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Abstract.  Performance assessment of pavements proves useful, in terms of handling the ride quality, 
controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide 
a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement 
roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on 
vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of 
pavement requires the identification of pavement roughness along with vehicle parameters. The present 
study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate 
estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer 
Euler–Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in 
the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The 
viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model 
considered in this study is a half car model, fitted with accelerometers at specified points. The identification 
of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum 
variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in 
the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator 
(MVE) make use of a linear state-space formulation including roughness, to overcome the linearization 
difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the 
optimization scheme to yield estimates of vehicle parameters.  The issue of ill-posedness of the problem is 
dealt with by introducing a regularization equivalent term in the objective function, specifically where a 
large number of parameters are to be estimated. Effect of different objective functions is also studied. The 
outcome of this research is an overall measure of pavement condition. 
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1. Introduction 
 

Pavement roughness indicates the presence of surface irregularities on the road profile and 

induces undesirable vibrations in the vehicles. Road profile excitation is regarded as one of the 

major sources of external disturbance in the road vehicle interaction dynamics. Gillespie and 

Sayers (1985) have shown that roughness contributes towards user discomfort and higher vehicle 
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maintenance cost, and increases travel time due to speed reductions. Ride quality is a key indicator 

of pavement performance and significantly affects highway construction practice and maintenance, 

and pavement roughness directly influences ride quality (Alhasan et al. 2017). Pavement 

roughness provides a good, overall measure of pavement surface quality (Loizos 2001, Loizos and 

Plati 2002). Assessment of pavement condition is essential, in determining and designing for the 

ride quality. Road surface roughness influences roll stability, and handling stability is important for 

ride comfort and safety of the vehicle (Yang et al. 2015, Li et al. 2016). The maintenance of 

smooth road profiles also plays a major role in minimizing dynamic tire forces and promoting long 

pavement life spans (Gillespie et al. 1992, Green and Cebon 1994). The analysis and maintenance 

of a road surface is a difficult problem that pavement engineers have been facing for many years. 

Detection of the condition of a road profile is important for many other reasons as well, such as 

safety and economic savings. 

Various techniques have been proposed to estimate road roughness profile, to assess the road 

serviceability condition. Earlier techniques of roughness measurement included the use of rod and 

level equipment or specialized dipstick walking profilometers. These techniques are slow and time 

consuming. The use of a laser sensor or ultrasonic sensor gives direct visualization of the profile, 

but the equipment is usually expensive, and data recorded may be highly noisy due to various 

factors (Sayers and Karamihas 1996, 1998). González et al. (2008) proposed the use of 

accelerometers fitted to the suspension system for the identification of road roughness, which is 

rather inexpensive. This work provides a road classification scheme based on a relationship 

between power spectral densities of vehicle accelerations rather than reconstructing a road profile. 

Harris et al. (2010) investigated the applicability of a combinatorial optimization technique for 

roughness estimation that makes use of vehicle vibration data and requires a calibrated vehicle 

model. Wei et al. (2015) developed a general regression neural network for identifying road 

roughness in the time domain based on vehicle angular acceleration data, which may not be 

practically easy to implement. Fauriat et al. (2016) proposed a data processing algorithm based on 

Kalman Filter for roughness identification. The estimation based on vehicle responses considers 

the roughness as a random walk process by combining the unknown roughness into the state vector, 

which results in suboptimal estimates. Alhasan et al. (2017) investigated the use of certain 

algorithms for processing laser scanning point clouds to obtain surface maps of roads. Haddar et al. 

(2018) introduced an algebraic estimator for road roughness estimation of different road classes. 

Data on vehicle parameters might be uncertain, and this uncertainty will lead to erroneous 

roughness estimates. On the other hand, the estimation of vehicle parameters from dynamic 

vehicle responses requires an accurate estimate of the roughness profile beforehand. This 

interrelationship points to the need for a joint estimation framework which simultaneously 

estimates vehicle parameters and roughness and filters the state measurements, to improve the 

accuracy of roughness estimates. 

There are several vehicle parameter identification techniques. Hoshiya and Maruyama (1987) 

used a modified Extended Kalman Filter (EKF with Weighted Global Iteration) to identify the 

parameters of a moving load (SDOF) from beam response at a selected point and vehicle vibration 

data. Au et al. (2004) has applied a multi-stage optimization scheme based on genetic algorithms, 

modeling the vehicle as two degrees of freedom system, and using bridge response data. Chen and 

Lee (2008) used a Kalman filter along with an adaptive weighted recursive least square estimator 

to estimate the moving force on a bridge, while the vehicle-induced force was modeled as a sine 

wave. Lalthlamuana and Talukdar (2015) used a particle filter method to identify vehicle 

parameters from bridge acceleration measurements. The method does not require any calibration 
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process. However, the particle filter method assumes a pavement roughness measurement using a 

total station, which requires the closure of the bridge to obtain, thus limiting its applicability, 

especially for bridges that carry heavy traffic. Wang et al. (2017) have applied particle filtering to 

identify the vehicle parameters from bridge responses and estimated roughness, where the 

roughness is estimated beforehand using a probe car of calibrated parameters. 

