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Abstract.  Modal parameter identification has received much attention recently for their usefulness in 
earthquake engineering, damage detection and structural health monitoring. The identification method based 
on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural 
frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be 
applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross- 
correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix 
Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates 
of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The 
numerical simulation results show that this technique can identify modal parameters accurately even if the 
noise level is high. 
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1. Introduction 
 

Existence of structural damage in civil engineering infrastructures (Nagarajaiah and Basu 2009, 

Nagarajaiah and Kalil 2016, Nagarajaiah and Yang 2016), such as buildings, bridges, etc., may 

greatly influence the overall performance of the system or even lead to disastrous failures. 

Therefore, detecting the acute damage caused by earthquakes, impacts, or explosions immediately 

after the event or monitoring long-term deterioration due to the environmental and human use is 

necessary and can then be used to assess and plan future use and repairs (Johnson, Lam et al. 

2004). 

The presence of damage in a structure will change vibration modes, such as modal shapes, 

natural frequencies and damping ratios. Changes in the modal parameters may not be the same for 

each mode since the changes depends on the nature, location and severity of the damage (Salawu 

1997). Modal parameter identification thus has a great potential in earthquake engineering, 

structural identification, damage detection and structural health monitoring. Over the past twenty 

years, many structural modal parameter identification methods have been proposed. Detailed 
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literature reviews have been provided by Doebling, Farrar et al. (1996). 

Modal parameters can be identified from measured vibration responses, which are excited by 

artificial external forces or ambient forces in the service environment. Usually, the easy way to 

obtain the vibration parameters is to use structural free responses. The free vibration is generated 

by suddenly terminating external excitations on the structure. The corresponding dynamic 

response is the linear combination of sinusoidal functions with different structural damped natural 

frequencies. The concept of free vibration has recently been extended to the responses induced by 

ambient vibrations, where the external forces are assumed to be stationary and white-noise (James, 

Carne et al. 1995, Caicedo, Dyke et al. 2004). In this case, the auto- or cross-correlation function 

of two outputs has the same form as the free vibration of a linear system. The same phenomenon 

happens to the response of an object due to a burst of electromagnetic energy (Sarkar and Pereira 

1995). 

Many methods have been developed to extract the dynamic characteristics of free vibration 

structures, such as Matrix Pencil Method (Sarkar and Pereira 1995), Eigenvalue Realization 

Analysis (ERA method) (Juang and Pappa 1985), Polynomial Method (or the Prony-type Method) 

(Hua and Sarkar 1989), Hilbert-Huang Transformation Method (Yang, Lei et al. 2003) and so on. 

In general, the Matrix Pencil method is more robust to noise contained in the measurement data. It 

has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is 

also computationally more efficient. It has been shown that for the BPMP (band-pass matrix pencil 

method), the variance of the estimates can come close to the Cramer-Rao bound, when the 

signal-to-noise ratio is greater than 12 dB (Sarkar and Pereira 1995). 

In this paper, the Matrix Pencil technique is used to extract modal parameters of the linear 

structures. The main contribution of this paper is to identify structural natural frequencies and 

modal shapes (if a full set of measurements is available) using the free vibration responses or 

under ambient vibration conditions. The structure is assumed to vibrate freely or subjected to 

ambient forces. Measured data can be displacement, velocity or acceleration responses. These data 

are arranged orderly to form a matrix and SVD decomposition is utilized to filter noisy data. The 

generalized eigenvalue problem can then be solved to obtain the system natural frequencies and 

damping ratios. If dynamic responses of all DOF are measured, the corresponding mode shapes 

can be obtained by the least-square method. The numerical examples showed that this method is 

accurate even if the sampled data are heavily polluted by noise, and its potential for application in 

structural identification is remarkable. 

 
 
2. Formulation of free decay vibration of structures 
 

The dynamic response of free vibration of multi-degree-of-freedom (MDOF) systems can be 

expressed as follows 

 ( ) ( ) ( ) 0Mx t Cx t Kx t                                (1) 

where M, C and K are the system mass matrix, damping matrix and stiffness matrix, respectively. 

