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Abstract.  This paper presents a comparison of the black-box and the physics based derived gray-box 
models for subspace identification for structures subjected to support-excitation. The study compares the 
damage detection capabilities of both these methods for linear time invariant (LTI) systems as well as linear 
time-varying (LTV) systems by extending the gray-box model for time-varying systems using short-time 
windows. The numerically simulated IASC-ASCE Phase-I benchmark building has been used to compare 
the two methods for different damage scenarios. The efficacy of the two methods for the identification of 
stiffness parameters has been studied in the presence of different levels of sensor noise to simulate on-field 
conditions. The proposed extension of the gray-box model for LTV systems has been shown to outperform 
the black-box model in capturing the variation in stiffness parameters for the benchmark building. 
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1. Introduction 
 

The growing concern for the deteriorating conditions of world‘s infrastructure has led to the 

emergence of structural health monitoring as a field of paramount research interest. In the civil 

engineering community, structural health monitoring (SHM) is used to determine the condition or 

health of the structure and determine its suitability to sustain its purpose in the future. Many major 

SHM technologies are being implemented all over the world for assessing the performance of 

large scale civil infrastructure (Nagarajaiah and Erazo 2016). System identification plays a 

fundamental role in structural health monitoring since it is the tool which is used to create a 

mathematical model of a structural system, using measured data from the same structure (Ljung 

1999). This mathematical model of a monitored structure, can show notable differences during 

different stages of its lifespan. These differences can be used to quantify and localize the damage 

in the structure, which helps in devising a suitable plan for retrofitting. 

Introduced by Overschee and Moor (1994), subspace system identification emerged as a 

promising technique in the control theory community. Since then, the method has been popularly 

used in system identification in the control theory community. The method has gained popularity 

in the civil engineering community mostly because of its ability to determine the mathematical 
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model of a structural system directly from experimental data, without the requirement of an 

explicit canonical parameterization. The use of ambient vibrations for monitoring the health of 

structures is very popular in civil engineering and vibrations due to ground motion is one of the 

most commonly studied problems (Borsaikia et al. 2011). Subspace identification, being an 

input-output based technique, is particularly popular for support-excited problems because the 

input ground motion is easily measurable. Since subspace identification is essentially a black-box 

data-driven approach, numerous studies have been done to render a physical interpretation to the 

state-space solution for the extraction of stiffness parameters. Xiao et al. (2001) proposed a 

technique to extract physical system matrices from a minimal realization, with prior knowledge of 

the structure‘s mass. Lus et al. (2003) suggested a transformation that maps the arbitrary 

state-space solution to one consistent with the symmetric eigenvalue problem. Caicedo et al. (2004) 

proposed a technique to extract stiffness parameters from the natural frequencies and mode shapes 

of a structure by solving an overdetermined system of equations through the least-squares 

approach. All these methods, however, relied on an indirect approach to obtain the stiffness 

parameters from the state-space matrices. Kim and Lynch (2012) proposed a direct method of 

extracting the stiffness parameters of a structure from the arbitrary state-space solution through a 

novel observability canonical form conversion of the system matrices. Their method is not only 

computationally efficient, but also succeeds in giving a physical interpretation to the arbitrary 

state-space solution obtained from subspace identification. This method, termed as the gray-box 

model, extended subspace identification into the realm of SHM.  

Although subspace identification was primarily developed for linear time-invariant (LTI) 

systems, engineers constantly looked for strategies to extend the method for linear time-varying 

(LTV) systems. Verhaegen and Yu (1995) presented some algorithms for the subspace 

identification of LTV systems from an ensemble set of input-output measurements. Their study 

utilized the multivariable output error state space (MOESP) class of subspace algorithms. Liu 

(1997) proposed a subspace-based method for the identification of varying transition matrices 

using an ensemble of response sequences. The varying transition matrix at each instant is 

estimated by the singular value decomposition (SVD) of two consecutive Hankel matrices. Verdult 

and Verhaegan (2002) addressed the major problem of subspace identification for 

parameter-varying systems concerned with the large dimensions of the data matrices involved.  