It is to be noted that direct profiling methods are usually expensive. Further, existing methods 

for roughness identification requires calibrated vehicle models. The roughness estimation (with 

known vehicle parameters) based on vehicle responses considers the roughness as a random walk 

process by combining the unknown roughness into the state vector, which results in suboptimal 

estimates (Fauriat et al. 2016). Also, estimating the vehicle parameters (for known roughness 

profile) by combining it in the state vector leads to nonlinear state-space equation and 

consequently suboptimal estimates due to linearization involved (Hoshiya and Maruyama 1987). 

An approach that incorporates the unknown inputs (roughness), as well as the system parameters 

in the state vector, constitutes a highly nonlinear state-space equation, which one needs to avoid. 

Apart from these, the recorded response data is always noisy. The present approach tries to 

overcome the above shortcomings by employing a linear state-space equation to avoid the need for 

any approximation in the form of linearization and by efficiently utilizing the observed data. 

The current study proposes the coupling of an unbiased minimum variance estimator with an 

optimization scheme for the simultaneous estimation of vehicle parameters and road roughness. 

This study considers a half car vehicle model, instrumented to measure the vehicle vibration data. 

Recorded vibration data is partitioned into two sets. The first set of observation serves as the input 

for the unbiased minimum variance estimator (MVE) used for unknown input identification. The 

state estimates obtained from this step and corresponding to the second set of measurements is 

used for formulating an objective function that computes the error between the measured and 

computed dynamic responses. The objective function is minimized to obtain the vehicle 

parameters. The number of vehicle parameters to be estimated is varied in this study. Numerical 

investigations on the existence of a global minimum suggest that as the number of vehicle 

parameters to be estimated is increased, the objective function has to be modified by incorporating 

vehicle’s natural frequency to ensure a well-posed problem. The effect of measurement noise on 

the estimation accuracy is investigated. Numerical results show that it is possible to accurately 

estimate the road roughness simultaneously in the presence of measurement noise, while vehicle 

parameters are estimated simultaneously. 

 

 
2. Problem statement - condition of pavement from roughness estimates 

 

Roughness is an indicator of deterioration of the pavement. Accurate estimation of roughness, 

in turn, requires good knowledge of the vehicle parameters. Parameters of vehicles in the 

experiment will not be known precisely and will not be the same as the design values, due to wear 

and tear with time. This aspect demands a simultaneous estimation of vehicle parameters and 

roughness, for accurate determination of roughness. Knowledge of the correct values of vehicle 

parameters and the road condition is essential also for the performance evaluation of vehicles on 

road or vehicle condition from the viewpoint of ride comfort. The entire estimation problem is 

formulated as an inverse problem and needs data in the form of vehicle acceleration measurements. 

The current formulation aims to employ minimum data which are conveniently measurable. 

Sensors are placed at selected points of the vehicle body and tires. In brief, this work attempts to 
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provide a condition measure through roughness estimated jointly with vehicle parameters for 

improved accuracy. Pavement model used, takes into account the viscoelastic nature. Effect of 

interaction between the pavement and vehicle is considered while simulating the response data. 

 
 
3. Methodology - joint estimation framework of an optimization scheme and a 
minimum variance unbiased estimator 

 

A combined scheme of an optimization technique and a minimum variance unbiased estimator 

(MVE) is employed to solve the problem of simultaneous estimation of roughness and vehicle 

parameters for providing a qualitative measure of pavement condition. Optimization scheme 

requires a set of initial conditions such as a specified range of vehicle parameters and a set of 

observation data. Minimization of the objective functions (Type 1 and Type 2) yields optimal sets 

of vehicle parameters and are then fed into the MVE. MVE, along with a second set of observed 

data input, yields roughness estimates. The detailed flow of the technique is depicted in the 

flowchart, illustrated in Fig. 1.  

 

 

 

Fig. 1 Descriptive Flow chart of the proposed algorithm for joint estimation of unknown inputs 

and system parameters 
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The algorithm carries the combination of the two schemes in a coupled manner, giving out the 

estimates for vehicle parameters and roughness together. The partitioning of observation data into 

two schemes has to be investigated. The noisy data to be used in the optimization scheme is 

pre-filtered using a suitable filtering scheme for better performance. The vehicle-pavement system 

considered in this study uses a model which consists of a half car vehicle model on a pavement 

model of two-layer finite length Euler–Bernoulli beam with uniform cross-section resting on a 

nonlinear Pasternak foundation. 

 

3.1 Half car model 
 
The vehicle is represented by a half car model with negligible tire damping and four 

independent degrees of freedom, as shown in Figs. 2 and 5. The four degrees of freedom 

considered are the pitch and heave motions of the vehicle body ( v  and vy ) and the vertical 

translation of the front and rear axles (
1y  and 

2y ). The vehicle body mass or sprung mass is 

represented by vM  and the axle components are represented by the unsprung masses 
1m  and 

2m .  

The sprung mass connects to the axle masses through a combination of springs of linear 

stiffness 1sk  and 2sk , and viscous dampers with damping coefficients, 1sc  and 2sc , which 

represent the suspension components for the front and rear axles. The axle masses then connect to 

the road surface through springs with linear stiffness, 1tk  and 2tk , which represent the tire 

components for the front and rear axles. 

