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Abstract.  Urban rail transit is a critical infrastructure system that supports urban economic and social development. 
It has a significant mass transportation capacity while enables environmental benefits. Public transport is a way to 
resolve large-scale urban road traffic problems and contributes towards sustainable development. However, with the 
operations of railway vehicles on curves, unbalanced and undulated wears often appear on rails, especially on the low 
rail. This rail surface defect, so-called ‘rail corrugation’, directly affects the service life of rolling stocks and track 
components. The high-frequency vibrations caused by train-track interaction over rail corrugations also impair 
passenger ride comfort and generate excessive noises. In severe cases, the defects may even endanger the safe 
passage of a railway vehicle. In practice, rail corrugation has brought huge challenges to the reliable operations and 
maintenance of railway networks. With the continuous expansion of railway lines and the increasing traffic demands, 
any existing rail corrugation test method is not enough to meet the actual needs of track maintainers to promptly 
identify and mitigate rail surface defects. Therefore, this investigation aims to establish a new technique to prognose 
and classify rail corrugations efficiently and effectively. This study adopts D-track dynamic simulation package to 
obtain over thousands of vibration data in the form of axle box accelerations from train-track interactions under 
different conditions. Neural network models have been developed to recognize the rail corrugations and then classify 
their severity to aid the planning and prioritization of rail track maintenance activities. The models have been trained 
and tested using the vibration data, achieving the accuracy of over 90%. The optimal model has then been 
highlighted. The investigation has demonstrated the potential of the neural network to detect and classify rail 
corrugations, which can be used practically for curved track condition monitoring and maintenance planning. 
 

Keywords:  rail corrugation; dynamic analysis; artificial neural network; machine learning; monitoring; 
maintenance 
 
 
1. Introduction 

 
In the process of urban development, cities at different scales and stages of development have 

different requirements for urban transportation. This means there is an urgent need for 
transportation technology and transportation tools that can meet development needs. Urban rail 
transit has the distinctive characteristics of large passenger flow, high speed, high efficiency, high 
safety, punctuality, and environmental friendliness. This series of advantages have attracted the 
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attention of government agencies in various countries. Urban rail transit plays a vital role in 
solving the problems of sustainable development of cities, such as traffic congestion, energy 
consumption, and environmental pollution. At the same time, it also plays an important role in 
people’s daily travel life (Li 2014). 

During the development of urban rail transit (Cao et al. 2016), it is extremely important to 
ensure continuous operation and maintenance of the railway infrastructure system such as 
embankment (Zhang et al. 2018), ballast (Ngamkhanong et al. 2017), sleeper (Kaewunruen 2014), 
or railway bridge (Xia et al. 2014, Ajmal and Mohammed 2018). The monitoring of the structural 
health of railway infrastructure systems is one of the main challenges in railway maintenance and 
operation, especially in underground trains or subway systems. As the public has a huge demand 
for faster and more frequent train services, the time for railway personnel and track maintainers to 
inspect and maintain railway infrastructure is extremely limited. The time without trains, in the 
middle of the night, in various countries is not sufficient for railway personnel to fully inspect and 
maintain the railway. For example, the track access availability is around 3 hours in Tokyo, 1-2 
hours in Hong Kong, and perhaps 5 minutes in London (Kaewunruen and Mohammed 2018). In 
some places, railway operations may be suspended for large-scale maintenance work. The 
continuous operation and maintenance of railways is a huge challenge in their development. 

Rail corrugation is a major type of rail surface damages often found on curved tracks. It is a 
periodic wave-like irregularity that appears along the longitudinal surface of the rail (i.e., low rail). 
The rail corrugation needs to be managed by rail grinding and polishing activities, in order to 
enable smooth ride comfort and lower noise radiation. The severity of rail corrugations is the key 
parameter for track maintenance planning and prioritization. If the size of rail surface defect is 
relatively small in depth, the maintenance regime such as grinding can be performed quickly 
without too much effort (e.g., within 3 hours of trackwork or track possession). On this ground, the 
early classification of rail corrugations can dramatically improve the track maintenance program. 
With the continuous expansion of railway lines and the continuous increase in labour costs, 
existing track corrugation testing equipment in the field is not sufficient to meet the actual needs of 
railway maintenance personnel to carry out necessary track inspections for rail defect 
classifications (Kaewunruen et al. 2019). Therefore, it is very important to develop a more feasible 
and effective monitoring method that can guide track maintenance engineers to plan and prioritise 
track maintenance work. This study will evaluate the use of artificial neural network to aid rail 
corrugation monitoring and classification. The use of dynamic vehicle-track interactions in the 
form of axle box acceleration (generally obtained from train ride measurements) has been used to 
explore the new alternative method for prognosing rail corrugations. This study uses the D-track 
dynamic simulation package to obtain the vibration data of the vehicle-track systems under 
different conditions. Classifications of the rail corrugation through neural network training are 
demonstrated to achieve the goal for rail corrugation monitoring and classification. 