They suggested the use of the most dominant rows of the data matrices for estimation of the 

model and thus made the technique more computationally efficient. Shi et al. (2007) proposed 

using a series of Hankel matrices constructed directly from the combined input-output 

measurements. The equivalent state-space system matrices are then estimated at each instant by 

consecutively performing SVD of the Hankel matrices. The method showed promising results for 

a two degrees-of-freedom spring-mass-damper system. Marchesiello et al. (2010) introduced the 

so called ‗frozen technique‘ for LTV systems based on the concept of dividing the entire response 

time-history into many windows in which the system is assumed to be time-invariant. This method 

also referred to as the short-time stochastic subspace identification (ST-SSI) uses short time 

windows superimposed and shifted by the sampling period. They also introduced the concept of 

angle variation of subspaces to predict the behavior of the LTV system in the near future. 

After delving deep into the literature, it was found that subspace identification has tremendous 

potential for the identification of LTI systems as well as LTV systems. In this paper, a comparative 

study of the damage detection capabilities of black-box and gray-box models of subspace 

identification has been done for time-invariant and time-varying systems for structures subjected 

to ground acceleration. Although the gray-box model introduced by Kim and Lynch (2012) was 
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primarily for the identification of time-invariant systems, its extension for LTV systems using the 

concept of short-time windows has been shown to possess great potential. A numerically simulated 

model of the IASC-ASCE Phase-I benchmark building (Johnson et al. 2004) subjected to 

support-excitation has been used to compare the two models for different damage scenarios. The 

effect of varying noise levels in the sensors have been simulated to show how the two models 

perform when the data is corrupted by noise. One time-invariant damage case and two 

time-varying damage cases have been investigated using the black-box and gray-box models. The 

time-varying damage cases have been simulated in such a way that the damage occurs in the 

structural system at some instant during the period of application of ground motion, and the 

stiffness parameters change instantaneously. 

This paper is organized as follows: Sections 2 and 3 describe the theoretical background of the 

black-box and gray-box models of subspace identification for LTI systems. Section 4 extends the 

black-box and gray-box models for LTV systems using the concept of short time windows. Section 

5 presents the results obtained for different damage cases on the IASC-ASCE Phase-I benchmark 

building. Finally, section 6 presents our conclusions. 

 

 

2. Theory of subspace identification and the black-box model  
 

2.1 Theory of subspace identification 

 
Subspace identification is based on the principles of linear algebra and geometric projections, 

wherein, the history of outputs from a system are projected onto a space perpendicular to the 

history of the inputs to the system (Shahmedr and Mussa-Ilvaldi 2012). For a system without noise, 

the discrete state-space formulation can be written as 

𝑥𝑛+1 = 𝐴𝑥𝑛 + 𝐵𝑢𝑛 ;        𝑦𝑛 = 𝐶𝑥𝑛 + 𝐷𝑢𝑛                       (1) 

where A, B, C, D are the system matrices,{u} is sequence of inputs given to the system, {y} is the 

sequence of outputs obtained from the system, and x is the n-dimensional unknown discrete state 

vector. The inputs and outputs are arranged in Hankel matrices as follows 

𝑌1|𝑖 =

[
 
 
 
𝑦(1) 𝑦(2)

𝑦(2) 𝑦(3)
⋯ 𝑦(𝑗)

⋯ 𝑦(𝑗+1)

⋮ ⋮
𝑦(𝑖) 𝑦(𝑖+1)

⋮ ⋮
… 𝑦(𝑖+𝑗−1)]

 
 
 

                              (2) 

𝑈1|𝑖 = [

𝑢(1) 𝑢(2)

𝑢(2) 𝑢(3)
⋯ 𝑢(𝑗)

⋯ 𝑢(𝑗+1)

⋮ ⋮
𝑢(𝑖) 𝑢(𝑖+1)

⋮ ⋮
⋯ 𝑢(𝑖+𝑗−1)

]                             (3) 

where i<<j, i.e., the number of rows is much lesser than the number of columns. The unknown 

state sequence matrix 𝑋𝑖 is defined as 

𝑋𝑖 ≡ ,𝑥(1)   𝑥(𝑖+1)     …  𝑥(𝑖+𝑗−1)-                            (4) 