The governing equations of a vehicle using half car model (Fig. 2) as given by Wu and Law 

(2011) 
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where the sub-matrices 1vM , 2vM , 11vC , 12vC , 21vC , 22vC , 11vK , 12vK , 21vK , and 22vK  are 

given in Appendix B,  21 wwvv xxxX  . 0P  is the static load vector of the vehicle. 

The interaction force vector is  )()()( 21 tPtPtP   given by 
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where )),(ˆ( 1 ttxw  and )),(ˆ( 2 ttxw  represents the displacement of the bridge under the front and 

rear wheel respectively, at the given time instant. 

For half car model, the state x  consists of vertical vehicle displacements and velocities. The 

parameters are shown in Fig. 2. The unknown input vector is the discrete point roughness at the 

rear and front wheel points. Thus the state vector x  and unknown input *u are given by 

 
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Fig. 2 Half Car Model 

 

  

where 
1rx  and 

2rx  represents the roughness profile under the front and rear wheel respectively, 

based on the equation of motion for half car model Law et al. (2004), the matrix cA
 

and the 

vector 
*
cG  are provided in Appendix A. 

The elements of measurement vector ky  to be used in MVE, as chosen based on the extensive 

analysis of different combinations in the forthcoming section 4.2, are vehicle accelerations and 

wheel displacements. 

 2121 wwwwvvk xxxxxy  
                      (4)

 

The terms kC  and  
*
kH  for half car model are provided in Appendix A. 
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h1 h0 

h2 

Viscoelastic layer: E1, EV1, EV2, η1, η2  

Elastic base course E2 

3.2 Pavement model 
 
The pavement is modeled as a two-layer finite length Euler-Bernoulli beam with a uniform 

cross-section, resting on a nonlinear Pasternak foundation, as detailed in Snehasagar et al. (2019). 

The top layer of the pavement is modeled as a viscoelastic asphalt topping based on Burger’s 

model, to incorporate the viscoelastic effects. The bottom layer is modeled as an elastic material 

representing the base course. The cross-section of the pavement is shown in Fig. 3. 
1h  and 

2h  

represent the depth of the top and bottom layers, respectively. 
0h represents the depth of the 

neutral axis, and B denotes the width of the beam. Based on Euler-Bernoulli beam theory, for the 

equilibrium of stress, the following equation can be established (Yang et al. 2010). );( txw

represents the vertical deflection of the pavement. 
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where 
1E  is the stiffness modulus of the asphalt top layer modeled as Hooke's material obtained 

based on the dynamic modulus and phase angle test results. 
2E  is the elastic modulus for the 

bottom layer. The position of the neutral axis can be obtained as 

2211

2212
2
11

0
22
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hEhE

h)hh(EhE
h






                              (6) 

 

Burger’s viscoelastic model used in this study is schematically represented in Fig. 4. 
1EV , 

2EV , 

1  and 
2  are the parameters in Burger’s model (Mejlun et al. 2017). The elasticity in the form 

of springs and viscosity in the form of dashpots are also depicted in Fig. 4. The corresponding 

stress-strain relationship (   ) is 

 
2121 qqpp                             (7)

 

 
 
 
 

Fig. 3 Cross section of the pavement 
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Fig. 4 The Burgers model 

 

 

where 

2

21
211

21

21
2

1

1

2

21
1

EV
qq

EVEV
p;

EVEV
p













                        (8)

 

The Relaxation modulus of the Burgers model is 
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The bending moment, xM , in the pavement including the viscoelastic effects of the pavement top 

layer can be obtained as 
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Integrating Eq. (11), the following equation can be obtained 
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For the beam with density  , area of cross-section A and subjected to surface force );( txq , 

the following relationships are established through equilibrium equations 

00
2

2















)t,x(q

t

w
A

x

Q
,Q

x

M x
Z

x 
                     (15)

 

where xQ  represents the shear force. The equation of equilibrium can be finally simplified as 
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The foundation is considered as a nonlinear Pasternak foundation with linear-plus-cubic 

stiffness, shear deformation, and viscous damping. The force induced by the foundation per unit 

length of the beam is given as 
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where 
1k , 

3k  are the linear and nonlinear foundation parameters, respectively. pG  is the shear 

deformation coefficient and   is the damping coefficient. Based on Eq. (2) for moving load iP , 

the dynamic equation of the motion for the pavement Eq. (16) can be written as 
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pN  is the number of wheel contact points or size of the interaction force vector. 2pN  in 

case of half car model. All other symbols carry the same meaning as in the previous equations. 
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3.3 Modelling the vehicle-pavement interaction 
 

The Galerkin method is employed to discretize the pavement differential equation (Eq. (18)). 

The series expansion for ),( txw  is 







1

)()(),(
k

kk xtqtxw 
                           (19)

 

where )x(k are the trail functions and )t(qk  constitute the set of generalized displacements of 

the beam. 

 In this case, the first n  terms are considered in the expansion in order to determine ),( txw . 

The Eq.(18) is simplified using Eq. (19) based on the procedure outlined by Snehasagar et al. 