 
 

2. Rail corrugation 
 
2.1 Corrugation background 
 
Rail corrugation refers to a type of rail head defect that appears on the surface of the rail after it 

has been used in the railway system, which has periodic characteristics and resembles a wave 
shape. It is commonly observed in curved tracks that cater all kinds of train services, ranging from 
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Fig. 1 Rail corrugation (Liu 2018)
 
 

light rail, metro, suburban, freight and highspeed rail systems. The rail is initially non-corrugated 
but has a certain degree of roughness. This initial roughness combined with other factors (such as 
traction, creep and friction characteristics at the wheel-rail contact) will stimulate dynamic loads 
and cause certain damage to the rail, thereby changing the initial profile (Grassie and Kalousek 
1993). The wavelength and degree of severity depend on the rail structure, rail geometry, traction 
system, rail vehicle performance, and wheel-rail interaction. 

 
2.2 Ra l corrugat on format on theory 
 
The self-excited vibration theory was proposed by Suda (1991). Matsumoto et al. (2002) 

argued that the generation of rail corrugation is related to the natural frequency of the vertical 
vibration of the wheelset. Clark et al. (1988) presented that wheelset lateral stick-slip vibration 
theory. On a small radius curve, when the frequency of the sleeper is close to the lateral natural 
frequency of the wheelset, the wheelset will vibrate laterally, resulting in periodic relative sliding. 
This will cause corrugations. At the same time, the wavelength is equal to an integer multiple or 
fraction of the sleeper pitch (Vadillo et al. 1998). Chen et al. (2010) proposed that friction-coupled 
self-excited vibration causes rail corrugation. This theory states that when the slip force between 
the wheel and rail reaches a saturated state, friction coupling self-excited vibration between the 
wheel and rail will occur, resulting in rail corrugation. The rail corrugation wavelength obtained 
from this viewpoint is basically the same as the actual line rail corrugation wavelength. 

 
2.3 The hazards of ra l corrugat on 
 
When a train passes through a corrugation part of curved track section, such defect will cause 

severe vibrations of the wheelset, bogie and body. Reciprocally, track components are excited 
excessively, radiating noises and impairing ride comfort. This kind of vibrations not only seriously 
affects the comfort of subway vehicles, but also aggravates the damage of vehicles and track 
components, shortens the service life of railways, wheels and related equipment, and increases 
maintenance costs. In a study by Remennikov and Kaewunruen (2008), the secondary vibration of 
the ground was regenerated in the surrounding environment (such as nearby buildings and 
structures). Rail corrugations can also produce unpleasant noise. If the railway corrugation is 
severe, it will also cause the rails and axles to break, which will affect driving safety. On this 
ground, early warning of rail corrugation can help track maintainers to develop suitable 
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preventative maintenance programs, which are very timely and cost effective. If the defect is 
severe, major corrective maintenance can be time consuming and very costly. 

 
2.4 Current status of corrugat on detect on technology 
 
At present, the methods for detecting rail irregularities are mainly divided into two categories, 

which are divided into the string measurement method and the inertial reference method (Zhang 
2007). The string measurement method has some flaws. The “baseline” used as a reference for 
measurement is in a state of change along with the level of rail irregularities. For sinusoidal 
irregularities, the transfer function ratio (the ratio between the measured value and the actual value) 
is not equal to 1 but is between 0 and 2. When measuring non-sine waves, the orbital irregularities 
may have a transfer function ratio greater than 2 (Xu and Dai 2007, de Melo et al. 2020, 
Kaewunruen et al. 2021). Therefore, the string measurement method cannot truly and reliably 
reflect the irregularities of the rail. Many countries have also gradually transitioned from the 
original string test method to the inertial reference method (Luo et al. 2006). 