The observability matrix 𝛤𝑖  is defined as 
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𝛤𝑖 ≡ [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−1

]                                       (5) 

The known matrix 𝑊1|𝑖containing the history of the inputs and outputs is defined as 

 𝑊1|𝑖 ≡ [
𝑈1|𝑖
𝑌1|𝑖

]                                     (6) 

Projecting the history of observations 𝑌𝑖+1|2𝑖 onto the subspace perpendicular to the history of 

inputs 𝑈𝑖+1|2𝑖
⊥  gives 

𝛤𝑖𝑋𝑖+1 = ,𝑌𝑖+1|2𝑖 𝑈𝑖+1|2𝑖
⊥ -,𝑊1|𝑖 𝑈𝑖+1|2𝑖

⊥ - 𝑊1|𝑖 =  𝑖+1                    (7) 

where operator ‗/‘ denotes the geometric projection of a matrix on to another matrix, and * is the 

pseudo-inverse. Performing singular value decomposition (SVD) of  𝑖+1 gives 

 𝑖+1 = 𝑃𝑆𝑉 = [

𝑃1
𝑃2
⋮
𝑃𝑖

] [

𝑠1 0 ⋯ 0
0 𝑠2 ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝑠𝑛

] ,𝑣(1) 𝑣(2) ⋯ 𝑣(𝑗)-                  (8) 

where P and 𝑉𝑇 are orthogonal matrices and S is the diagonal matrix containing the singular 

values for a system of order n. For the singular value decomposition (SVD) of the  𝑖+1 matrix, 

weighing matrices can be used as follows 

𝑊1 𝑖+1𝑊2 = 𝑃𝑆𝑉                          (9) 

where 𝑊1 and 𝑊2 weighing matrices. Based on the different weighing matrices in Eq. (9), there 

are different classes of subspace identification such as N4SID, CVA, MOESP. Throughout this 

study, N4SID has been used where both the weighing matrices are equal to the identity matrix of 

order equal to the order of  𝑖+1. The estimate of the unknown state vector is obtained as 

�̂�𝑖+1 = 𝑆1 2𝑉                                  (10) 

From the estimate of the state vector �̂�𝑖+1, the parameters of the system (matrices A, B, C, D) 

can be obtained from Eq. (1) by the method of least-squares. The modal parameters are obtained 

from the eigen value decomposition (EVD) of the system matrix A by 𝐴 = ΦΛΦ−1, where Φ is 

the eigenvector matrix and Λ is the diagonal eigenvalue matrix. The discrete-time eigen values are 

converted to continuous time eigen values by the equation 

⅄𝑐𝑖 = ln(⅄𝑑𝑖)  ⊿𝑡                                (11) 

where ⅄𝑐𝑖 is the continuous-time eigen value, ⅄𝑑𝑖 is the discrete-time eigen value and Δt is the 

time step of the digital data acquisition system. The natural frequencies ѡ𝑛𝑖 and damping ratios 

𝜉𝑖  are then obtained from the conjugate pair of complex-valued eigenvalues as ⅄𝑐𝑖 , ⅄𝑐𝑖
 =

−𝜉𝑖𝜔𝑛𝑖 ∓ 𝑖𝜔𝑛𝑖√(1 − 𝜉𝑖
2). The mode shape vector for the i

th
 mode 𝜙𝑖 ∈ 𝐶𝑛 is calculated as  𝐶𝜙.  

The complex mode shapes obtained from subspace identification are converted to normal 

modes (Ranieri and Fabbrocino 2014). The stiffness parameters of the structural system can be 

obtained from this black-box model by solving an over-determined system of equations through 

the least-squares approach as outlined by Caicedo et al. (2004).  
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2.2 Stiffness parameters from black-box model 
 
The characteristic equation for an n-DOF system can be written as 

(𝐾 − ⅄𝑖𝑀)

{
 

 
𝜙𝑖
1

𝜙𝑖
2

⋮
𝜙𝑖
𝑛}
 

 

