). A finite element model for 

damaged reinforced concrete elements based on the theory of Fracture Mechanics was proposed by 
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Saavedra and Cuitino (2001). Also, Petryna and Krätzig (2005) proposed a procedure for the damage 

evaluation based on the strip modelling of prestressed and reinforced concrete structures. Other 

methods based on wavelet transformation and entropy measure have been recently proposed 

(Wimarshana et al. 2017). 

Kalman filters have been also used for structural identification in the field of civil engineering. 

Wu and Smyth (2007) were among the first researcher to use unscented Kalman filter in this field 

highlighting its higher accuracy and robustness when dealing with structural identification of highly 

nonlinear systems compared to the extended Kalman filter. The improved performance of the 

unscented Kalman filter has been also observed by Chatzi and Smyth (2009) who exploited the 

potential of using heterogeneous (accelerations and displacements), non-collocated measurements 

for structural identification of a 3 DoF nonlinear system with a Bouc Wen hysteretic element. Efforts 

have been spent to overcome some limitations of this method, such as the complete knowledge of 

the input excitation (Lei et al. 2019), and to test its applicability to special cases such as structures 

equipped with Negative Stiffness Device (Erazo and Nagarajaiah 2018). 

Recently, other techniques based on Markov chain Monte Carlo method (Green 2015) and on 

sparse regularization from input-output data (Lai and Nagarajaiah 2019a, b) have been proposed for 

system identification of structural systems with either nonlinear elastic or inelastic/hysteretic 

behavior. 

To overcome some of the disadvantages of the existing dynamic methods, recent researches 

proposed the use of innovative techniques based on probabilistic analysis of the dynamic response 

of nonlinear structures subjected to Gaussian excitation. These methods rely on the property that the 

response of a nonlinear system to a Gaussian excitation is non-Gaussian. The upper statistical 

moments of the response are used as a measure of the non-gaussianity of the response and, therefore, 

as damage indicator. 

The theoretical basis of this approach was studied by Cacciola and Muscolino (2002) and 

Cacciola et al. (2003). Subsequently, Hadjileontiadis et al. (2005) applied a similar methodology to 

a Plexiglas reduced-scale element, obtaining good results in the identification of structural 

parameters. 

Numerical methods for the determination of approximate response probability function have 

been proposed in the past (Von Wagner and Wedig 2000, Iourtchenko et al. 2006, Mosbah and Fogli 

2003). Identification of the parameters governing the dynamics of stochastically forced 1 DoF 

oscillators has been studied also by Boujo and Noiray (2017) and by Belenky et al. (2019). A MDoF 

system has been analyzed by Chen and Rui (2018). 

In this paper the method based on the study by Breccolotti and Materazzi (2007) is extended and 

applied to several nonlinear MDoF systems for which a closed-form solution of the Fokker-Planck 

equation is available. Numerical analyses, that simulate virtual experimental tests, are used to show 

the capabilities of the method and emphasize the conditions required for its application. 

 

 

2. Stochastic dynamics of MDoF nonlinear elastic systems 
 
2.1 Theoretical background 
 

Let us consider the following set of n equations for an n-DoF system, characterized by elastic 

nonlinear properties (Piszczec and Niziol 1986) 

196



 

 

 

 

 

 

Identification of nonlinear systems through statistical analysis of the dynamic response 

  (1) 

where  if t  are stochastic processes with spectral density iS  and i  are positive constants. 

Through the substitutions i ix y  and  this set can be re-written in the state space as 

a set of 2n first order differential equations 

  (2) 

  (3) 

The term  1 2, ,..., nU y y y  represents the potential energy of the system. It is further assumed 

that  if t  are independent and uncorrelated white noises with null mean. From Eqs. (2) and (3) 

we can recognize that the coefficients of the Fokker-Planck’s (FP) equation are given by 

 i i na y   (4) 

 
1

i n i i n

i i

U
a y

m y
 


  


 (5) 

 0ijb   (6) 

 
,i n j n i ijb S       , 1,2,...,i j n  (7) 

The diffusion equation becomes 

  
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     
     

      
    (8) 

where the probability density function  1 1 2,..., , ,...,n n nw y y y y
 depends on the 2n variables. Eq. (8) 

can then be re-written as 
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           

               
   (9) 

This equation can be solved assuming the validity of the following conditions 

 
2

i i

i

S m
k


    1,2,...,i n  (10) 

being k a positive constant. In this case the solution of the FP equation is 
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   2

1 1 2

1

1 1
,..., , ,..., exp
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n

n n n i i n
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w y y y y C m y U
k

 



  
    

  
  (11) 

This form of the probability density function is known as the Maxwell-Boltzmann distribution, 

being the expression inside the parentheses the total mechanical energy of the system 

  (12) 
Then, the response probability density function can be written as 

  (13) 

From Eqs. (12) and (13) it can be seen that the velocity probability density function is Gaussian. 