According to the above two methods, the actual detection methods in different countries are not 
the same (Zhang 2007). Japan measures the original basic data through the three-point chord 
measurement method and obtains railway irregularities after compensation and correction of the 
data (Yzawa and Takeshita 2002). Russia divides the vehicle speed into three different grades and 
uses the axle box acceleration integration method to carry out the quadratic integration, and then 
filters the low-frequency signal components that affect the detection results through a filter. 
Australia directly integrates the collected axle box acceleration signal twice to obtain the 
amplitude of the railway irregularity displacement. In the United States, both the string 
measurement method and the inertial reference method are used. In order to obtain data on the 
uneven surface of the railway, Germany directly uses photoelectric scanning technology. This is of 
great significance for improving the efficiency of rail corrugation testing and saving costs. 

However, before conducting a more detailed study of rail corrugation in the field, the first thing 
that needs to be tackled is how to detect rail corrugation quickly and effectively in order to reduce 
the railway sector’s capital investment in human and material resources. 

Rail corrugation is a common defect found in the rail. It can be detected by visual inspection, 
image processing, or dynamic responses. However, using machine learning techniques to detect 
and classify corrugation is new. This study aims to apply machine learning to detect corrugation 
because it is fast and cost-efficient. In addition, this study uses accelerations as features to do 
predictions which easy to collect using axle box acceleration sensors so there is no or little 
additional cost for equipment installation. 

 
 

3. Train vibration data using multibody simulations 
 
The main function of the railway track dynamics analysis model is to couple the various 

components of the vehicle and the track structure to determine the influence of the load on the 
stress, strain and deformation of each component, and to correctly express their complex 
interactions. Such a model provides a basis for predicting orbital performance and serves as a 
technical means for orbital design and maintenance (Oscarsson and Dahlberg 1998). 

Cai (1994) studied a detailed model of track dynamics and wheel-rail interaction by initially 
creating the D-track for dynamic simulation. Iwnick (1998) set the benchmark (Manchester 
benchmark) in 1998. Steffens (2005) used the Manchester benchmark parameters to compare the 
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Table 1 The input and the output of the D-track software 
Input 

Output 
Track Vehicle Irregularity Variety 

• Rail type 
• Axial force 
• Sleeper type 
• Spacing 
• Track bed 

stiffness 
• Track bed 
• Damping 
• Pad damping 
• Pad stiffness 

• Speed 
• Tare mass 
• Carry mass 
• Primary suspension 

stiffness 
• Primary suspension 

damping 
• Wheel dimension 
• Hertzian contact 

coefficient 

• Corrugation 
• Dipped joint 
• Dipped weld 
• Peaked weld 
• Arbitrary 

profile 
• Wheel flat 

 
 
 

• Speed 
• Irregularity length 
• Irregularity depth 
• Center of 

irregularity 
• Rail analysis 

position 
• Sleeper analysis 

position 
 

• Acceleration 
• Force and 

pressure 
• Moment and 

shear 
• Bending moment 
• Displacement 

 
 
 

 
 

performance of various dynamic simulation programs and developed a user interface for D-track. 
However, the original D-track still had problems, because its numerical results are often lower. 
Leong (2007) revised the procedure on the basis of Steffens’ Manchester benchmark and obtained 
the new Benchmark. Leong verified the revised results, and the difference between the numerical 
results is less than 15% (Kaewunruen and Chiengson 2018). 

In the D-track software, through adjusting the parameters, different railway models are 
designed, and through operation, the DARTS (Dynamic Analysis of Track Structure) model 
automatically calculates a variety of output parameters during the simulation process. In this study, 
the package has been used to obtain over a thousand of train vibration data (i.e., axle box 
acceleration). The aim is to reuse the axle box accelerations that are commonly measured onboard 
a train to aid the monitoring and classification of rail corrugations on curved tracks. 

In order to design a suitable railway model, each component needs to be designed safely and 
meet the requirements. The choice of all track components is important. D-track has parameter 
libraries for various components of vehicles and tracks. A parameter library has been established 
for various components in the system, including vehicles, bogies, wheels, tracks, rail pads, 
sleepers and track bed materials. By selecting parameters and inputting data in the “Track”, 
“Vehicle”, “Irregularity”, “Analysis” and “Comments” windows of D-track, different railway 
models can be designed. In this study, AS50, AS53, AS60 type track and 106t Coal Wagon, 
Manchester, RQTY Container Wagon type vehicles are used. Meanwhile the vehicle speeds are set 
at 60, 70, 80, 90, 100, 110, and 120 km/h. 

