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Abstract.  In present article, a size-dependent refined thick beam element has been established based upon 
nonlocal elasticity theory. Next, it is used to explore vibration response of porous metal foam nanobeams on 
elastic medium. The established beam element introduces ten degrees of freedom. Different porosity 
distributions called uniform, symmetric and asymmetric will be employed. Herein, introduced thick beam 
element contains shear deformations without using correction factors. Convergence and verification studies 
of obtained results from finite element method are also provided. The impacts of nonlocality factor, 
foundation factors, shear deformation, slenderness ratio, porosity kinds and porosity factor on vibration 
frequencies of metal foam nano-sized beams have been explored. 
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1. Introduction 
 

Porosity-dependent materials are a kind of material in which all properties rely on the amount 

and distribution of pores. Such material introduces novel applications is civil and aerospace 

structures because of possessing low weight and high stiffness. Pore distribution kind plays a 

major role is structural performance of beam-type structures (Mirjavadi et al. 2018, 2019a,b). In 

fact, vibration behavior of beam-type structures made of porous material depends on the amount of 

pores (Bourada et al. 2019). Thus, vibrations of the beams made of porous material have been 

investigated by various researchers.  

Small/large amplitude vibrations of a porous beam constructed from metal foam steel have 

been studied by Chen et al. (2016) accounting for pore distribution. Vibrational characteristics of a 

thick plate made of porous material of non-uniformly distributed pores have been explored by 

Rezaei and Saidi (2016). Analysis of frequencies of wave propagation in thick porous plates 

accounting for shear deformations has been performed by Yahia et al. (2015). Another 

investigation on vibrational behavior of a porous beam based on a thick shear deformable theory 

has been carried out by Atmane et al. (2015). 

Many theories are available for presentation of the formulation for a nano-size beam such as 

nonlocal theory Eringen (1983) or strain gradient theory of elasticity. The theories introduced scale 

factors to describe the size-dependency which is reported for nano-size structures. The scale factor 
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makes us able to match the mathematical formulation, especially vibration frequencies, with exact 

experimental behavior of a size-dependent beam. Different beam or plate theories (Bousahla et al. 

2016, El-Haina et al. 2017, Menasria et al. 2017, Abdelaziz et al. 2017, Chikh et al. 2017, 

Bakhadda et al. 2018, Fourn et al. 2018, Kaci et al. 2018) together with nonlocal elasticity theory 

have been used to formulate and analysis mechanical behaviors of nanobeams/nanoplates 

(Belkorissat et al. 2015, Bounouara et al. 2016, Ahouel et al. 2016, Zenkour 2016, Mouffoki et al. 

2017, Khetir et al. 2017, Youcef et al. 2018, Mokhtar et al. 2018, Yazid et al. 2018, Semmah et al. 

2019, Faleh et al. 2018). For analysis of mechanical characteristics of nanobeams, Zemri et al. 

(2015) introduced a novel nonlocal refined beam model based on shear deformation effects. 

Bellifa et al. (2017) presented a novel thick beam model for nonlinear mechanical behaviors of 

nanobeams based upon nonlocal theory.  

This research is devoted to establish a size-dependent refined thick beam element based upon 

nonlocal elasticity theory. Next, it is used to explore vibration response of porous metal foam 

nanobeams on elastic medium. The established beam element introduces ten degrees of freedom. 

Different porosity distributions called uniform, symmetric and asymmetric will be employed. 

Herein, introduced thick beam element contains shear deformations without using correction 

factors. Convergence and verification studies of obtained results from finite element method are 

also provided. The impacts of nonlocality factor, foundation factors, shear deformation, 

slenderness ratio, porosity kinds and porosity factor on vibration frequencies of metal foam 

nano-sized beams have been explored. 