= {

0
0
⋮
0

}                         (12) 

where 𝐾 and 𝑀 are the stiffness and mass matrix respectively. ⅄𝑖 = 𝜔𝑖
2 is the i

th
 eigen value and 𝜙𝑖 is 

the i
th

 mode shape vector. Eq. (12) is expanded and rearranged as 

⊿𝑖𝑘 = 𝛬𝑖                            (13) 

where 

⊿𝑖 =

[
 
 
 
 
 
  𝜙𝑖

1     𝜙𝑖
1 − 𝜙𝑖

2         0                 ⋯                          0

  0    𝜙𝑖
2 − 𝜙𝑖

1           ⋯               ⋯                         0

⋮
 0
0

⋮
0
0

                
⋮
⋯
⋯

⋮
       𝜙𝑖

𝑛−1 − 𝜙𝑖
𝑛−2

0

  ⋮
𝜙𝑖
𝑛−1 − 𝜙𝑖

𝑛

𝜙𝑖
𝑛 − 𝜙𝑖

𝑛−1]
 
 
 
 
 

      (14) 

𝑘 = {

𝑘1
𝑘2
⋮
𝑘𝑛

}                           (15) 

𝛬𝑖 =

[
 
 
 
𝜙𝑖
1⅄𝑖𝑚1

𝜙𝑖
2⅄𝑖𝑚2

⋮
𝜙𝑖
𝑛⅄𝑖𝑚𝑛]

 
 
 

                        (16) 

Substituting Eqs. (14)-(16), Eq. (13) may be assembled for all n-degrees of freedom & written 

as 

[

⊿1

⊿2

⋮
⊿𝑛

] {

𝑘1
𝑘2
⋮
𝑘𝑛

} = {

𝛬1
𝛬2
⋮
𝛬𝑛

}                       (17) 

The above is an over-determined system and 𝑘  can be calculated by computing a 

pseudo-inverse denoted by * as 

𝑘 = ⊿ 𝛬                           (18) 

The 𝐾𝐵 matrix from the black-box model for a shear-building may then be constructed as 
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𝐾𝐵 =

[
 
 
 
 
𝑘1 + 𝑘2 −𝑘2   ⋯          0               0
−𝑘2 𝑘2 + 𝑘3   ⋯           0                0
⋮
0
0

⋮
0
0

      
 ⋱
⋯
⋯

 ⋮
  𝑘𝑛−1 + 𝑘𝑛

−𝑘𝑛

   ⋮
  −𝑘𝑛
    𝑘𝑛 ]

 
 
 
 

           (19) 

This model of subspace identification described above is termed as the black-box model since 

the system matrices (A, B, C, D) are of an arbitrary nature and represent only one of the infinitely 

possible solutions of Eq. (1). Although the system matrix A obtained from the black-box model 

preserves the modal properties of the dynamic system, it does not represent the physics-based 

system matrix. A novel approach for subspace identification by linking the physics-based 

white-box model to the data-driven black-box model, termed as the gray-box model, was proposed 

by Kim and Lynch (2012) and is described in the subsequent section. 

 

 

3. Gray-box model for subspace identification 
 
The gray-box model of subspace identification for support-excited structures, as the name 

suggests, is derived by explicitly linking the data-driven black-box model, through the 

observability canonical form conversion, to the physics-based white-box model. This conversion 

gives a physically interpretable state-space solution for the dynamic system and facilitates the 

direct extraction of stiffness parameters from the system matrix A.   

 

3.1 Physics-based white-box model 
 
The equation of motion for a multi-degree of freedom system subjected to support acceleration is 

given by 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑢(𝑡) = −𝑀*1+�̈� (𝑡)                (20) 

where 𝑀, 𝐶, 𝐾, represent the mass, damping force and stiffness matrices respectively. In addition, 

𝑢(𝑡) and �̈� (𝑡) represent the relative displacement vector and the support acceleration respectively.  