The joint probability density function w  can also be expressed as the product of two terms, 

separating the random quantities displacement ix  xi and velocity  . Thus, the displacement 

probability density function is given by 

  1 1

1
,..., expnw x x C U

k

 
  

 
 (14) 

where 1C  is a normalizing constant 

 

 

3. Stochastic identification 
 
3.1 General procedure 
 

The identification of the mechanical parameters (stiffness and damping) of real structures can be 

performed by solving an inverse problem of stochastic dynamics. In this section an identification 

procedure, which relies on the theoretical basis recalled in the previous section, is presented. The 

method is composed of several phases that can be briefly described as follows: 

(i) Excitation of the system. The physical system is excited by n band-limited white noises 

   1 ,..., nf t f t , statistically independent and characterized by constant power spectra 01 0,..., nS S , 

which meet the condition expressed by Eq. (10). Excitations of this type can be generated, for 

instance, through electrodynamic shakers with a closed loop control system. 

(ii) Measure of the system response. The proposed procedure requires that the response of 

the system in terms of displacements    1 ,...,xnx t t  is known through measurements. 

(iii) Identification of the parameters that describe the nonlinear elastic stiffnesses. Having 

assumed for the nonlinear stiffnesses a prescribed law, the identification of the elastic behavior of 

the system corresponds to the determination of a set of unknown parameters that minimizes the 

functional 

198



 

 

 

 

 

 

Identification of nonlinear systems through statistical analysis of the dynamic response 

    
2

1 1 1,..., ,..., ...test n fpe n nJ w x x w x x dx dx





     (15) 

where  1,...,test nw x x   indicates the probability density function of the measured data, and 

 1,...,fpe nw x x  indicates the probability density function obtained by placing tentative values of the 

unknown variables in the parametric solution of the FP equation. Since the system response is known 

by measurements at discrete times, the functional J used in the identification algorithm (Eq. (15)) 

has to be calculated through finite values, summing the squared differences between the measured 

and the theoretical relative frequencies 

 
 

1

1

2

, ... ...x

1 1

...
... n i n

n

p p
test i i x i n

i i tot tot

N N x x
J

N N 

 
  

  
   (16) 

where p is the number of intervals used in the determination of the relative frequencies; 

totN  is the total number of the sampled measurements, each of which is represented by the values 

   ,...,i nx t x t  at the generic time t; 

1, ... ntest i i

tot

N

N
 indicates the relative frequency of experimental data; 

 ...x ...
i nx i n

tot

N x x

N
 indicates the theoretical relative frequencies of the system response obtained 

solving the FP equation. 

 
3.2 Genetic algorithms 
 

Genetic algorithms have been chosen to solve the optimization problem for their capabilities in 

finding global minimum rather than local minimum and for the possibility of taking into account 

nonlinear constraints. Given the general objective functional 

  ,J x     1,...,
n

nx x ¡x  (17) 

defined within the area of search , the optimal solution is the one to which corresponds the 

minimum (or maximum) of the objective functional J. The genetic algorithm, after its initialization, 

randomly generates populations of the unknown parameters that represent potential solutions of the 

optimization problem. The functional J is evaluated for each individual of each population. The 

individuals that obtained the best values of the functional J are selected for the next generation. 

Other individuals are selected on the basis of their performances as parent individual. They are used 

in crossover and mutation operations to generate further individuals. In addition, further individuals 

are randomly generated and included in the next generation. The algorithm ends when the 

performance of one individual is close enough to the target performance. 