 

 
2. Models of porosities 

 

Pore distribution types have been considered as three models in this article. These models 

(uniform, symmetric and asymmetric) have been shown in Fig. 1, while the porous beam has been 

depicted in Fig. 2. Knowing the fact that maximum elastic modulus, shear modulus and mass 

density are denoted by E2, G2 and 2 , the materials characteristics based on the type of porosities 

might be expressed as 

• Uniformly 

2 0(1 )E E e  
                               (1a)

 

2 0(1 )G G e  
                              (1b)

 

2 0(1 )e   
                              (1c)

 

• Symmetrically 

2 0( ) (1 cos )
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E z E e
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                             (2a) 
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z

G z G e
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 
   
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2( ) (1 cos )m

z
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
 

 
   

                              (2c) 

 

 

  (a) Symmetrically pores (b) Asymmetrically pores 

 (c) Uniformly pores 

Fig. 1 The kinds of pore dispersions 

 

 

 Fig. 2 Configuration and coordinates of nanobeam 
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• Asymmetrically 

2 0( ) (1 cos )
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Herein, e0 and em pore and mass factors which are 
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1 1

1 1
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e
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and 
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
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Herein, the following function will be used for uniform pore dispersion as 

2

0

0 0

1 1 2 2
1 1e

e e


 

 
     

                       (6)

 

 

2.1 Formulation based on refined beam theory 
 

Based on the refined beam model accounting for axial (u0) and transverse (wb, ws) 

displacements, the following 3D field might be defined 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝑓(𝑧)

𝜕𝑤𝑠

𝜕𝑥
                 (7a) 

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0                               (7b) 

 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡)                      (7c) 

Based upon above definition, the strain field might be defined as 
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𝜖𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2 − 𝑓(𝑧)
𝜕2𝑤𝑠

𝜕𝑥2                            (8a) 

𝜖𝑦 = 𝜖𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0                       (8b) 

𝛾𝑥𝑧 = 2𝜖𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠

𝜕𝑥
                           (8c) 

where 𝑔(𝑧) = 1 − 𝑓′(𝑧). 

 

2.2 A nonlocal refined nanobeam model  
 

In order to formulate a refined beam model at nano-scale, the nonlocal relation in the following 

form might be used accounting for nonlocal factor (e0a) 

2
0

2(1 ( ) ) kl kle a t  
                         (9)

 

The stress field based on nonlocal theory might be defined as 

2

2
( )xx

xx xxE z
x


  


 

                         (10)
 

2

2
( )xz

xz xzG z
x


  


 

                     (11)
 

Next, with the help of the principle of minimum total potential energy, one can get to the 

following relation 

δΠ = 𝛿(𝑈 − 𝑉 − 𝐾) = 0                      (12) 

Herein, U is strain energy and T is kinetic energy. The strain energy using Eq. (12) can be stated 

as 

𝑈 = 0.5 ∫ ∫(𝜎𝑖𝑗𝛿𝜖𝑖𝑗)𝑑𝑧𝑑𝑥

ℎ

2

−
ℎ

2

𝐿

0

= ∫ ∫(𝜎𝑥𝛿𝜖𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑧𝑑𝑥 =

ℎ

2

−
ℎ

2

𝐿

0

∫ (𝐴11

𝑑𝑢0

𝑑𝑥

𝑑𝑢0

𝑑𝑥
− 2𝐵11

𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑏

𝑑𝑥2
+ 𝐷11

𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑏

𝑑𝑥2

𝐿

0

− 2𝐵11
𝑠

𝑑𝑢0

𝑑𝑥

𝑑2𝑤𝑠

𝑑𝑥2
− (2𝐷11

𝑠 + 0.5 ∗ (𝐴13 + 𝐵13))
𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐻11

𝑠 ) 𝑑𝑥 

 (13) 

 

The kinetic energy of nanobeam might be defined by 
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𝐾 = ∫ ∫ 𝜌(𝑧)[𝑢̇𝑥𝑢̇𝑥 + 𝑢̇𝑦𝑢̇𝑦]

ℎ

2

−
ℎ

2

𝐿

0

𝑑𝑧𝑑𝑥

= ∫ ,𝐼0 *𝑢̇0𝑢̇0 + 𝜇 (
𝑑2𝑢̇0

𝑑𝑥2

𝑑2𝑢̇0

𝑑𝑥2
) + (𝑤̇𝑏 + 𝑤̇𝑠)(𝑤̇𝑏 + 𝑤̇𝑠)

𝐿

0

+ 𝜇 (
𝑑2(𝑤̇𝑏 + 𝑤̇𝑠)