The state vector is defined as 

𝑥(𝑡) ≡ ,�̈�(𝑡)𝑇  �⃛�(𝑡)𝑇-𝑇                                         
 (21) 

Next, the state-space physics-based model is defined in continuous-time domain as: 

�̇�(𝑡) = 𝐴𝑐 𝑥(𝑡) + 𝐵𝑐 �⃛� (𝑡) 

𝑦(𝑡) = 𝐶𝑐 𝑥(𝑡) + 𝐷𝑐 �̈� (𝑡)                        (22) 

where 

𝐴𝑐 = ⌈
0  

𝑀−1𝐾 −𝑀−1𝐶
⌉  ∈  2𝑛 2𝑛                    (23) 

𝐵𝑐 = [
*0+

− *1+    
] ∈  2𝑛                          (24) 
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𝐶𝑐 = , 0- ∈   𝑛 2𝑛                          (25) 

 𝐷𝑐 = *1+ ∈  𝑛                              (26) 

 

3.2 Gray-box model 
 

The discrete system matrices obtained from the black-box model as 𝐴𝑑  , 𝐵𝑑  , 𝐶𝑑  , 𝐷𝑑 from Eq. 

(1) are converted to the continuous form as 

𝐴𝑐 =
1

⊿𝑡
ln (𝐴𝑑)                          (27) 

𝐵𝑐 = .∫ exp (𝐴𝑐
⊿𝑡

0
𝜏) 𝑑𝜏)/

−1

𝐵𝑑                    (28) 

𝐶𝑐 = 𝐶𝑑  ;   𝐷𝑐 = 𝐷𝑑                       (29) 

For any invertible and non-singular matrix T, the following linear transformation of the system  

matrices (𝐴𝑐  , 𝐵𝑐  , 𝐶𝑐  , 𝐷𝑐) is also a solution of Eq. (22). 

𝐴𝑐
′ = 𝑇𝐴𝑐𝑇

−1 ;   𝐵𝑐
′ = 𝑇𝐵𝑐 ;    𝐶𝑐

′ = 𝐶𝑐𝑇
−1 ;   𝐷𝑐

′ = 𝐷𝑐           (30) 

The observability canonical form conversion requires that this invertible non-singular matrix be 

set equal to the observability matrix 𝛤 i.e., ( T= 𝛤). The observation matrix 𝐶𝑐  is expressed as 

follows 

𝐶𝑐 = [

𝑐1
⋮
𝑐𝑛
]                             (31) 

where 𝑐1… 𝑐𝑛 are n row vectors. With the use of row-wise expressions for 𝐶𝑐  , the observability 

matrix is composed as follows 

𝛤 = [𝑐1
𝑇 ⋯ (𝑐1𝐴𝑐

𝛾−1)𝑇 𝑐2
𝑇 ⋯ (𝑐2𝐴𝑐

𝛾−1)𝑇 ⋯ 𝑐𝑛
𝑇 ⋯ (𝑐𝑛𝐴𝑐

𝛾−1)𝑇]  (32) 

where the observability indices 𝛾 in Eq. (32) are equal to 2. 

After the observability canonical form conversion, the matrix 𝐴𝑐𝑐 is obtained in the form as 

shown 

𝐴𝑐𝑐 =

[
 
 
 
 
 
 
 
0 1
  

0 0
  

0 0
  

0 1
  

⋯ ⋯
⋯ ⋯

0 0
  

⋯ ⋯
⋯ ⋯

0 0
  

⋮ ⋮
⋮ ⋮

⋮ ⋮
⋮ ⋮

0 0
  

0 0
  

⋱
⋱

⋮ ⋮
⋮ ⋮

⋯ ⋯
⋯ ⋯

0 1
  ]

 
 
 
 
 
 
 

 ∈   2𝑛 2𝑛            (33) 

where * corresponds to non-zero elements. Since the order of the states in the experimentally 

identified model is different from that of the pre-defined states in the physics-based model, 

reordering of the states in matrix 𝐴𝑐𝑐 is required. After suitably reordering the states in Eq. (33), 
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the matrix 𝐴𝑐  of the gray-box model is obtained in the form shown below. 

