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Abstract.  In this paper, damage assessment in wind-turbine towers using vibration-based artificial neural 
networks (ANNs) is numerically investigated. At first, a vibration-based ANNs algorithm is designed for 
damage detection in a wind turbine tower. The ANNs architecture consists of an input, an output, and hidden 
layers. Modal parameters of the wind turbine tower such as mode shapes and frequencies are utilized as the 
input and the output layer composes of element stiffness indices. Next, the finite element model of a real 
wind-turbine tower is established as the test structure. The natural frequencies and mode shapes of the test 
structure are computed under various damage cases of single and multiple damages to generate training 
patterns. Finally, the ANNs are trained using the generated training patterns and employed to detect damaged 
elements and severities in the test structure. 
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1. Introduction 
 

Wind energy is a promising alternative source in the world’s future because it produces no 

greenhouse gas, which is the main cause of global warming. Following the global trend, Korea has 

concentrated to develop small- and medium-sized wind farms. Especially Jeju Island has an 

ambitious plan to be a Carbon Free Island by 2030 (Park 2015). In order to fulfill the clean energy 

demand, more wind turbine towers will be installed in the coming years. The strong investment 

into wind energy harvest leads to the consideration of safety and durability of the wind turbine 

tower (WTT). During the lifetime, the slender vertical wind tower exposes to extreme wind 

frequently, so it experiences large deflections and repeated stress cycles, which would cause 

damage in the WTT (Benedetti et al. 2011, Park et al. 2015). 

Structural health monitoring based on modal properties can be a solution to ensure the safety as 

well as the serviceability of the WTT (Li et al. 2014, Kim et al. 2014, Nguyen et al. 2015, 

Martinez-Luengo et al. 2016, Nguyen et al. 2017). It is well-proven that structural damage causes 
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the change of mechanical parameters such as mass and stiffness. Consequently, it alters the 

dynamic characteristics of the system including modal parameters (Pandey et al. 1994). In the past, 

there were considerable efforts in vibration-based structural health monitoring which utilized 

dynamic measurement to extract damage sensitive features. Many researchers employed the 

change in natural frequencies and mode shapes for damage detection and structural identification 

(Vandiver 1977, Farrar et al. 1994, Kim et al. 1995, Kim et al. 2003, Huynh et al. 2016, Li et al. 

2016). Nguyen et al. (2015) investigated the potential of the frequency-based and mode 

shape-based methods for health monitoring of a numerical WTT model. They later used the 

frequency-based method to detect damaged joints in a lab-scaled WTT (Nguyen et al. 2017). From 

their findings, it is shown that the high stiffness of the segmental joints in the WTT could cause 

discontinuities in mode shapes and modal curvatures that may result in inaccurate damage 

localization. Thus, an alternative method should be sought. 

Along with various damage detection methods, the artificial neural network (ANN) has an 

excellent performance in damage pattern recognition (Yun et al. 2004, Park et al. 2009), which has 

been widely applied as the damage identification aid. Auto-associative neural networks were 

developed to monitor the cable-stayed Kap Shui Mun bridge (Hong Kong) via measured modal 

data from an online system (Ni et al. 2002). Li et al. (2007) identified damage in a beam via ANN 

based on statistical properties of structural dynamic response. Transverse crack in a beam was 

investigated via developing a neural network in which the input parameters were first three natural 

frequencies and the output parameter were relative crack depth and relative crack location in 

dimensionless forms (Sutar et al. 2015). Shu et al. (2012) employed changes of variances and 

covariance of structural dynamic responses for training ANN to localize damage in railway bridge 

under train-induced vibrations.  

Despite those research efforts, the implementation of the ANNs to damage identification in the 

WTT has not studied so far. A well-established and sufficiently trained ANNs model could be an 

important component in the real-time health monitoring system of the WTT. This current study 

focuses on the possibility of employing the vibration-based ANNs for the identification of damage 

location and severity in the WTT. The remaining is arranged as follows. Firstly, a vibration-based 

ANNs algorithm is established for single and multiple structural damages in the WTT. The modal 

parameters including normalized natural frequencies and mode shapes are selected as the input, 

while the output layer is composed of element stiffness indices. Next, the finite element model of a 

real WTT is established as the test structure. Natural frequencies and mode shapes of the test 

structure are extracted from the modal analysis under a number of damage cases. Finally, the 

ANNs are trained using the training patterns generated from those damage cases. The trained 

ANNs are then employed to detect damaged elements and their severities for the test structure. 