(2019). In Eq. (18), )t(Pi  represents the interaction force vector which is obtained by solving the 

vehicle dynamic equations (Eq. (1)). This coupling between the vehicle equations of motion and 

the pavement equation is realized through a decoupled iterative technique presented by 

Krishnanunni and Rao (2019). The method is based on solving the vehicle and pavement equations 

of motion separately and equating the interaction force at each time step. The solution goes 

through an iterative process in calculating the pavement displacement under the vehicle 

)),(( ttxw until the increase in pavement displacement in two subsequent cycles is less than %1 . 

The main steps in the procedure are outlined below: 

Step 1: Pavement displacement under the vehicle ))),((( ttxw  is assumed to be 0 initially for 

 the entire simulation time. 

Step 2: Vehicle responses are computed using Newmark’s method based on Eq. (1). 

Step 3: The computed vehicle responses are used to compute Pi(t) based on Eq. (2). 

Step 4: The pavement equations (Eq. (18)) are solved numerically to compute w from   

which ))),((( ttxw (for both the front and rear wheel) can be computed for the entire 

 simulation time. 

Step 5: The procedure is repeated with the newly calculated ))),((( ttxw until solution 

 convergence is achieved.  

The final vehicle responses obtained are used for the roughness identification so that the effect 

of vehicle-pavement interactions on the roughness estimation could be ascertained. 

 
3.4 Data partitioning 
 

The decision on how to partition the observed data between the two schemes is crucial for the 

success of the whole estimation process. There are mainly two criteria for partitioning. First, the 

observability criterion )H( k 0 should be satisfied. Meeting the first constraint will filter out 

certain combinations. Second, the least square error should be minimum for the combination of 

data in MVE. Numerical investigations are carried out to find the best set of observation data for 

MVE or roughness estimation for a trial set of vehicle parameters. Based on the recognized set of 

observations that can be best utilized in MVE, the measurement data that can be utilized in the 

objective function may be chosen. Preferably, displacement quantities are used in the optimization 

scheme, as they are differentiable. Generally, in the field, accelerations are recorded, and other 
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vibration data may be deduced. In this study, data set I refer to the quantities that are fed into the 

MVE scheme, and set II for the data into the optimization scheme. 

 

3.5 Minimum variance unbiased estimator 
 

Minimum variance unbiased estimator used in this work has the structure of a Kalman filter 

and is designed for discrete linear systems with unknown inputs. This recursive filter performs 

joint estimation of states and inputs, where the states and inputs are interconnected (Gillijns and 

De Moor 2007). For the application of the filter, no prior knowledge regarding the unknown inputs 

is required. General description of the system is as follows 

kkkkkk

kkkkkk

vdHxCy
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                             (20)

 

n
k Rx   is the state vector. 

p
k Rd   is the unknown input vector and 

m
k Ry   the measurement 

vector and 
n

k Rw   and 
n

k Rv  are the process noise and the measurement noise respectively, 

uncorrelated white noises with mean zero and with covariance matrices   k
T

k QwwE   and 

  k
T

k QwwE  . The coefficient matrices kA , kG , kC  and kH are assumed to be known. The rank 

of the matrix kH is assumed to be equal to p , the size of the unknown input vector. The 

condition (rank pHk  ) is the necessary and sufficient condition for the unbiasedness of the 

estimator, and is critical in determining the observability of the system. 

The summary of the filtering equations is given below (Gillijns and De Moor 2007) 

 

Initialization 
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Time update 
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Estimation of unknown input 
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Measurement update
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3.6 Optimization scheme 
 

Optimization scheme used in this work is the Cuckoo search algorithm (Yang and Deb 2009). 

In this study, two types of objective functions are used which are being described in the section 

below and as proposed by Krishnanunni et al. (2019). Any metaheuristic based optimization 

algorithms can be employed in the implementation of the proposed technique such as Particle 

Swarm Optimization scheme. 

 
3.7 Objective functions 
 

The objective function of type 1 minimizes the L2 norm of the selected set (based on data 

partitioning) of dynamic responses observed quantities. This approach works well for a minimum 

number of unknowns, where the optimization problem is still well-posed. As the number of 

unknown parameters increases, the problem becomes ill-posed. The need for regularisation of the 

objective function arises, and an additional information inclusion improves the situation. Thus, the 

objective function of type 2 consists of an additional term of extra information deduced from the 

observed data and knowledge about the system. Objective functions are structured as follows
 

Type 1 


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2)1()1(

1 )ˆ(

                           (33)
 

where yn  and tn  represent the number of set 2 quantities and number of time steps 

respectively. 

Type 2
 

The objective function, in this case, contains an additional term based on frequency data. k

denotes the thk mode frequency extracted from the measurement time history, applying the Fast 

Fourier Transform (FFT). k̂  computed for the thk mode is a function of the vehicle parameter 
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values.
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Frequencies estimated from the direct observations are found to be accurate under practical 

noise levels and efficient in providing good estimates. 

 

 

4. Numerical illustration 
 

Roughness estimation is carried out, using the simultaneous identification algorithm as detailed 

in section 3. In this study, pavement is modelled as a two-layer Euler-Bernoulli beam, with the top 

layer being viscoelastic for a most realistic scenario, and as resting on a nonlinear Pasternak 

foundation. The viscoelastic response of the top layer is obtained, considering Burger's model. 