Kaewunruen (2018) shown different intervals often experience “unbalanced” velocities, which 
usually lead to “short-distance” low-orbit corrugations. At an unbalanced speed, the train travels at 
a speed that causes a centripetal force. The wheels acting on the lower rail will bear more weight 
or load than the wheels on the outer rail. Because the wheel-rail interaction produces additional 
dynamics and bending effects, the rail will be subjected to excessive wheel load and wear. Track 
ripple defects on steep curves are often related to the 30 mm to 100 mm wavelength band. In this 
study, the wavelengths of rail corrugation are set at 30, 40, 50, 60, 70, 80, 90, and 100mm. At the 
same time, in order to compare with the rail without corrugation, a model without corrugation will 
be established. 

As shown in Table 2, the general parameters of each part of the railway track structure are 
combined to build 567 different models. 
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Table 2 Selection and input of different parameters of D-track railway model 
Parameters Input 
Track type AS50, AS53, AS60 

Vehicle type 106t Coal Wagon, Manchester, RQTY Container Wagon 
Vehicle speed (km/h) 60, 70, 80, 90, 100, 110, 120 

Wavelength (mm) 0, 30, 40, 50, 60, 70, 80, 90, 100 
 
 
Liu (2018) found the relationship between track irregularity in irregularity amplitude, 

wavelength and vehicle speed. The detail can be shown as follows: 
 
(1) On the premise that the vehicle speed and the wavelength of the irregularity are kept 

constant, increasing the amplitude of the irregularity will result in greater dynamic response such 
as the force between the wheel and the rail and the vehicle vibration. 

(2) Under the premise that the amplitude of the irregularity and the speed of the vehicle are 
kept constant, the wavelength of the irregularity becomes shorter, and the impact will be larger and 
non-linear. At the same time, the influence of the periodic resonance wavelength and the sensitive 
wavelength will be more obvious. 

(3) Under the premise that the irregularity amplitude and the irregularity wavelength are kept 
constant, as the vehicle speed increases, its nonlinearity increases and its influence increases. 

 
 

Fig. 2 The acceleration output of D-track software
 
 

(a) (b)
Fig. 3 The chosen acceleration output of D-track software (a) Examples of measurement point; 

(b) Measurement points in a sample

TIME(s)  X-RAIL(m)  ACON1  ACON2  A-RAIL  A-R.S.  A-TY
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5.00E-04 6.67E-03 3.91E-02 0.00E+00 -1.54E-02 -1.04E-02 -8.94E-03
1.00E-03 1.50E-02 -3.32E-02 0.00E+00 2.56E-02 4.12E-03 4.99E-03
1.50E-03 2.33E-02 1.15E-03 0.00E+00 -2.10E-02 -4.62E-03 -3.65E-03
2.00E-03 3.17E-02 7.54E-02 0.00E+00 -6.64E-03 -1.49E-02 -1.29E-02
2.50E-03 4.00E-02 2.02E-02 0.00E+00 1.98E-02 6.30E-03 7.73E-03
3.00E-03 4.83E-02 1.08E-01 0.00E+00 -3.48E-02 -1.32E-02 -1.07E-02
3.50E-03 5.67E-02 1.34E-01 0.00E+00 1.88E-02 -1.22E-02 -9.85E-03
4.00E-03 6.50E-02 4.87E-02 0.00E+00 1.62E-02 1.17E-02 1.30E-02
4.50E-03 7.34E-02 3.58E-02 0.00E+00 -5.90E-02 -2.58E-02 -2.27E-02
5.00E-03 8.17E-02 -8.44E-02 0.00E+00 3.25E-02 -1.05E-02 -8.92E-03
5.50E-03 9.00E-02 -2.02E-01 0.00E+00 3.54E-02 2.49E-02 2.42E-02
6.00E-03 9.84E-02 -2.25E-01 0.00E+00 -5.46E-02 -1.42E-02 -1.30E-02
6.50E-03 1.07E-01 -2.50E-01 0.00E+00 2.06E-02 -3.24E-03 -3.40E-03
7.00E-03 1.15E-01 -1.88E-01 0.00E+00 2.97E-02 2.17E-02 1.93E-02