Usually the searching space S is represented through a n-dimensional hyperspace defined by the 

upper and lower limits of each variable 
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Fig. 1 Stiffness laws used for spring 1 in numerical models of Examples 1 (top left), 2 (top right), 3 (bottom 

left) and 4 (bottom right) 

 

 

 
,min ,maxi i ix x x     1,...,for i n  (18) 

Eventually, in a region F S  the following m equality or inequality constraints have to be 

fulfilled 

   0 1,...,ig for i q x    and     0 1,...,ih for i q m  x  (19) 

In this context local optimization methods, such as the method of gradient, ensure convergence 

only in a local minimum and are much more sensitive to the point where the algorithm is started. 

Conversely, evolutionary algorithms, widely used since the publication of the book by Goldberg 

(1989), are particularly suitable for solving constrained non-convex optimization problems. 

 

 

4. Numerical examples 
 
4.1 General remarks 
 

The validity of the identification procedure described in the previous paragraph has been tested 

by carrying out several numerical simulations on 2-DoF and 5-DoF systems. 

Different behaviors have been assumed for the nonlinear spring as shown in Fig. 1. 
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Fig. 2 Two DoF nonlinear elastic system 

 
 
4.2 Example 1: 2-DoF nonlinear elastic system with increasing stiffness 
 

A 2-DoF system characterized by masses 1m  and 2m , damping coefficients 1c  and 2c  and 

stiffnesses parameters  1k x  and  2k x  is considered (Fig. 2). The spring #1 is nonlinear 

elastic and the relationship between force 1eF  and displacement 1x  is expressed by 

    1 1 1 1 1 1eF x k x G x      (20) 

being 

   2 3

1 1 1 1 1 1G x b x a x   (21) 

and where the coefficients 1a   and 1b   are constant. The spring #2 is linear elastic and the 

relationship between the force 2eF  and relative displacement 2 1x x  is expressed by 

    2 2 1 2 2 1eF x x k x x    (22) 

The external forces  1F t   and  2F t  , acting on the masses 1m   and 2m  , are band limited 

white noises. 

The FP equation can be obtained from the following dynamic equilibrium equations 

  (23) 

which can also be written, in matrix form, as 

  (24) 

It is assumed that the damping matrix can be expressed, in accordance with the Rayleigh’s 
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hypothesis, as 

      C M K    (25) 

where, for the sake of simplicity, it has been assumed 0  . After some algebra, Eq. (23) becomes 

  (26) 

Recalling Eq. (1), the potential energy of the system can be found 

  
2 2 2 3 4

2 1 1 1 1 1 1
1 2 2 1 2 2 1 2 1 1,

2 2 2 3 4

x x x b x a x
U x x k x x k k k k k c         (27) 

The constant c has to be determined taking into account the initial condition of the system. Since 

the stochastic process  iF t  is characterized by a constant spectral density from −∞ to +∞ equal 

to 0iS  , the corresponding scaled stochastic process  
 i

i

i

F t
f t

m
  , will have a constant spectral 

density equal to 

 0
0 _ 2

i
i m

i

S
S

m
  (28) 

The diffusion equation becomes 

 
2 2

0 _ 0 _

1 1

1
0

2 2

i m i m

i n

i ii n i i n i n i i i

S Sw U w
x w w

x x x x m x x


 


   

            
           

               
   (29) 

but the problem can be solved only under the following conditions (see Eq. (10)) 

 0 _

2

i m iS m
k




    1,2for i   (30) 

The solution of the FP equation in terms of the displacements PDF can be written as 

  
2 2 2 3 4

2 1 1 1 1 1 1
1 1 2 1 2 1 2 2 1 2 1 1

1
, exp

2 2 2 3 4

x x x b x a x
w x x C k x x k k k k k

k

  
         

  

 (31) 

where 1C  is a constant. To satisfy the condition expressed by Eq. 30 the value of the forcing PSD 

has to be appropriately tuned imposing that 
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Fig. 3 Samples of the time histories with relative frequencies and power spectrum densities of the band 

limited white noises used in Examples 1 and 2. The left-hand column is related to node n. 1, while the 

second column refers to node n. 2 

 

 

 01_ 1 02 _ 2

2 2

m mS m S m
k

 

 
   (32) 

The coefficient  , which multiplied by the mass matrix provides the damping matrix of the 

system, has been chosen so that the damping rate for the second vibration mode is equal to 5% of 

critical. 