They are all n  n matrix. x(t)  R
n
 is the system displacement vector. Moreover, when the system 

is subjected to stationary and white-noise excitations, the dynamic equation of the structure is 

(James, Carne et al. 1995, Caicedo, Dyke et al. 2004) 

  ( ) ( ) ( ) ( )Mx t Cx t Kx t F t                             (2) 
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where F(t) is the stationary and white-noise input vector. Assume the structural parameter matrices 

M, C and K are deterministic. Post-multiplying Eq. (2) by a reference scalar response process xi(s) 

and taking the expected value of each side yield 

 ( ) ( ) ( ) ( )
i ii i

XX FXXX XX
MR CR KR R                            (3) 

where  = t-s, R() denotes a vector of correlation function. Notice the following relations 

 ( ) ( )ABAB
R R

t
 





; and 
2

2
( ) ( )ABAB

R R
t

 





                    (4) 

Recognize that the responses of the system are uncorrelated to the stochastic inputs for   0, 

and assuming that the random vector process x(t), x (t) and x (t) are weakly stationary, 

considering only the homogenous part, we can write Eq. (3) as 

 ( ) ( ) ( ) 0
i i iXX XX XXMR CR KR                             (5) 

It has the same form as the free response of a linear structure. Therefore, the following analysis 

is based on Eq. (1), but the results are the same for both Eqs. (1) and (5). Eq. (1) can be converted 

to the state-space model 

  AXX                                    (6) 

where  
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The solution of Eq. (6) is 
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where j  R
2n

 and j are eigenvectors and eigenvalues of the matrix A, respectively. Since X 

composes of the system displacement x(t) and velocity x (t), where the latter vector is the 

derivative of the former one, j can be split into two parts 
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where j is an n1 complex vectors, then the displacement response of the system can be described 

as 

  
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                               (10) 

Based on Eq. (10), the acceleration response of the system can be expressed as 
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                              (11) 
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Each scalar element of the acceleration vector  x t  is the linear combination of exponential 

functions. Once the eigenvalues j of the system is identified, the natural frequencies and damping 

ratios of the system are 

      
2 2

Real Imagj j jp     and 
  

     
2 2

Real

Real Im ag

j

j

j j

abs 


 





          (12) 

where pj and j are the natural circular frequency and damping ratio of the system, respectively. 

After sampling, the time variable, t, is replaced by kt, where t is the sample period. Set
j t

jz e
 

 , Eq. (11) can be rewritten as 

  
2

2

1

n
k

j j j

j

x k t z 


                               (13) 

In practice, the measured data are always polluted by noise of some level. So we must add 

noise term into the above equation 

        
2

2

1

n
k

j j j

j

y k t x k t n k t z n k t 


                         (14) 

The technique based on Matrix-Pencil-Method (Sarkar and Pereira 1995) can be used to extract 

exponential components zj, even if only one-point measurement is known provided that this 

measurement contains all system information (provided the measurement is not at the node of a 

mode, in which case, that particular pole cannot be extracted). Moreover, it is more powerful than 

Ibrahim Method since it is not much sensitive to noise. After obtaining the values of j, we can 

compute the natural circular frequencies and damping ratios of the system using Eq. (12). This 

method is first introduced by Sarkar and Pereira (1995) to estimate the parameters of a sum of 

complex exponentials. In the following section, we will briefly illustrate this method and then 

apply it to identify modal parameters. 

 
 
3. Application of matrix pencil method to modal parameter identification 

 

In Eq. (14), every component of the vector x (t) is the linear combination of complex 

exponentials. Suppose 
lx  and 

ly  are the lth element of the vector x  and y , respectively. We 

obtain 

      
1

( )
M

k

l l l jl j l

j

y k t x k t n k t R z n k t


                            (15) 

where M = 2n, 2

jl j jlR   , jl is the lth element of the vector j. 