Table 1 lists the physical and geometric properties of the pavement and the foundation. The 

foundation model (Snehasagar et al. 2019) used, has provided comparable deflection values with 

field measurements and hence adds to the level of accuracy in the current estimation procedure. 

Road roughness class A profile used in this study is generated in accordance with ISO 8608 ISO 

8608 (Agostinacchio et al. 2014), based on the power spectral density of road roughness. For the 

vehicle, the half car model is considered, and the parameter values are listed in Table 3 (Wu and 

Law 2011). The present study ignores the tire damping because the tire damping values are 

comparably small with respect to the vehicle damping values, and for mathematical simplicity. 

Using a discretization scheme, the system equations are solved to find the dynamic responses. It 

may be noted that the interaction dynamics is incorporated in the dynamic analysis. Then, 

equivalent actual field responses are generated by adding White Gaussian Noise according to 

Lyons (2004). Addition of white noise simulates synthetic data which is close to a practical 

scenario, in this work. Length of the stretch of road for observation generation is 140 meters. The 

roughness identification is carried out for the stretch (60-100) meters, as shown highlighted in Fig. 

5. The initial conditions, i.e., the initial state values are set as the values calculated at the time 

point when the front wheel reaches 60.0 m, from the starting point. The calculations are carried out, 

considering a time step of 0.0005 s and vehicle velocity of 15 m/s. The proposed technique 

performs the simultaneous estimation of vehicle parameters and unknown input roughness, along 

with the estimation of response states. The scheme combines two existing techniques, in such a 

way that the estimates are optimal and unique. The formulation without the need of linearization, 

as exists in MVE paves the way for a set of optimal solutions. The employment of an idea of 

partitioning observations (Section 4.2) between the MVE and optimization scheme ensures unique 

solutions. 

 

4.1 Initialization for MVE 
 

The identification process is essentially an inverse problem, with the dynamic response data at 

hand. Initial conditions for the minimum variance estimator are to be specified. i.e., Considering 

an in-between stretch (60.00-100.0) m of the pavement of total length 140 m, initial velocities and 

displacements have to be specified, i.e., at 60 m from the starting point. Assumed to be known 

with quantified uncertainty. i.e., initial covariances for the use in MVE.  
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Table 1 Properties of the asphalt mixture, pavement, foundation and load (Ding et al. 2014, Mejlun et al. 

2017) 

Item Notation Value 

Foundation 

Linear stiffness 
1k  100 x 106 N/m2 

Nonlinear stiffness 3k  100 x 106 N/m2 

Viscous damping   0.3 x 106 N s/m2 

Shear parameter pG  6.66 x 107 N 

Beam properties 

Young’s modulus of top layer 
1E  21,237 MPa 

Young’s modulus of bottom layer 
2E  400 MPa 

Height of top layer 
1h  0.2 m 

Height of bottom layer 
2h  0.2 m 

Length of pavement L  140 m 

Width of pavement B  1 m 

Wavelength of road roughness 0L  10 m 

Amplitude of road roughness a  0.0002 m 

 
 
 

Table 2 Viscoelastic properties of the asphalt mixture at 20◦C (Mejlun et al. 2017) 

Notation Value 

1EV  23,172 Mpa 

2EV  10,730 MPa 

1  4,313 MPa.s 

2  2,457 MPa.s 

 
 
 

The initial covariance matrices used in this study, are given as follows
 

28 1010 IP,IP d
kk 

 

where I denotes Identity matrix, with the subscript of its size. 

nsobservatioofnokk IRIQ
.8 1.0,1.0   

With due consideration to the applicability of the technique in the field, the set of vehicle 

response quantities for data assimilation are selected based on the convenience of measuring at the 

field, as well. Numerical investigations are carried out to find the best partitioning scheme among 

the two schemes, as described in section 4.2. Initial conditions for MVE is given in section 4.1. 

 

330



 

 

 

 

 

 

Pavement condition assessment through jointly estimated road roughness… 

4.2 Partitioning the observation data 
 
The best split of measurement data for a half car model, arrived and used in this study is 

]xxxxx[ wwwwvv 2121
   in the MVE and ]x,x[ v   in the objective function. To satisfy the 

observability criterion )H( *
k 0 , the wheel accelerations, ]x,x[ ww 21  is included in all the 

combinations tested. The combinations thus arrived, are then investigated numerically for 

choosing the best set for MVE, i.e. the set that maximizes the efficiency of the MVE. The results 

are summarized in Table 4. 10% noise is considered in the measurements. The vehicle parameters 

in Table 3 is considered for the study. 

The error in estimation (Er) in Table 4 is defined as 

 
 


n

j
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j

ri

j

rir xx
mn

E
1 1

2)ˆ(
1

                         (35)

 

where m is the number of sampling points in the measurement and n is the number of independent 

noise-contaminated samples used. Here, n = 100 is adopted. Table 4 shows that the measurement  

combination MVE VI  [ 2121 ,,,,, wwwwv xxxxxx 
 ] yields the least error in roughness estimation 

and hence, the most efficient. This finding recommends the partitioning such that the use of MVE 

VI combination in MVE scheme and the vehicle body displacements, [ xxv , ] in the objective 

function. 