 

 

2. Vibration-based damage detection method using artificial neural networks 
 

2.1 Schematic of damage detection method 
 

The vibration-based damage detection method using ANNs is schematized in Fig. 1. The 

algorithm used feed-forward neural networks wherein connections between the units do not form a 

cycle. The ANNs architecture consists of an input, an output, and hidden layers. The activation 

functions are sigmoid in the hidden layers and linear function in the output layer. The scheme of 

the method includes two parts: (a) Training modal properties-based ANNs and (b) Damage 
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detection for the WTT using the trained ANNs. 

The training of modal properties-based ANNs is performed in the following five steps: (1) a 

baseline finite element model of a WTT is established from structural analysis by ANSYS S/W. 

This FE model is coded via ANSYS Parametric Design Langue (APDL) in order to auto-analyze a 

large number of damage scenarios. (2) single and multiple damage scenarios are selected on the 

basis of the potential damage in the WTT. Each damage scenario contains two important 

parameters which are location and severity. The single damage can locate at any segments of the 

FE model while the multiple damages are assumed only at 4 connection flanges to reduce the 

computational cost. (3) the modal analysis of the WTT model with every damage scenario is 

proceeded. (4) modal parameters (i.e., mode shapes and natural frequencies) are acquired using 

modal identification methods such as frequency domain decomposition, or stochastic subspace 

identification (Yi and Yun 2004, Qu et al. 2017) and saved into a database for single and multiple 

damages detections, independently. (5) these data sets are later used for training modal 

parameters-based ANNs. Four ANNs are built for single and multiple damage detection of the 

WTT. They are frequency-based ANNs for single damage detection (FAS), frequency-based ANNs 

for multiple damage detection (FAM), mode shape-based ANNs for single damage detection 

(MAS), mode shape-based ANNs for multiple damage detection (MAM). 

The damage detection for the WTT is performed as follows: first, acceleration signals from 

sensors on the WTT are recorded during operation; second, the modal parameters are extracted and 

classified as natural frequencies and mode shapes separately; and third, the WTT status can be 

monitored via the FAS and the MAS for single damage detection. Simultaneously, the flange 

connections are checked up via the FAM and the MAM for multiple damage detection.  

The output of the FAS and MAS are the damage severity of each element in the WTT model as 

defined in Eq. (2). Meanwhile, the FAM and MAM provide damage severities of all four flange 

connections. The damage severity is introduced as the reduction of element stiffness k. The 

element stiffness 𝑆𝑖 index is defined as 

𝑆𝑖 =  𝑘𝑖,𝑑/𝑘𝑖,𝑢                              (1) 

 

 

Fig. 1 Scheme of vibration-based damage detection method using ANNs 
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where i denotes element number; d and u denotes damaged and intact case. Besides, the segment 

damage severity is defined as 

𝛼 = 1 −  𝑆𝑖                              (2) 

 

2.2 Frequency-based ANNs 

 

The frequency-based ANNs algorithms (i.e., FAS and FAM) for damage detection are designed 

with feed-forward neural networks. The input layer is composed of natural frequencies of the WTT. 

For better training results, the normalized natural frequencies from first three modes along the 

wind direction (X direction) and cross-wind direction (Y direction) are selected as the input of 

frequency-based ANN, which is described in Eq. (3). 

𝑓 = [𝑓𝑥1 𝑓𝑥2 𝑓𝑥3 𝑓𝑦1 𝑓𝑦2 𝑓𝑦3]                      (3) 

The normalization of natural frequencies is defined as in Eq. (4). 