𝑑𝑥2

𝑑2(𝑤̇𝑏 + 𝑤̇𝑠)

𝑑𝑥2
)+ − 2 *𝐼1 (𝑢̇0

𝑑𝑤̇𝑏

𝑑𝑥
) + 𝜇 (

𝑑2𝑢̇𝑏

𝑑𝑥2

𝑑3𝑤̇𝑏

𝑑𝑥3
)+

+ 𝐼2 *(
𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑏

𝑑𝑥
) + 𝜇 (

𝑑3𝑤̇𝑏

𝑑𝑥3

𝑑3𝑤̇𝑏

𝑑𝑥3
)+ − 2𝐽1 *(𝑢̇0

𝑑𝑤̇𝑠

𝑑𝑥
) + 𝜇 (

𝑑2𝑢̇𝑏

𝑑𝑥2

𝑑3𝑤̇𝑠

𝑑𝑥3
)+

+ 𝐾2 *(
𝑑𝑤̇𝑠

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
) + 𝜇 (

𝑑3𝑤̇𝑠

𝑑𝑥3

𝑑3𝑤̇𝑠

𝑑𝑥3
)+ + 2𝐽2 *(

𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
) + 𝜇 (

𝑑3𝑤̇𝑏

𝑑𝑥3

𝑑3𝑤̇𝑠

𝑑𝑥3
)+- 𝑑𝑥 

(14) 

Also, the mass inertias might be expressed as 

(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2) = ∫ (1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2)𝜌(𝑧)𝑑𝑧
ℎ

2

−
ℎ

2

         (15) 

Next, we define the work of exerted forces in following form 

𝑉 = 0.5 ∫[𝑘𝑝(

𝐿

0

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
+ 𝜇

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑘𝑤(𝑤𝑏 + 𝑤𝑠)

+ 𝜇𝑘𝑤

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
)𝑑𝑥 

(16) 

where kw and kp are Winkler and Pasternak factors and the following edge conditions have for 

derived for x = 0 and x = L. 

Specify  𝑢𝑜 or  𝑁                           (17) 

Specify 

𝑤𝑏 𝑜𝑟 𝑉𝑏 =
𝑑𝑀𝑏

𝑑𝑥
− 𝐼1𝑢̈0 + 𝐼2

𝑑𝑤̈𝑏

𝑑𝑥
+ 𝐽2

𝑑𝑤̈𝑠

𝑑𝑥
                (18) 

Specify   

                                                  𝑤𝑠 𝑜𝑟  𝑉𝑠 =
𝑑𝑀𝑠

𝑑𝑥
+ 𝑄 − 𝐽𝑢̈0 + 𝐽2

𝑑𝑤̈𝑏

𝑑𝑥
+ 𝐾2

𝑑𝑤̈𝑠

𝑑𝑥
            (19) 

Specify   
𝑑𝑤𝑏

𝑑𝑥
  𝑜𝑟  𝑀𝑏                        (20) 

Specify  
𝑑𝑤𝑠

𝑑𝑥
  𝑜𝑟  𝑀𝑠                         (21) 

where 𝐴11 , 𝐵11
𝑠  , etc., are the beam stiffness, defined by 

(𝐴11, 𝐵11, 𝐷11, 𝐵11
𝑠 , 𝐷11

𝑠 , 𝐻11
𝑠 ) = ∫ 𝐸(𝑧)(1, 𝑧, 𝑧2 , 𝑓, 𝑧𝑓, 𝑓2)𝑑𝑧

ℎ

2

−
ℎ

2

       (22) 
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𝐴55
𝑠 = ∫ 𝐺(𝑧)𝑔2𝑑𝑧

ℎ

2

−
ℎ

2

                        (23) 

 

 

3. Finite element method 
 

Based on present section, finite element approach has been utilized to solve the free vibrational 

problem of nonlocal porous nanobeams with S-S and C-C boundary conditions. Here, linear shape 

functions are considered for axial displacement, while Hermitian shape functions are considered 

for bending and shear displacement components. Accordingly, the displacement field is considered 

as 
2

0 1 1 2 2

1

( , ) ( ) ( )i i

i

u x t U t N x N U N U


  
                  (24)