 
 
 

Table 3 Physical Constants of Half Car Model 

Physical constants Values 

vM  17735(kg) 

vI  1.47 x 105 (kg-m2) 

1m  1500 (kg) 

2m  1000 (kg) 

1sk  
2.47 x 106 (N-m) 

1sc  3.0 x 104 (N-s/m) 

2sk  4.23 x 106 (N-m) 

2sc  4.0 x 104 (N-s/m) 

1tk  3.74 x 105 (N-m) 

2tk  4.6 x 105 (N-m) 
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Table 4 Error (Er) in roughness identification considering different measurement combinations 

MVE Measurement Combination Estimation error (Er) 

MVE I 
21,, ww xxx 

  
2.74 x 10-4 

MVE II 
21,, wwv xxx   

2.20 x 10-4 

MVE III 
21,,, wwv xxxx 

  
1.26 x 10-4 

MVE IV 
121 ,,,, wwwv xxxxx 

  
1.22 x 10-4 

MVE V 
221 ,,,, wwwv xxxxx 

  
1.23 x 10-4 

MVE VI 
2121 ,,,,, wwwwv xxxxxx 

  
1.17 x 10-5 

 
 

where m is the number of sampling points in the measurement and n is the number of independent 

noise-contaminated samples used. Here, n = 100 is adopted. Table 4 shows that the measurement  

combination MVE VI  [ 2121 ,,,,, wwwwv xxxxxx 
 ] yields the least error in roughness estimation 

and hence, the most efficient. This finding recommends the partitioning such that the use of MVE 

VI combination in MVE scheme and the vehicle body displacements, [ xxv , ] in the objective 

function. 

 
 

 

Fig. 5 Schematic representation of vehicle -pavement system 
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5. Results 
 

The investigations are carried out, using Objective function J1 for no measurement noise 

condition and 10% noise condition. When a limited number of parameters need to be estimated, 

with information at hand about the vehicle parameters is sufficient, J1 could be utilized to full 

efficiency. The investigations are carried out using Objective function J2, for robust results in the 

cases of limited information. The effect on different vehicle speeds and roughness classes are also 

studied. Results of roughness estimates along with the vehicle parameters and states are detailed in 

the following sections. Results prove the capability of the proposed technique to yield accurate and 

robust estimates. 

 

5.1 Using objective function 1 (J1) 
 
No measurement noise 
Well-posedness of the optimization problem is a crucial element in determining the efficacy of 

the estimation, using the adopted technique. Initially, no noise measurement data condition is 

tested to check for the ill-posedness of the problem. Starting with the case of the number of 

unknown vehicle parameters equals one, it has been found that up to five parameters can be 

estimated effectively, with less than 1% error as shown in Table 5. Different combinations of 

vehicle parameters are studied and found that the combinations involving tire stiffnesses (kt1 and 

kt2) are prone to higher errors, indicating the problem is ill-posed, without a unique solution. Tire 

weights (m1 and m2) are easy to measure at the site and hence, kept known in all the numerical 

experiments in the present study. 

While keeping a maximum of five vehicle parameters as unknowns, the identification problem 

remains well-posed. Hence, for a number of unknown vehicle parameters up to five, the roughness 

can be estimated accurately. Fig. 6(a) shows the estimated average roughness profile is comparable 

with the actual field roughness profile. Roughness profiles are estimated at both rear and front 

wheel points and averaged to get a final estimate of roughness. Roughness estimate has a root 

mean squared error (RMSE) of 1.3 x 10-4m. Effect of interaction on the roughness profile is 

assumed to be negligible throughout the study. It may be taken into account via a post-processing 

stage for better results. 

 
With Measurement noise 
After finding five parameter estimation problem as a well-posed problem, the whole procedure 

is tested on noisy measurement data, to check for the robustness of the results. For this test set, tire 

stiffnesses, tire masses, and ks2 are kept known. From the observation that the objective function 

minimization results will improve for a lower percentage noise in the measurements, noisy 

measurements that are fed into the objective function pre-filtered. The displacements [ xxv , ] are 

smooth functions, and so, pre-filtering scheme chosen is Gaussian moving Average filter. The 

window size adopted is 50, for filtering. Estimation errors for vehicle parameters are as in Table 6 

and are observed to be within acceptable limits. Roughness profile comparison is as shown in Fig. 

6(b) and estimates are found to be comparable with actual profile and reasonably accurate. RMSE 

in this case is calculated as 8.3 x 10-4 m. As mentioned in no noise case, consideration of 

interaction may improve accuracy, though not necessary. 
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(a) No Noise, objective function 1 

 
(b) 10% Noise, objective function 1 

Fig. 6 Estimated Vs Actual Roughness Profiles 
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Table 5 Percentage error in parameter estimates with objective function J1 (no measurement noise) 

Physical constants % error % error % error % error % error 

vM  0.32 0.20 0.11 0.10 0.16 

vI  0.10 0.03 0.15 0.12 0.05 

1m  known known known known known 

2m  known known known known known 

1sk  0.13 known 0.10 0.10 0.03 

1sc  0.19 0.06 known 0.12 known 

2sk  known 0.11 0.17 0.22 0.15 

2sc  0.25 0.13 0.07 known known 

1tk  known known known known known 

2tk  known known known known 6.94 

 
 