‖𝑓0‖2 = 𝑓0
𝑇𝑓0 = 1; ‖𝑓𝑑‖2 = 𝑓𝑑

𝑇𝑓𝑑 = 1                  (4) 

where subscripts 0 and d denote the intact and damaged cases, respectively. In single damage 

detection for the WTT, only one segment is randomly damaged with the severity ranging from 5% 

to 50% with a step of 5%. Totally, there are 71 cylinder segments can be damaged in the tower. 

Therefore, the FAS for single damage detection is trained with 710 patterns. Meanwhile, the 

multiple damage detection only considers flange connections as potential locations. It is noted that 

they are the most vulnerable parts of the WTT during operation. Because the multiple damages 

with random severity ranging from 0% to 45% with a step of 5% can appear at any of four flange 

connections, there are 10000 training patterns for the FAM. The number of hidden layers and 

neurons in each layer for the FAS and FAM are summarized as in Table 1. 

As shown in Fig. 2, the FAS has 6 neurons for normalized natural frequencies in the input layer 

and 71 neurons for the segmental damage severity in the output layer. There are 2 hidden layers in 

the FAS. The first hidden layer is composed of 35 neurons, while the second one is composed of 

71 neurons. Fig. 3 shows that the FAM has 6 neurons for normalized natural frequencies in the 

input layer and 4 neurons for the flange damage severity in the output layer. The hidden layer of 

FAM is composed of 50 neurons. After a sufficient training, the frequency-based ANNs including 

FAS and FAM are employed to identify damage with severity staying out the training values. 

 

 

Fig. 2 The FAS architecture 
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Fig. 3 The FAM architecture 

 

 
Table 1 Properties of frequency-based ANNs for damage detection 

ANN Properties FAS FAM 

No. Training Patterns 710 10000 

No. Input Neurons 6 6 

No. Hidden 1 Neurons 35 50 

No. Hidden 2 Neurons 71 - 

No. Output Neurons 71 4 

 

 

2.3 Mode shape-based ANNs 
 

The mode shape-based ANNs algorithms (i.e., MAS and MAM) for damage detection are 

designed with feed-forward neural networks. The input layer is composed of mode shapes of the 

WTT. For better training results, the normalized mode shapes from the first three modes in the 

along-wind direction are selected as the input of mode shape-based ANN, which is described in Eq. 

(5).  

𝜙 = [𝜙𝑥1 𝜙𝑥2 𝜙𝑥3]                           (5) 

where the 𝜙𝑥𝑖 is the eigenvector of the ith mode in the along-wind direction. Near the support of 

WTT, the displacement around zero are excluded from the input vector.  

The normalization of mode shapes are defined as in Eq. (6). 

‖𝜙0‖2 = 𝜙0
𝑇𝜙0 = 1; ‖𝜙𝑑‖2 = 𝜙𝑑

𝑇𝜙𝑑 = 1                 (6) 

where subscripts 0 and d denote the intact and damaged cases, respectively. In single damage 

detection for the WTT, only one segment is randomly damaged with the severity ranging from 5% 

to 50% with a step of 5%. Similar to the FAS, the MAS for single damage detection is trained with 

710 patterns. Meanwhile, the multiple damage detection only considers flange connections as 

potential inflicted locations. Because the damage with random severity ranging from 0% to 45% 

with a step of 5% can appear at four flange connections, the MAM is trained with 10000 patterns 

as in the FAM. The number of hidden layers and neurons in each layer for the MAS and MAM are 

summarized as in Table 2. 

 

511



 

 

 

 

 

 

Cong-Uy Nguyen, Thanh-Canh Huynh and Jeong-Tae Kim 

Table 2 Properties of mode shape-based ANNs for damage detection 

ANN Properties MAS MAM 

No. Training Patterns 710 10000 

No. Input Neurons 203 203 

No. Hidden 1 Neurons 69 50 

No. Hidden 2 Neurons 71 4 

 

 

     

Fig. 4 The MAS architecture                Fig. 5 The MAM architecture 

 

 

As presented in Fig. 4, the MAS has 203 neurons for normalized mode shapes in the input layer 

and 71 neurons for the segmental damage severity in the output layer. Meanwhile, the hidden layer 

is composed of 69 neurons. Besides, Fig. 5 shows that the MAM has 203 neurons for normalized 

mode shapes in the input layer and 4 neurons for the flange damage severity in the output layer. 