 

4

1 1 2 1 3 2 4 2

1

( , ) ( ) ( )b bi i b b b b

i

w x t W t N x N W N W N W N W


     
        (25)

 

4

1 1 2 1 3 2 4 2

1

( , ) ( ) ( )s si i s s s s

i

w x t W t N x N W N W N W N W


     
         (26)

 

where, 𝑈𝑖 , 𝑊𝑏𝑖 and 𝑊𝑠𝑖 are unknown coefficients and 

1 1
e

x
N

L
 

                            (27)
 

2
e

x
N

L


                                (28)
 

 3 2 3
1 3

1
2 3 e e

e

N x x L L
L

  

                        (29)

 

 3 2 2 3
2 3

1
2e e e

e

N x L x L xL
L

  

                        (30)

 

 3 2
3 3

1
2 3 e

e

N x x L
L

  

                       (31)

 

 3 2 2
4 3

1
e e

e

N x L x L
L

 

                           (32)

 

where Le is the length of master element. 

Substituting Eqs. (24)-(26) in Eq. (12) and minimizing it to the unknown undetermined 

coefficients Ui, Wbi, and Wsi, the following expression yields simultaneous algebraic equations in 

terms of the unknown coefficients. 
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i bi siU W W

  
 

  
                            (33)

 

Next, the solution trend gives 

11 12 13 11 12 13

2

21 22 23 21 22 23

31 32 33 31 32 3310*10 10*10

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] 0

[ ] [ ] [ ] [ ] [ ] [ ]

i

n bi

si

Uk k k m m m

k k k m m m W

k k k m m m W



     
     

      
     
                (34)

 

in which kij and mij are stiffness and mass matrices of master element, respectively. Eq.(34) might 

be defined as an eigenvalue problem to find vibration frequencies. This is done by defining the 

determinant of coefficients in this equation and setting it to be zero. 

Also, non-dimensional parameters are defined as 

24 3
2 02 2

2 2

2 2 2

ρ
ˆ ω , , , ,

E 12(1 )

pw
w p

k Lk L e aA E h
L K K D

I D D v L
     


      (35)

 

 
 

4. Numerical results and discussions 
 

Based on established size-dependent refined thick beam element using nonlocal elasticity 

theory, this section explore vibration response of porous metal foam nanobeams on elastic medium. 

The established beam element introduces ten degrees of freedom. Different porosity distributions 

called uniform, symmetric and asymmetric will be employed. Herein, introduced thick beam 

element contains shear deformations without using correction factors. Convergence and 

verification studies of obtained results from finite element method are also provided. The impacts 

of nonlocality factor, foundation factors, shear deformation, slenderness ratio, porosity kinds and 

porosity factor on vibration frequencies of metal foam nano-sized beams have been explored. Also, 

the vibration frequency of the present study is validated with those of classical nanobeam model 

obtained by Ebrahimi and Salari (2015) based on simple supported edge conditions as presented in 

Table 1. Herein, the material property for the beam might be selected as: 

• 𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33, 

Fig. 3 depicts the influence of nonlocality factor (µ) and porosity factor on the vibrational 

characteristics of porous nano-sized beams at L/h=10 and Kw=Kp=0 based on uniformly pores. A 

variety of pore factor have been selected (e0=0.2, 0.4, 0.6 and 0.8). Vibration frequencies of a 

macro size beam will be driven by selecting µ =0. It might be seen that nonlocal factor introduces 

a stiffness decline behavior which yields lower vibration frequencies for all values of porosity 

coefficient. Thus, non-local models of nanobeams give lower frequencies compared to local 

models. Also, increase of uniformly porosity factor results in lower frequencies at a fixed nonlocal 

parameter. This is owning to a remarkable decline in stiffness of nanobeam with presence of pores 

in material texture. 