Table 6 Estimation errors 

Vehicle Parameters vM  vI  1sk  1sc  2sc  

Error % 1.4 0.93 0.03 0.92 1.67 

 
 
5.2 Using objective function 2 (J2) 
 
The objective function J1 handles an identification problem consisting of only up to 5 

parameters along with roughness and states. Further improvement in the roughness estimates can 

be achieved if a higher number of parameters can be estimated simultaneously with roughness and 

states. The objective here is estimating up to 8 vehicle parameters which exclude tire masses 

which can be easily measurable. Numerical experiments are carried out with no noise 

measurements and 10% noise measurements. Additional information for the second term in the 

objective function J2  requires the estimation of the natural frequency of the vehicle from the field 

measurement data. 

 

Natural frequency estimation 

The acceleration responses ( 21,,, wwv xxxx 
 ) of the half car model recorded on the full 160 m 

length stretch of pavement is processed through Fast Fourier Transform, with a 5 % noise 

consideration in data records. The analysis of the peaks yields the frequencies as [1.163 Hz, 2.28 

Hz, 10.21 Hz, 14.8 Hz]. This set of values forms the regularization equivalent term of objective 

function 2. 

 
No measurement noise 

The results from optimizing the objective function J2 indicate the well-posedness of the eight 

parameter identification formulation. Estimated values with errors are listed in Table 7. The 

roughness profile is shown in comparison with the actual profile in Fig. 7(a). The two profiles are 

found to be comparable. It may be noted that simultaneous estimation of vehicle parameters even 
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in an increased number of eight parameters, with roughness and states, are feasible with Objective 

function J2. Moreover, the roughness estimates are maintaining reasonable accuracy, with an 

RMSE value of 1.6 x 10-4. 

 
 
 
 

 
(a) No Noise, objective function 2 

 
(b) 10% Noise, objective function 2 

Fig. 7 Estimated Vs Actual Roughness Profiles 
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(a) Objective function 1 

 
(b) Objective function 2 

Fig. 8 Estimated Vs Actual States, Vehicle velocity vx  

 
With Measurement noise 

Observation data with 10% noise is fed into the framework, and minimization of Objective 

function yields an accurate estimate of vehicle parameters, and thereby, that of roughness and 

states. A sample set of results is listed in Table 7, and the roughness profile estimated as an average 

of that at rear and front wheels is shown in comparison with the actual profile in Fig. 7(b). The 

profiles are well comparable as mentioned and the estimate has an RMSE value of 1.6 x 10-4. 

 

337



 

 

 

 

 

 

O.A. Shereena and B.N. Rao 

 
 

Table 7 Percentage error in parameter estimates with Objective function J2 

Physical 

parameter 

No measurement noise 10% measurement noise 

Estimated values % error Estimated values % error 

vM  17767 0.18 17772 0.21 

vI  1.47 x 105 0.17 1.47 x 105 0.15 

1sk  2.48 x 106 0.22 2.50 x 106 0.88 

1sc  2.99 x 104 0.32 3.02 x 104 0.62 

2sk  4.13 x 106 2.46 4.32 x 106 2.17 

2sc  4.06 x 105 1.51 4.22 x 105 5.52 

1tk  3.74 x 106 0.10 3.72 x 106 0.65 

2tk  4.71 x 106 2.44 4.50 x 106 2.13 

 
 
 
5.3 Filtered states 
 
States are simultaneously estimated along with roughness and parameters for each of the cases 

discussed. The vertical vehicle velocity estimated for objective function J1 and objective function 

J2 are as shown in Figs. 8(a) and 8(b). The front wheel displacement estimated for objective 

function J1 and objective function J2 are as shown in Figs. 9(a) and 9(b). Their comparability with 

the actual responses reinforces the accuracy of the roughness estimates, towards the potential 

applicability as a deterioration indicator.  

 
5.4 Variation with different road classes 
 
Class B and Class C roughness profiles are generated in accordance with ISO 8608, based on 

power spectral density of road roughness. Entire procedure as for Class A is carried out, to 

simulate the results for the respective road classes. The comparative study considers the 8 

parameter identification case with synthetic measurement data with an additive 10% noise and at 

vehicle speed of 5 m/s. The study considers the Objective function J2. The vehicle parameters and 

the roughness profiles are estimated, using the proposed technique. A comparative study on 

roughness estimation is shown in Fig. 10. The root mean square errors are calculated for each 

roughness class estimates and the variation is plotted in Fig. 10(d). The error is found to be of the 

order of 10-4 m. It is observed that though the estimation error increases with increase in the degree 

of roughness, the difference between errors is negligible. The vehicle parameter estimates for 

respective roughness classes are as enlisted in Table 8. The percentage errors based on the actual 

values are also listed. The parameter ks1 is found to have a relatively higher error, for Class B 

profile, still less than 10%. All other error values are found to be reasonably small. 
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(a) Objective function 1 

 

(b) Objective function 2 

Fig. 9 Estimated Vs actual States, Front wheel velocity 1wx  
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Table 8 Percentage error in parameter estimates with Objective function J2, for different roughness classes 