The hidden layer of FAM is composed of 50 neurons. After sufficient training, the frequency-based 

ANNs including MAS and MAM are employed to identify damage with severity staying out the 

training values. 

 

 

3. Finite element modeling of wnd turbine tower 
 

The finite element model of a real WTT structure is established as the test model. The real 

WTT is located in the Hankyung II Wind Park, Jeju Island, Korea. The type of the WTT is V90-3.0 

MW with nominal rating 3000 kW. The cut-in wind speed is 4 m/s while the cut-out and 25 m/s. 

There are 3 blades up-wind direction. Nacelle and Rotor weigh 68 and 39.8 ton, respectively. The 

real structure is 80 m high including the hub. There are 4 main segments in the tower. Each main 

segment has a flange at 2 tips so each one can combine together through bolt connections. The first 

segment is embedded in the foundation and the only 0.55 m is above the foundation surface. The 

second segment is 19.21m long while two remaining segments are around 29 m. Each main 

segment is formed by several sections with the thickness changing along elevation. Table 3 lists 

the variation of the section’s thickness with respect to the increasing height. The tubular tower 

material is S355 J2G31. The top-level diameter is 2.316 m and the bottom level is 4.150 m.  
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As shown in Fig. 6, the finite element WTT model is simulated in ANSYS. The rotor and 

nacelle are simulated as lump masses on the top of the tower in the right dimension. These masses 

are linked rigidly to the top flange of the WTT. In order to generate a database of modal 

parameters in each damage scenario, the finite element model is divided into 71 cylinder segments. 

Each cylinder segment is composed of 36 shell elements along the perimeter. The height of 

each element depends on the diameter of each segments ranging from 1.8 m in the bottom to 1 m 

in the top. The modal analysis of the intact WTT shows the first three mode shapes along-wind 

direction and cross-wind direction, as in Fig. 7. The rotor and nacelle axis is always perpendicular 

with flange 4 in every mode. This confirms the assumption of rigid links between those elements. 

 

 

 

Fig. 6 Finite element modeling of the WTT 

 

 
Table 3 Cross-sectional thickness of the WTT model 

Height (m) 
0 

5.4 

5.4 

21.9 

21.9 

30.6 

30.6 

36.4 

36.4 

42.2 

42.2 

50.9 

50.9 

53.8 

53.8 

56.7 

56.7  

59.6 

59.6  

77.3 

Thickness 

(mm) 
40 26 24 23 22 21 19 18 17 16 
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(a) Along-wind modal shape 

   
(b) Cross-wind modal shape 

Fig. 7 Modal analysis results for the WTT model 

 

 

 

4. Damage detection in wind turbine tower using vibration-based ANNs 
 

4.1 Detection of single damage 
 

Damage detection via FAS 
Six test cases are selected to demonstrate the performance of single damage detection via the 

trained FAS, as listed in Table 4. The infliction is located randomly from the bottom to the top of 

the WTT model with severity ranging from 12% to 18%. The first three cases (Cases 1-3) are 

trained patterns, while the 3 remaining cases (Cases 4-6) are untrained patterns. The damage 

location and severity predicted via the FAS are presented in Fig. 8. As shown in the figure, the 

damage locations are recognized correctly via the FAS. However, the estimated damage severities 

are below the inflicted ones. 

 

Damage detection via MAS 

Six test cases are selected to demonstrate the performance of single damage detection via the 

MAS, as listed in Table 5. The infliction is located randomly from the bottom to the top of the 

WTT model with severity ranging from 10% to 25%. The first three cases (Cases 1-3) are trained 

patterns, while the 3 remaining cases (Cases 4-6) are untrained patterns. The damage location and 

severity predicted via the MAS are shown in Fig. 9. It is observed that the damage locations are 

recognized correctly via the MAS. However, the estimated damage severities are below the 

inflicted ones. 
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Fig. 8 Damage detection in the WTT model via the FAS 

 

 

 