Pore factor influence on the vibrational frequencies of porous nanobeam has been illustrated in 

Fig. 4 when µ=0.2, Kw=0 and Kp=0. An increase in porosity coefficient yields larger frequencies 

154



 

 

 

 

 

 

Finite element formulation and vibration of nonlocal refined metal foam beams… 

for nanobeams with symmetrically pores while lower frequencies for nanobeams with uniformly 

and asymmetrically pores. Obtained results demonstrate that as the pore factor gets larger, the 

nanobeams with symmetrically pores have the highest vibration frequency whereas the results of 

the nanobeam with uniformly and asymmetrically pores become closer. Hence, pore type indicates 

a notable role on vibrational properties a nano-sized. 

In Fig.5, the variation of non-dimensional frequency of nanobeam versus slenderness ratios 

(L/h) is presented for different types of porosity distribution. One can confirm that a nano-sized 

beam is less rigid based on a large slenderness ratio. Thus, derived natural frequencies become 

lower by the growth of slenderness ratio. But, non-dimensional frequency presented increases with 

the rise of slenderness ratio. However, non-dimensional vibration frequency is more affected by 

the lower values of slenderness ratio. It can be seen from the figure that shear deformation effect is 

important at smaller slenderness ratios (larger thickness). While, the effects of shear deformation 

and slenderness ratio are negligible at high values of slenderness ratio. Once again, one can see 

that uniform porosity distribution yields smaller vibration frequencies than non-uniform porosity 

distributions 1 and 2 at a fixed slenderness ratio. While, the results from asymmetrically pores are 

always between the frequency results of uniformly and symmetrically pores. 

 

 
Table 1 Comparison of the dimensionless frequency for nonlocal nanobeams (L/h=20) 

µ (nm)   

 Ebrahimi and Salari (2015) Present 

0 9.8594 9.8567 

1 9.4062 9.4036 

2 9.0102 9.0077 

3 8.6603 8.6579 

 

 

  
(a) S-S (b) C-C 

Fig. 3 Variation of dimensionless frequency versus nonlocal parameter for different uniform porosity 

coefficient (L/h=10, Kw=0, Kp=0) 
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(a) S-S (b) C-C 

Fig. 4 Variation of dimensionless frequency versus porosity coefficient for different porosity 

distributions (L/h=15, Kw=0, Kp=0, µ=0.2) 

 

 

 

 

  
(a) Higher order refined (b) CBT 

Fig. 5 Variation of dimensionless frequency versus slenderness ratio for different porosity distributions 

(Kw=0, Kp=0, µ=0.2, e0=0.5) 

 

 

 

156



 

 

 

 

 

 

Finite element formulation and vibration of nonlocal refined metal foam beams… 

 

  
(a) Kw=0, Kp=0 (b) Kw=5, Kp=0 

 
(c) Kw=5, Kp=0.5 

Fig. 6 Variation of dimensionless frequency versus slenderness ratio for various elastic foundation 

parameters (µ=0.2) 

 

 

In Fig. 6, the impacts of Winkler-Pasternak factors on vibration frequencies of porous 

nanobeams versus slenderness ratio with different pore factors are demonstrated when L/h=10 and 

µ=0.2. It will be understood that vibration frequencies rely on the amounts of both Winkler and 

Pasternak factors. Growth of Winkler and Pasternak factors leads to enlargement of the transverse 

stiffness and vibration frequency of the nano-sized beam. Owning to the fact that Pasternak 

substrate introduces a continual interaction with the nano-sized beam, its impact on vibration 

frequencies is more tangible compared to Winkler substrate. At fixed Winkler and Pasternak 

constant, one can again see that dimensionless vibration frequency increases significantly at lower 

slenderness ratios, but it remains approximately unchanged at larger slenderness ratios. 
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5. Conclusions 
 

Based on established size-dependent refined thick beam element using nonlocal elasticity 

theory, this paper explored vibration response of porous metal foam nanobeams on elastic medium. 

The established beam element introduced ten degrees of freedom. Different porosity distributions 

called uniform, symmetric and asymmetric were employed. The impacts of nonlocality factor, 

foundation factors, shear deformation, slenderness ratio, porosity kinds and porosity factor on 

vibration frequencies of metal foam nano-sized beams were explored. An increase in porosity 

coefficient led to larger frequencies for nanobeams with symmetrically pores while lower 

frequencies for nanobeams with uniformly and asymmetrically pores. 
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