In order to extract these frequencies and damping ratios, the following two matrices: Y1 and Y2 

are defined as (Sarkar and Pereira 1995) 

  

     
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     
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  
 
 
 
 

     

                (16) 
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 
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                (17) 

where L is referred as the pencil parameter. The pencil parameter L is very useful in eliminating 

noise effects contained in the data set. If the noise term in Eq. (15) is ignored temporarily, we have 

the following relationships 

       2 1 0 2Y Z R Z Z                            (18) 

      1 1 2Y Z R Z                             (19) 
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    0 1 2, , , MZ diag z z z                         (22) 

    1 2, , ,l l MlR diag R R R                        (23) 

where diag[] denotes an MM diagonal matrix. 

Based on Eqs. (18) and (19), we obtain 

             2 1 1 0 2Y Y Z R Z I Z                      (24) 

where [I]is the MM identity matrix. When =zi, i=1,2,,M, the ith row of {[Z0]- [I]} is zero, 

and this matrix will be rank deficient. Hence, the parameters zi can be treated as the generalized 

eigenvalue of the matrix pair {[Y2]; [Y1]}. Equivalently, the problem of solving zi can be cast as the 

following eigenvalue problem 

    1 2Y Y x x


                            (25) 

where [Y1]
+
 is the Moore-Penrose pseudoinverse of [Y1]. It is defined as  

         
1

1 1 1 1

H H
Y Y Y Y



                        (26) 

where the superscript “H” denotes the conjugate transpose. Here the above method is the same as 

some version of Ibrahim time domain method (Ibrahim and Mikulcik 1977) if L=M. However, if 
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the data are polluted by noise, L should be much larger than M for data “purification”. 

In the presence of noise, the total-lease-squares Matrix Pencil has been used to combat noise 

(Sarkar and Pereira 1995). In this implementation, the data matrix [Y] is formed from the 

noise-contaminated data y(t) by combining [Y1] and [Y2] as 

   

     

     

     
   1

0 1

1 2 1

1 1

l l l

l l l

l l l N L L

y y y L

y y y L
Y

y N L y N L y N
  

 
 

 
 
 

     

              (27) 

Notice that [Y1] is obtained from [Y] by deleting the last column, and [Y2] is obtained from [Y] 

be deleting the first column. The singular value decomposition (SVD) of matrix [Y] is performed 

as 

      
H

Y U V                               (28) 

where [U]
H
[U]=[I], [V]

H
[V]=[I], and [] is a diagonal matrix containing the singular value of [Y]. 

Tapan and Pereira (1995) proposed that the parameter L is chosen between N/3 to N/2 for efficient 

noise filtering. For these values of L, the variance in the parameters zi, due to noise, has been found 

to be minimal (Hua and Sarkar 1990a, b). Since L and N are very large, the dimension of matrix [Y] 

is very big. But it is not necessary to operate such big matrix. The system order is assumed to be M 

= 2n, thus the “filtered” matrix  V   is constructed so that it contains only M dominant right 

singular vectors of [V] 

    1 2 MV v v v                          (29) 

Based on the definition of [Y1], [Y2] and [Y], we have 

      1 1

H
Y U V                            (30) 

      2 2

H
Y U V                            (31) 

where [V1] is obtained from  V   with the last row of  V   deleted; [V2] is obtained by removing 

the first row of  V  ; and    is obtained from the M columns of [] corresponding to the M 

dominant singular values. Substitute Eqs. (30) and (31) into Eq. (25) and solve the eigenvalue 

problem for j or zj (j = 1,2,…,2n). Note: With the availability of a single floor acceleration 

measurement, only the poles zj (j = 1,2,…,2n) can be obtained, but not all mode shapes (as it 

becomes an under-determined problem Yang and Nagarajaiah 2013); to determine all mode shapes 

all measurements are necessary. If the measurements of all DOF are given and zj (j = 1,2,…,2n) 

have already been identified, Eq. (14) will leads to 
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  

  
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  

 

 
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 
 
 

    
 
 
 

        (32) 

Therefore, the modal shapes 1, 2, …, 2n can be determined by least-square method. 