The first numerical model considered in this investigation is made up of two masses, 1m  and 

2m  , respectively equal to 400 kg and 320 kg. The masses are subject to the action of external 

Gaussian forces having power spectral densities 01S  and 02S  equal to 16.0 kN2m and 12.8 kN2m, 

respectively. The forces time histories have been generated in the frequency range 0.1 - 50.1 Hz 

using the well-known algorithm proposed by Shinozuka and Jan (1972). From the analysis of Fig. 
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3, where the time histories, PDF and PSD of the forces are shown, it is possible to see that effectively 

the generated time histories well represent the two desired band limited white noise processes. The 

behavior of the nonlinear spring #1 is described by Eqs. (20) and (21) with 1k  = 30 kN/m, 1a  = 

0.15 m−2 and 1b  = 0.5 m−1. The hardening elastic behavior is represented in Fig. 1. The spring #2 

is characterized by constant stiffness equal to 2k  = 40 kN/m. 

The duration of the process is 300 sec, with a sampling rate of 200 Hz. The displacement, the 

velocity and the acceleration time histories have been numerically evaluated by direct integration of 

the equations of motion using the HHT algorithm (Hughes 1987). The histograms of the calculated 

displacements for the 2 nodes are shown in Fig. 4. 

 

 

 

Fig. 4 Example 1: Comparison between experimental (bars) and identified (lines) displacements PDFs for 

node n. 1 (left) and node n. 2 (right) 

 

 

 

Fig. 5 Example 1: Comparison between experimental (bars) and identified (surface) displacements joint 

PDF 
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Fig. 6 Example 2: Comparison between experimental (bars) and identified (lines) displacements PDFs 

for node n. 1 (left) and node n. 2 (right) 

 

Applying the procedure proposed in Section 3 the following unknown parameters have 

been identified: 
1 28.25idk kN m , 2

1 0.155ida m , 1

1 0.502idb m  and 
2 41.5idk kN m . 

with relative errors equal to 5.8%, 3.3%, 0.4% and 3.7%. The theoretical PDFs corresponding to the 

identified parameters are also shown in Fig. 4. The comparison between experimental and identified 

displacements joint PDF is shown in Fig. 5. 

 

4.3 Example 2: 2-DoF nonlinear elastic system with decreasing stiffness 
 

The second numerical model considered is similar to the first one with masses 1m  and 2m , 

respectively equal to 400 kg and 320 kg, subjected to the same external forces used in the previous 

example. The behavior of the nonlinear spring #1, described by Eqs. 20-21 with 1k  = 50 kN/m, 1a  

= 0.5 m−2 and 1b  = −1.2 m−1, is of softening type (Fig. 1). The spring #2 is characterized by a 

constant stiffness 2k  equal to 40 kN/m. The histograms of the calculated displacements for the 2 

nodes are shown in Fig. 6. With the proposed procedure the following unknown parameters have 

been identified: 
1 49.875idk kN m , 2

1 0.525ida m , 1

1 1.300idb m   and 
2 41.0idk kN m . 

Also in this case the relative errors turned out quite small being equal to -0.2%, 5.0%, 3.7% and 

2.5%, respectively. The theoretical PDFs corresponding to the identified parameters are shown in 

Fig. 6 while the comparison between experimental and identified displacements joint PDF is shown 

in Fig. 7. 
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Fig. 7 Example 2: Comparison between experimental (bars) and identified (surface) displacements joint PDF 

 

 

4.4 Example 3: 2-DoF nonlinear elastic system with asymmetric increasing stiffness 
 

The third numerical model analyzed is still a 2-DoF system with masses 1m   and 2m  , 

respectively equal to 312.5 kg and 250 kg. The two masses are subjected to the action of external 

Gaussian forces having power spectral densities 01S  and 02S  equal to 9.0 kN2m and 7.2 kN2m, 

respectively, in the frequency range 0.1 - 50.1 Hz. The time histories, PDF and PSD of the applied 

forces are shown in Fig. 8. The behavior of the nonlinear spring #1, described by Eqs. (20) and (21) 

with 1k  = 12 kN/m, 1a  = 0.398 m−2 and 1b  = 1.32 m−1, is of asymmetric hardening type (Fig. 