Physical 

parameter 

Class B Class C 

Estimated values % error Estimated values % error 

vM  17650 0.48 17701 0.19 

vI  1.47 x 105 0.28 1.47 x 105 0.26 

1sk  2.42 x 106 2.06 2.47 x 106 0.08 

1sc  2.74 x 104 8.63 2.92 x 104 2.65 

2sk  4.25 x 106 0.36 4.35 x 106 2.81 

2sc  4.07 x 105 1.86 3.82 x 105 4.53 

1tk  3.80 x 106 1.48 3.74 x 106 0.01 

2tk  4.58 x 106 0.42 4.47 x 106 2.75 

 

 

Continued- 
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Fig. 10 Estimated Vs actual roughness for different road roughness classes and Normalised RMSE (a) 

For Class A (b) For Class B (c) For Class C (d) Normalised RMSE 

 

 

5.5 Variation with different vehicle speeds 
 
The study considers Class A roughness profile, measurement data with 10% noise and at 

vehicle speeds 5 m/s, 10 m/s, 15 m/s, 20 m/s and 25 m/s. The study considers the objective 

function J2. The roughness profiles are identified, considering the vehicle moving at different 

speeds. Roughness estimates are shown in Fig. 11 for each of the speed values and can be found 

comparable against the actual roughness profile. For further clarity regarding the accuracy, the root 

mean square errors (RMSE) are calculated with respect to the actual roughness profiles and found 

to be of the order of 10-3 and 10-4 m. Maximum error value obtained for speed 25 m/s and is 1.1 x 

10-3 m. The normalized RMSE values are plotted in Fig. 11. A summary of percentage errors for 

the estimated vehicle parameters are shown in Fig. 12. The errors are found to be well within a 

reasonable limit (say 10%). 
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Continued- 

 
 

Fig. 11 Estimated Vs actual roughness for different vehicle speeds, v and the normalised RMSE (a) For v = 

5 m/s (b) For v = 10 m/s (c) For v = 15 m/s (d) For v = 20 m/s (e) For v = 25 m/s (f) Normalized RMSE 
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Fig. 12 Percentage errors of estimated vehicle parameters for different vehicle speeds 

 
 
6. Conclusions 
 

Roughness profile is identified accurately, with a robust scheme which combines MVE and an 

optimization scheme. The accuracy and robustness of the results indicate the potential use of the 

technique in the condition assessment of pavements. The study explores the use of two objective 

functions in the method, for the problem considered, at various vehicle speeds and roughness 

classes. 

 Major conclusions are as follows: 

 (i) The vehicle-road coupled system model consists of a half car vehicle model moving over a 

two-layer Euler–Bernoulli beam resting on a nonlinear Pasternak foundation (Snehasagar et al. 

(2019)), in this study. Use of the pavement foundation model, which incorporates viscoelastic 

behaviour leads to good results in the identification problem. 

 (ii) Objective function J1 can be used for the estimation of parameters up to 5. When a limited 

number of parameters are only needed to be estimated, and others are accurately known, the 

proposed scheme with the objective function J1 will be effective. Tire stiffness may yield relatively 

higher errors, but still within acceptable limits. 

 (iii) Objective function J2 is efficient for estimating up to 8 parameters. While most of the 

parameters are uncertain, the objective function needs to be modified with the inclusion of an 

additional frequency term, which acts as a regularization parameter for the problem. Estimation 

errors are within acceptable limits. 
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 (iv) Roughness estimates for no-noise condition, for five parameter identification problem, 

has an RMSE of 1.3 x 10-4 and for eight parameter identification problem has an RMSE of 1.6 x 

10-4. Errors are within the acceptable limits and found to be comparable. 

(v) Roughness estimates for 10% noise condition, for 5 parameter identification problem has an 

RMSE of 8.3 x 10-4 and for 8 parameter identification problem has an RMSE of 8.3 x 10-4. 

Errors are within the acceptable limits and found to be comparable. i.e., The technique gives 

accurate and stable estimates even when the observed data is corrupted with a higher percentage of 

noise. 

(vi) The robustness of the estimation results are tested by varying the vehicle speeds and by 

varying the roughness classes, at a 10% noise measurement data, for eight parameter identification 

problem. Estimation errors (RMSE) of roughness profiles are of the order of 10-4 m, for different 

road classes. While considering the accuracy over different vehicle speeds, RMSE is found to be 

of the order of 10-3 m and 10-4 m. The error values are found to be small. Percentage errors of 

estimated vehicle parameters are below 10% and are within acceptable limits. Relatively higher 

errors are observed in the estimates of either of the damping parameters, at slower vehicle speeds 

and at any roughness condition. 

 (vii) Interaction effects may be accounted for, through a post-processing section. This study 

has not considered post-processing as good results are achieved even without a post-processing 

stage. The proposed technique offers the flexibility of using suitable and favourable models by the 

engineers or the designers as per the requirement, along with the algorithm, for better, practically 

efficient designs. 

 (viii) The comparability of the estimates with the actual solutions (states, vehicle parameters, 

and roughness) indicates the efficiency of the proposed technique. The procedure is not tested here 

against actual field data. With the foundation model, which provided comparable deflections with 

field observations, the technique is supposed to perform well with an actual data set. 
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