400



 

 

 

 

 

 

Output only structural modal identification using matrix pencil method 

 

4. Numerical simulations 

 
4.1 Example 1 
 
This numerical example is the same as that used by Yang, Lei et al. (2003). The detailed 

illustration of this model is listed as follows. A three-story shear-type building model is shown in 

Fig. 1. The mass, stiffness and viscous damping of each storey unit are identical with mj=1000kg, 

kj=980 kN/m, cj=2.814 kNs/m, respectively, for j=1,2,3. Suppose that an impact loading is applied 

to the second floor and its magnitude is 1 kN. Hence, the initial velocity is excited. Based on the 

identification method proposed above, all natural frequencies j and the damping ratio j (j=1,2,3) 

can be identified using any one of the measured signals. Here we use the acceleration data of the 

third floor. 

 

 

 

Fig. 1 The three-story shear type building model 

 

 

 

Fig. 2 The simulated signal of the third floor acceleration response with 5% noise level (a) Acceleration 

without noise (b) noise (c) Acceleration with noise 
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Table 1 The identified natural frequencies and damping ratios (L=800, N=1600) 

Mode 

Theoretic Values Identified Values (Rpi=0%) Identified Values (Rpi=5%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

1 2.22 2.0 2.22 2.0 2.21 2.0 

2 6.21 5.6 6.21 5.6 6.21 5.4 

3 8.98 8.1 8.98 8.1 8.97 7.9 

 

 
Table 2 The identified modal shapes (M=2000) 

DOF Theoretic Values Identified Values (Rpi=0%) Identified Values (Rpi=5%) 

1 1      1      1 

1.80   0.45   -1.25 

2.25  -0.80    0.56 

1      1        1 

1.80    0.45    -1.25 

2.25   -0.80    0.55 

1     1      1 

1.81    0.47  -1.245 

2.25   -0.82    0.56 

2 

3 

 

 

The simulated time history 
3 ( )x t  of the third floor acceleration response without noises is 

shown in Fig. 2(a). The noise level associated with each measurement ( )jx t  is expressed by Rpj = 

j / max| ( )jx t | in which j is the root mean square value of the noise j(t) associated with the 

measurement ( )jx t . In other words, Rpj is the ratio of the noise root mean square value to the peak 

signal, which is different from the environmental noise to signal noise. A sample function of the 

noise process v3(t) associated with the measured acceleration 
3 ( )x t  of the third floor is shown in 

Fig. 2(b), in which the noise level is Rp3 = 5% with a bandwidth of 500 Hz. The measured 

acceleration response 
3 ( )y t , which is the sum of Figs. 2(a) and 2(b), is shown in Fig. 2(c). The 

simulation result is listed in Table 1. Here, we choose L=800 and N=1600. Compared to the exact 

result, we can find that the result based on Matrix Pencil Method is very accurate. It seems that the 

Matrix Pencil Method is more robust to noise and the identified results are more close to exact 

values. The amazing thing is that the identified modal parameters will be closer to the exact values 

with the increase of L and N. 

If the acceleration measurement of all 3-DOF are given, Eq. (32) can be used to find the modal 

shapes. They are shown in Table 2. Compared to the exact modal shapes which are directly 

computed from the general eigenvalues problem Kx = Mx, the modal shapes identified here are 

very accurate. Once the modal parameters are identified, the stiffness matrix can be obtained 

provided that the mass matrix remains the same (Yang, Lei et al. 2003). Thus structural health 

monitoring can be achieved by observing the identified stiffness matrix compared with the initial 

one. 

 

402



 

 

 

 

 

 

Output only structural modal identification using matrix pencil method 

 

 

Fig. 3 Picture of benchmark structure 

 
 
4.2 Example 2 
 

The second example is applied to Phase I of the IASC-ASCE Benchmark problem and the 

simulation results are compared to those obtained using NExT-ERA method (Caicedo, Dyke et al. 