1). The spring #2 is characterized by constant stiffness 2k  equal to 50 kN/m. The results of the 

numerical integration are shown with histogram bars in Figs. 9. The unknown parameters have been 

identified with the optimization technique based on genetic algorithm described in sec. 4.4. The 

optimal solution has been searched carrying out 3000 generations each having a population of 100 

vectors of the four unknowns 1k , 1a , 1b , 2k . For each parameter the solution has been searched 

in a range corresponding to ±50% the true value. The convergence of the fitness function to the 

optimal solution as the number of generation increases is shown in Fig. 10. The proposed method 

allowed the identification of the following unknown parameters: 
1 11.798idk kN m , 

2

1 0.405ida m , 1

1 1.330idb m  and 
2 52.395idk kN m .  

The theoretical probability density functions corresponding to these identified values are shown 

in Fig. 9 with solid curves. The experimental and the identified displacements joint PDFs are shown 

in Fig. 11. 

In order to assess the robustness of the method to real life experimental conditions, each response 

has been contaminated by fictitious noises. Uniformly distributed disturbances with zero mean and 

noise-to-signal ratio up to ±1% and ±5% have been added to the pseudo experimental displacement 

data. 
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Fig. 8 Example 3: Samples of the time histories with relative frequencies and power spectrum densities of 

the band limited white noises. The left-hand column is related to node n. 1, while the second column refers 

to node n. 2 

 

 

 

Fig. 9 Example 3: Comparison between experimental (bars) and identified (lines) displacements PDFs for 

node n. 1 (left) and node n. 2 (right) 

207



 

 

 

 

 

 

Marco Breccolotti and Chiara Pozzuoli 

 

 

Fig. 10 Example 3: Convergence of the genetic algorithm solution to the optimal one 

 

 

 

Fig. 11 Example 3: Comparison between experimental (bars) and identified (surface) displacements joint PDF 

 

 
Table 1 Example 3: Results of identification with and without noise 

  Without noise 1% noise 5% noise 

Parameter True Identified Error (%) Identified Error (%) Identified Error (%) 

1k  (kN/m) 12.0 11.80 -1.7 11.81 -1.6 11.78 -1.8 

1a  (m−2) 0.398 0.405 -1.8 0.405 -1.8 0.405 -1.8 

1b  (m−1) 1.32 1.330 +0.8 1.330 +0.8 1.327 +0.5 

2k  (kN/m) 50.0 52.39 +4.8 52.35 +4.7 51.01 +2.0 
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Fig. 12 Example 4: Five DoF nonlinear system 

 

 

In the case of noises with 1% noise-to-signal ratio the following unknown parameters have been 

identified: 
1 11.806idk kN m , 2

1 0.405ida m , 1

1 1.330idb m  and 
2 52.355idk kN m . 

Similarly, for 5% noises the identified parameters turned out to be: 
1 11.784idk kN m , 

2

1 0.405ida m , 1

1 1.327idb m  and 
2 51.014idk kN m . The complete results are also reported 

in Table 1 for comparison purposes. 

 
4.5 Example 4: 5-DoF nonlinear elastic system 
 

The proposed procedure has been finally applied to a 5 DoF system (Fig. 12) with masses 1m , 

2m , 3m , 4m  and 5m  respectively equal to 400 kg, 320 kg, 250 kg, 200 kg and 150 kg. External 

zero mean Gaussian forces having power spectral densities 01S , 02S , 03S , 04S  and 05S equal to 

16.0 kN2m, 14.3 kN2m, 12.65 kN2m, 11.31 kN2m and 9.80 kN2m have been applied to these masses. 

The behavior of nonlinear spring #1, described by Eqs. (20) and (21) with 1k  = 30 kN/m, 1a  = 

0.15m−2 and 1b  = 0.50 m−1, is of asymmetric hardening type (Fig. 1). The remaining springs are 

characterized by constant stiffness equal to 2k  = 3k  = 4k  = 5k  = 40 kN/m. 

The displacements distributions obtained by integration for the 5 DoF are shown in Fig. 13. For 

this system the potential energy U is equal to 

  
2 2 3 45 4 4

1 1 1 1
1 2 1 1 1 1 1

1 1 1

,
2 2 3 4

i i
i i i i i

i i i

x x b x a x
U x x k k k x x k k  

  

        (33) 

The mathematical development accomplished in Section 4.2 is also valid for a 5 DoF system. 