𝐴𝑐 = 0
0  
𝑋 𝑌

1  ∈  2𝑛 2𝑛                     (34) 

Comparing the gray-box system matrix 𝐴𝑐  in Eq. (34) with the physics-based system matrix 

𝐴𝑐  in Eq. (23), the stiffness and damping matrices from the gray-box model are obtained as 

𝐾𝐺 = −𝑀𝑋 

𝐶𝐺 = −𝑀𝑌                             (35) 

 

 

4. Subspace identification for linear time-varying systems 
 

Time-invariant models are generally considered sufficient to evaluate the dynamic properties of 

structures subjected to service loads. However, under certain circumstances, when the loading 

conditions are extreme (such as during earthquakes), the structure may undergo significant damage 

such that the material or geometric properties change considerably with time. Changes in such 

properties leads to a modification in the dynamic characteristics of the system such as stiffness and 

damping. Modelling a system as time-invariant in such cases would lead to significant errors in the 

estimated stiffness and damping parameters of the system. In such cases, a linear time-varying 

(LTV) model will capture the transition in the system more effectively, and should be used to 

assess the condition of the system or to diagnose its failure. For time-invariant systems, the 

stiffness of the system doesn‘t change during the analysis. However, for time-varying systems, the 

stiffness of the system changes during the analysis and this makes the system identification of 

time-varying systems a more challenging problem. In this study, subspace identification of 

time-varying systems is carried out using the technique of dividing the LTV system into a number 

of discrete LTI systems using short time-windows, with the assumption that the system remains 

time-invariant during the length of the chosen time-window (Moaveni and Asgarieh 2012). 

 

 

 

 

Fig. 1 Division of a sample response time-history into short time windows 
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4.1 Subspace identification using short-time windows  
 

Let �̈�𝑎(𝑡) be the absolute acceleration response measured from a certain sensor of an LTV 

system, as shown in Fig. 1. The time-history is divided into a number of segments using time 

windows as shown. The length of each time window (𝑡𝑤 ) is a crucial parameter in the 

identification technique since the window is required to be small enough so that the assumption of 

the LTI system is valid. It is also required to be large enough such that the requirement of a large 

data set 

for subspace identification is also met. Generally, a time window (𝑡𝑤) of at least 300 time 

steps is found to be necessary to meet the requirement of data set length. The time window is 

generally kept the same throughout the process. The time windows overlap with each other and 

there is a time gap (𝑡 ) between the start of one time window and the start of the consecutive 

time window. 

The time gap (𝑡 ) is generally kept at around 20-50 time steps. This time gap is also a very 

important parameter and determines how effectively the variations in stiffness is captured in the 

identification. After dividing the input and output time-histories into such windows, subspace 

identification is performed using both the gray-box and black-box models separately, for each 

window, using the data-set of the respective windows. The identified system parameters from each 

window are assigned to the central point of that window (Marchesiello et al. 2010). 

 

 

5. Numerical example 
 
The numerically simulated model of the IASC-ASCE Phase-I structural health monitoring benchmark 

building has been used for the comparison of damage detection capabilities of the the gray-box and 

black-box models. The structure, as shown in Fig. 2, is a 4-storey, 2-bay by 2-bay steel frame 

structure located in the Earthquake Engineering Research Laboratory at the University of British 

Columbia (UBC). It has a floor plan of 2.5 m × 2.5 m and is 3.6 m high. The members are made of 

hot rolled grade 300W steel with a nominal yield stress of 300 MPa. The columns are all oriented 

to be stronger in bending about the y-axis. The bracings are assumed to have no bending stiffness.  

 

Fig. 2. IASC-ASCE Phase-I structural health monitoring benchmark building 
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The masses of the first, second, third and fourth storeys are 3200 kg, 2400 kg, 2400 kg and 

1600 kg respectively. The building is modelled as an 8-DOF system with one translational degree 

of freedom along each of the two axes (x and y) on each floor. A constant modal damping ratio of 