2004). The photography of benchmark structure built in UBC is shown in Fig. 3. It is a four-story, 

two-bay by two-bay building. Each bay is 1.25 m  1.25 m in plan and 0.9 m high. Slabs are 

placed at each floor level to simulate the mass of a structure. In some cases, the floor slabs on the 

roof are placed to produce an asymmetric mass distribution. Two finite element models based on 

this structure are developed to generate the simulated response data. The first is a 12 degree of 

freedom (DOF) shear-building model that constraints all motion except two horizontal translations 

and one rotation per floor. The second is a 120-DOF model that only requires that floor nodes have 

the same horizontal translation and in-plane rotation. The columns and beams are modeled as 

Euler-Bernoulli beams in both finite element models. The braces are bars with no bending stiffness. 

In this paper, only 12 DOF model is considered. There are 6 damage patterns considered for the 

benchmark problem. Only damage pattern 2 (in which, all of the braces in the first and third floors 

are removed) is used to verify the proposed method in this paper.  

 
Table 3 The identified results (L=800, N=1600, noise level=10%) 

Mode 

Theoretic Values 
Identified Values  

(Matrix Pencil) 
Identified Values (ERA) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

Frequency 

(Hz) 

Damping 

Ratio (%) 

1 9.40 1.0 9.39 1.0 9.39 1.1 

2 25.6 1.0 25.4 0.98 25.5 0.95 

3 38.7 1.0 38.5 1.0 38.7 1.1 

4 48.0 1.0 47.9 0.91 47.9 0.89 
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Fig. 4 Representative cross-spectral density function and cross-correlation function (Case 1, undamaged) 

 

 
Table 4 The identified modal shapes (M=2000) 

Mode No. 1 2 3 4 

Theoretical Mode Shapes 
j  

1.0 1.0 1.0 1.0 

1.82 0.69 -1.0 -2.63 

2.40 -0.31 -0.69 3.08 

2.64 -1.0 1.21 -2.16 

Identified Mode Shapes j  

1.0 1.0 1.0 1.0 

1.79 0.70 -1.0 -2.56 

2.36 -0.30 -0.72 2.91 

2.65 -1.01 1.21 -2.0 

Accuracy indicator j 0.99995 0.99996 0.9999 0.99977 

 

 

Matlab programs discussed in Johnson, Lam et al. (2003) (see also IASC-ASCE 2003) are used 

to generate simulation data, in which, the sampling time interval is 0.001s, damping ratio for each 

mode is 1% and noise level is 10%. A representative cross-spectral density function and 

cross-correlation function (Case 1, undamaged) are shown in Fig. 4. The acceleration response of 

the fourth floor in y-direction is used to compute natural frequencies. The identified frequencies 

and damping ratios are listed in Table 3. Four frequencies in Table 3 are all in y-direction. Here, 

we choose L = 800 and N = 1600. The coherence parameter j indicates whether the identified jth 

mode shape is close to the true shape. The definition of j is 

  
1/ 2

T

j j

j
T T

j j j j

 


   


 
 

                          (33) 

where the parameter j  is the jth true mode shape, j  is the jth identified mode shape. j can 
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have only the values between 0 and 1. j  1 as j   j  indicates that the realized jth mode 

shape of the system is very close to the true values of the system. Table 4 shows that the identified 

mode shapes using matrix pencil method are very close to the true mode shapes. Matrix Pencil 

Method leads to accurate results and is robust to noise. 

 

 
5. Conclusions 

 

The identification method based on Matrix Pencil Method is very powerful and robust to noisy 

measurement data. In this paper output only modal identification with Matric Pencil Method is 

presented. The method is implemented on a three degree of freedom system and the IASC-ASCE 

Benchmark problem. The identified modal parameters (poles) of the linear system using the 

Matrix Pencil Method have good accuracy. Meanwhile, these parameters can be identified even if 

there is only one DOF measurement provided that this measurement contains all the system 

information; however, to estimate all the mode shapes one would require measurements at all DOF. 

When all DOF measurements are available, all system mode shapes can also be identified. Two 

numerical simulation results demonstrated the effectiveness of the proposed method. The Matrix 

Pencil Method is robust to noise as well.  
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