Consequently, an identification procedure similar to the one used for 2 DoF systems can be adopted 

to identify the unknown parameters of the mechanical system. By doing so, the following values of 

the mechanical parameters have been identified: 
1 31.121idk kN m  , 2

1 0.142ida m  and 
1

1 0.503idb m   for the nonlinear spring and 
2 37.744idk kN m  , 

3 38.769idk kN m  , 

4 36.641idk kN m  and 
5 36.360idk kN m  for the linear springs. 

The relative errors committed in this identification are shown in Table 2. The comparison 

between the displacement’s distributions calculated by means of numerical simulation and the 

distributions corresponding to the identified parameters is shown in Fig. 13. 
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Fig. 13 Example 4: Comparison between experimental (bars) and identified (lines) displacements PDFs for 

the 5 nodes 

 

 

Also in this case, artificially generated noises have been added to the pseudo-experimental data 

to verify the robustness of the method. For the case of 1% noise-to-signal ratio, the following 

unknown parameters have been identified: 
1 31.384idk kN m , 2

1 0.138ida m , 1

1 0.496idb m , 

2 37.722idk kN m , 
3 38.684idk kN m , 

4 36.610idk kN m  and 
5 36.381idk kN m . 

Afterwards, adding noise up to 5% the following unknown parameters have been identified: 

1 31.421idk kN m  , 2

1 0.138ida m  and 1

1 0.495idb m   for the nonlinear spring and 

2 37.820idk kN m , and 
3 38.519idk kN m , 

4 36.383idk kN m  and 
5 35.820idk kN m  for the 

other springs. The accuracy of these estimates is shown in Table 2. 
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Table 2 Example 4: Results of identification with and without noise 

  Without noise 1% noise 5% noise 

Parameter True Identified Error (%) Identified Error (%) Identified Error (%) 

1k  (kN/m) 30.0 31.12 +3.7 31.38 +4.6 31.42 +4.7 

1a  (m−2) 0.15 0.142 -5.3 0.138 -8.0 0.138 -8.0 

1b  (m−1) 0.50 0.503 +0.6 0.496 -0.8 0.495 -1.0 

2k  (kN/m) 40.0 37.74 -5.6 37.72 -5.7 37.82 -5.4 

3k  (kN/m) 40.0 38.77 -3.1 38.68 -3.3 38.52 -3.7 

4k  (kN/m) 40.0 36.64 -8.4 36.61 -8.5 36.38 -9.0 

5k  (kN/m) 40.0 36.36 -9.1 36.38 -9.0 35.82 -10.4 

 

 

4.5 Comments on the obtained results 
 

The results of the numerical simulations presented in the previous paragraphs provide evidence 

of the ability of the proposed method in identifying different types of non-linearity. Several 

numerical investigations also proved the robustness of the method against experimental noises with 

noise-to-signal ratio up to 5%. In particular, this was all the more true for the parameters that describe 

the non-linearity of the system, which represent the most interesting data of the investigation. It 

should, however, be recalled that the applicability of the method requires the occurrence of specific 

conditions. First of all, the theory underlying the proposed method foresees the elasticity of the 

system also in the nonlinear field. Thus, the method cannot be used to identify hysteretic behaviors 

for which other methods must be referred to. Secondly, the method requires compliance with Eq. 10 

which can certainly lead to organizational problems. In fact, it requires that all degrees of freedom 

be loaded simultaneously with forces having predetermined spectral density values. This condition 

can be achieved, for example, by using different electrodynamic shakers or can occur in the case of 

structural system with equal masses subjected to uniform excitations. 

 

 

5. Conclusions 
 

In this paper a new methodology for the structural identification of nonlinear system has been 

introduced. It is based upon the solution of the Fokker-Planck equation. One of its main advantage 

is that it only requires the knowledge of the statistical properties of the external forces applied to the 

system without the need of knowing their exact time histories. The method is composed of three 

different phases: system excitation with band-limited white noise; solution, in a parametric form, of 

the Fokker-Planck equation that describes the response of the structure; identification of the system 

unknown parameters by minimizing an appropriate functional. The identification method has been 

validated through numerical simulations carried out on two- and five-degrees of freedom systems 

for which special force-displacement laws, representing a wide range of possible structural behavior, 

have been assumed. The good agreement between the unknown parameters and the identified ones 

proved the capabilities of the proposed method. The robustness of the method has been also verified 

by contamination of the input data with artificial noises. 
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