5% is considered for all the modes. A 30-sec duration El Centro (1940) is applied along both the 

axes simultaneously. The peak ground accelerations are scaled to 0.053 g and 0.044 g along the 

x-axis and y-axis respectively. Eight translational acceleration responses and the two input ground 

accelerations are measured from the model, each sampled at 50 Hz. The output data channels are 

fed through a fourth order Butterworth filter with a cut-off frequency of 25 Hz. To assess the 

damage detection capabilities of the two subspace models, three different damage scenarios have 

been studied. One time-invariant and two time-varying damage cases have been investigated 

wherein, damage is incorporated by changing the stiffness parameters without any change in the 

damping properties of the structure. The mass of the system is assumed to be known and remains 

unchanged throughout the study. To simulate on-field conditions, a zero-mean gaussian 

white-noise is added to the data channels from each sensor. The damage cases are defined as 

follows: 

Time-invariant damage case:  

 Damage Case-I:  No stiffness in the braces of the first storey (i.e., the braces contribute 

in mass, but provide no resistance). 

Time-varying damage case: 

(i) Linear variation 

 Damage Case-II: The first storey stiffness linearly drops by 10% of its initial value from 

time instant t=10s to t=20s. 

(ii) Sudden variation      

 Damage Case-III: The first storey stiffness suddenly drops by 20% of its initial value at 

time instant t=10s. 

 

5.1 Results and discussion 
 
5.1.1 Time-invariant case 
Table 1 shows the percentage errors in damaged first storey stiffness obtained for different 

signal-to-noise ratios (SNR) for the gray-box and black-box models along the x-direction for 

damage case-I. The errors in estimated damaged storey stiffness e are calculated with respect to 

the actual damaged storey stiffness as 

𝑒 =  
|𝐾𝑎− 𝐾𝑖|

𝐾𝑎
 × 100                      (36) 

Table 1 Percentage errors in damaged storey stiffness(case-I) for different noise levels along x-direction 

Noise Level (SNR in dB) Black-Box Gray-Box 

No Noise 0.62 0.56 

120 0.87 0.90 

100 2.54 1.29 

80 5.35 3.58 

60 9.66 5.76 

40 12.38 7.93 
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where 𝐾𝑎  represents the actual damaged storey stiffness and 𝐾𝑖  represents the identified 

damaged storey stiffness. The results obtained from the black-box and gray-box models at lower 

noise levels (upto 120 dB SNR) show similar accuracies. However, as the noise is increased 

(above 80 SNR), the gray-box models provides more accurate results than the black-box model. 

Similar results are obtained along the weaker (y-direction) as well. 

 

5.1.2 Time-varying case 
The identified variation in the damaged storey stiffness for damage case-II and III along the 

x-direction have been shown in Figs. 3 and 4. The sampling period for data acquisition is 0.02s and 

the data is obtained for the entire 30s of the ground motion and thus contains 1500 data points for 

each set of inputs and outputs. A time window length of 𝑡𝑤 = 300 time steps, i.e., 6s and a time 

gap of 𝑡 = 30 time steps i.e. 0.6s has been taken. Since the system is modelled as an 8-DOF 

system, a model order of 16 has been taken for both the black-box and gray-box models. Looking 

at the identified variations in the storey stiffness, it is observed that at lower noise levels both the 

models capture the variations in stiffness reasonably well. However, at higher noise levels, the 

gray-box model clearly gains an upper hand. At noise levels as high as 40 dB SNR, the black-box 

model yields unacceptable results, while the gray-box model still manages to capture the variation 

fairly well. It is also observed that for both the linearly time-variant and abrupt variation cases, the 

estimated stiffness starts to drop earlier than the actual time instant. This is expected since some of 

the time windows will contain data from the damaged as well as undamaged state of the structure. 

The stiffness parameters obtained from these intermediate time windows will naturally show a 

drop from the initial value because the stiffness from each time window is assigned to a time 

instant corresponding to the center of the window. 