Fig. 9 Detection results for single damage in the WTT via the MAS 
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Table 4 Test cases for the FAS 

Damaged Element  
Trained Patterns Untrained Patterns 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

ID 8 32 71 8 32 71 

Severity 15% 15% 15% 18% 12% 16% 

 

 
Table 5 Test cases for the MAS 

Damaged Element 
Trained Patterns Untrained Patterns 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

ID 7 38 68 7 38 68 

Severity 15% 10% 25% 18% 24% 18% 

 

 

4.2 Detection of multiple damage 
 

Damage detection via FAM 
Six test cases are selected to demonstrate the performance of multiple damage detection via the 

FAM, as shown in Table 6. The infliction is located randomly in any of the four flange connections 

with severity ranging from 5% to 45%. The first three cases (Cases 1-3) are trained patterns, while 

the 3 remaining cases (Cases 4-6) are untrained patterns. The damage location and severity 

estimated by the FAM are presented in Fig. 10. As shown in the figure, the damage locations and 

severity are recognized correctly via the FAM. 

 

 

 

Fig. 10 Damage detection in the WTT via the FAM 
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Table 6 Test cases for the FAM 

Damaged 

Flanges 

Trained Patterns Untrained Patterns 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1 5% 30% 5% 8% 27% 9% 

2 - - 15% - - 17% 

3 25% 10% 45% 22% 12% 42% 

4 - 15% 40% - 17% 36% 

 

 

Damage detection via MAM 
Six test cases are selected to demonstrate the performance of multiple damage detection via the 

MAM, as shown in Table 7. The infliction is located randomly in any of the four flange 

connections with severity ranging from 5% to 42%. The first three cases (Cases 1-3) are trained 

patterns, while the 3 remaining cases (Cases 4-6) are untrained patterns. The damage location and 

severity estimated by the MAM are presented in Fig. 11. As shown in the figure, the damage 

locations are recognized correctly, meanwhile, the damage severities are estimated around true 

values via the MAM. 

 

 

Fig. 11 Damage detection in the WTT via the MAM 

 
Table 7 Test cases for the MAM 

Damaged 

Flanges 

Trained Patterns Untrained Patterns 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1 15% 20% 5% 8% 27% 9% 

2 - - 15% - - 17% 

3 25% 10% 25% 22% 12% 42% 

4 - 15% 35% - 17% 36% 

517



 

 

 

 

 

 

Cong-Uy Nguyen, Thanh-Canh Huynh and Jeong-Tae Kim 

5. Conclusıons 
 

In this study, damage detection of a wind turbine tower (WTT) model using vibration-based 

artificial neural networks (ANNs) was presented. At first, a vibration-based ANNs algorithm was 

designed for damage detection in the WTT model. The ANNs architecture consisted of an input, an 

output, and hidden layers. Modal parameters of the wind turbine tower such as mode shapes and 

frequencies were utilized as the input and the output layer composes of element stiffness indices. 

Next, the finite element model of a real wind-turbine tower was established as the test structure. 

The natural frequencies and mode shapes of the test structure were computed under various 

damage cases to generate training patterns. Finally, the ANNs were trained using the generated 

training patterns and employed to detect damaged elements and severities in the test model. 

The first three natural frequencies in the along-wind and cross-wind directions were employed 

for the frequency-based ANNs. Meanwhile, only the first three mode shapes in the along-wind 

were employed for the mode shape-based ANNs. The structural damages were introduced as the 

reduction of element stiffness in the WTT. In case of single damage, the infliction was simulated 

randomly at any segment in total 71 locations; whereas multiple damages only located at 4 flange 

connections. The designed vibration-based ANNs were successful in indicating single-damage as 

well as multi-damage locations in the WTT structure. However, the structural damage severity was 

only identified correctly via the frequency-based method while the remaining ANNs estimated 

infliction severity around the true values for all cases. It is noted that the frequency-based ANNs 

were quite better than mode shape-based ANNs in damage location and severity estimation. Future 

studies remain to evaluate the accuracy of the FE model by comparing with the experimental result, 

and to detect damage below 5% severity in the WTT. 
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