 

5.1.3 Effects of changing the time-gap parameter 𝑡  

The estimated variations in stiffness with different time-gap (𝑡 ) parameters for damage 

case-II at a constant noise level of 100dB SNR are shown in Fig. 5. Counterintuitively, a very 

small time-gap does not lead to the best possible results, which can be clearly seen in the 

black-box estimation (Fig. 5(a)). The smallest possible time-gap of a single time step, or the 

sampling period (Marchesiello et al. 2010) of 0.02s produces instability at the instant when the 

stiffness starts to drop. It is also inefficient since it increases the computational effort. On the other 

hand, a very large time-gap of half the window size (Moaveni and Asgarieh 2012), i.e., 150 time 

steps, yields lesser number of stiffness data points and is thus not able to capture the variations 

properly. Hence, the black-box model appears to be very sensitive to the time-gap parameter. The 

gray-box model, however, yields impressively good results (Fig. 5(b)) even with shorter time-gap 

parameters. Similar results were obtained for damage case-III and different noise levels. In all, it is 

observed that the gray-box model is far less sensitive to the time-gap parameter as compared to the 

black-box model. One possible solution to the overlapping problem is to increase the sampling 

frequency, such that sufficient number of data points can be obtained without the requirement of 

any overlapping between successive time windows. For example, if the sampling frequency is 

increased to 300 Hz, a time window of 𝑡𝑤 = 1𝑠 will provide sufficient data points without any 

overlapping. In this study, however, practical conditions have been kept in mind and a reasonable 

on-field sampling frequency of 50Hz has been taken. Hence for such cases, a time-gap of more 

than 10% of the window size is recommended. 
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(a) No Noise (b) 100 SNR  

  

(c) 80 SNR (d) 60 SNR 

 

 

(e) 50 SNR (f) 40 SNR 

Fig. 3 Estimated varying storey stiffness for damage case-II with different noise levels 
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(a) No Noise  (b) 100 SNR 

  
          (c) 80 SNR (d) 60 SNR 

 

 
(e) 50 SNR (f) 40 SNR 

Fig. 4 Estimated varying storey stiffness for damage case-III with different noise levels 
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5.1.4 Possible reasons for the observed results 
The underlying mathematical concepts behind both the black-box model and gray-box models 

are similar to a great extent since both these models are derived from the subspace framework. Yet, 

the performance of these models are noticeably different as far as stiffness estimation is concerned. 

This difference becomes more obvious when the data is highly corrupted by sensor noise. One 

possible reason for this observation can be attributed to the fact that the gray-box model extracts 

the stiffness parameter directly from the state-space solution. The black-box model, however, 

requires intermediate mathematical operations which include computation of mode shapes and 

natural frequencies. The mode shapes obtained are in complex form and need to be converted to 

real modes. Some error creeps in during this conversion. Moreover, the stiffness matrix is 

evaluated through a least-squares approach and this also leads to some error. In the presence of 

high noise, these errors accumulate at each step and this is probably the reason why the gray-box 

model outperforms the black-box model.     

 

6. Conclusions 
 
This paper compares the traditionally used black-box model and the newly introduced gray-box 

model of subspace identification. The mathematical concepts underlying these two models are 

explained in detail. The numerically simulated model of the IASC-ASCE Phase-I benchmark 

building is used to assess the damage detection potential of the two models. The model of the 

benchmark building is analysed for scaled El Centro earthquake excitation. Absolute acceleration 

time-history data is obtained from eight different channels from the structure. To simulate 

real-world conditions, a zero-mean gaussian white-noise is added to the sensor data of each of the 

eight channels. Three different damage scenarios are investigated with different levels of sensor 

noise. Although the two models performed with a relatively similar accuracy in detecting damage 

at low noise levels, the gray-box model has been found to perform better than the black-box model 

at high noise levels for LTI systems. The concept of short-time windows has been utilized to 

  
(a) Black-box  (b) Gray-box 

Fig. 5 Effect of the change in time-gap parameter (𝑡 ) on the estimated storey stiffness (along 

x-direction) (damage case-II) for the black-box and gray-box models at a constant noise level of 100 

dB SNR    
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extend the gray-box model for the identification of LTV systems. For LTV systems, the gray-box 

model managed to capture the stiffness variation with more finesse than the black-box model. At 

very high noise levels of 40dB SNR, the black-box model yielded unusable results. On the other 

hand, the gray-box model still managed to produce reasonably accurate results. The gray-box 

model is also found to be far less sensitive to the user-defined time-gap parameter as compared to 

the black-box model. In all, this study concludes that the gray-box model is a very good candidate 

for assessing instantaneous damage in structural systems.    
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