TIME(s)  X-RAIL(m)  ACON1  ACON2  A-RAIL  A-R.S.  A-TY
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5.00E-04 6.67E-03 3.91E-02 0.00E+00 -1.54E-02 -1.04E-02 -8.94E-03
1.00E-03 1.50E-02 -3.32E-02 0.00E+00 2.56E-02 4.12E-03 4.99E-03
1.50E-03 2.33E-02 1.15E-03 0.00E+00 -2.10E-02 -4.62E-03 -3.65E-03
2.00E-03 3.17E-02 7.54E-02 0.00E+00 -6.64E-03 -1.49E-02 -1.29E-02
2.50E-03 4.00E-02 2.02E-02 0.00E+00 1.98E-02 6.30E-03 7.73E-03
3.00E-03 4.83E-02 1.08E-01 0.00E+00 -3.48E-02 -1.32E-02 -1.07E-02
3.50E-03 5.67E-02 1.34E-01 0.00E+00 1.88E-02 -1.22E-02 -9.85E-03
4.00E-03 6.50E-02 4.87E-02 0.00E+00 1.62E-02 1.17E-02 1.30E-02
4.50E-03 7.34E-02 3.58E-02 0.00E+00 -5.90E-02 -2.58E-02 -2.27E-02
5.00E-03 8.17E-02 -8.44E-02 0.00E+00 3.25E-02 -1.05E-02 -8.92E-03
5.50E-03 9.00E-02 -2.02E-01 0.00E+00 3.54E-02 2.49E-02 2.42E-02
6.00E-03 9.84E-02 -2.25E-01 0.00E+00 -5.46E-02 -1.42E-02 -1.30E-02
6.50E-03 1.07E-01 -2.50E-01 0.00E+00 2.06E-02 -3.24E-03 -3.40E-03
7.00E-03 1.15E-01 -1.88E-01 0.00E+00 2.97E-02 2.17E-02 1.93E-02
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Liu (2018) established a dynamic model for the relationship between the frequency of rail 
corrugation irregularities and the frequency of vibration acceleration and concluded that the 
frequencies of the two are equal. Based on this principle, the rail corrugation characteristics can be 
studied by studying vibration acceleration. Through D-track, accelerations of wheel/rail contact, 
rail and sleeper can be obtained, as shown in Figs. 2 and 3. 

In this study, the acceleration of wheel-rail contact1 will be used for research and neural 
network training. 

 
 

4. Artificial neural network 
 
4.1 Development of art f c al neural network 
 
Since the vibration acceleration data can be obtained, an artificial neural network can be 

established for training and testing. Artificial neural networks have been widely used in the fields 
of pattern recognition, signal processing, intelligent control, and system modelling due to their 
advantages of distributed storage of information, parallel processing, and self-learning capabilities. 
This is good for processing problems which need to consider many factors and inaccurate 
information (Tiğdemir 2014). For these reasons, this study adopts the artificial neural network 
method for predictive model development. 

Artificial Neural Network (ANN) is based on the basic principles of neural networks in biology 
(CSDN 2019). It simulates the processing mechanism of the human brain’s nervous system to 
complex information. A neural network is a computational model consisting of a large number of 
nodes (or neurons) connected to each other. These neurons are distributed in a series of units. 
There are three main types of processing units in the network: input units, output units and hidden 
units. The input unit receives various forms of information from the outside. This is the data that 
the neural network is designed to process or learn. Data from the input unit passes through one or 
more hidden units. The job of the hidden unit is to convert the input into content that the output 
unit can use. Most neural networks are fully connected from one layer to another. These 
connections are called ‘weighted’. The larger the number, the greater the influence of one unit on 
another, similar to the human brain. The other end of the network is the output unit, which is 
where the network responds to the given and processed data. Parallel and distributed information 
processing functions are obtained through network conversion and dynamic behavior (Jain et al. 
1996). 

 
4.2 Neural network tra n ng 
 
Any artificial neural network (ANN) model can be established using a designed computation 

architecture with various number of layers and hidden nodes. Generally, a specific architecture of 
ANN can yield certain level of accuracy and computation performance. In this study, a number of 
ANN architectures (forming various ANN models) are assessed to identify the optimal ANN 
model that can yield the best outcome. 

 
4.2.1 Training of the first neural network model 
The purpose of this study is to monitor rail corrugation, so this study first uses a single output 

layer corresponding to the corrugation value of the model. The input layer contains 1,117 nodes 
which are accelerations from D-track simulation as shown in Figs. 2 and 3. 567 D-track model 
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Fig. 4 Neural network of the first NN model (The number of hidden layers = 10) 
 
 

 
(a) The number of hidden nodes = 10 (b) The number of hidden nodes = 11 

 

 
(c) The number of hidden nodes = 12 (d) The number of hidden nodes = 13 

 

(e) The number of hidden nodes = 14

Fig. 5 The degree of fit of the first NN model (the number of hidden nodes = 10, 11, 12, 13, 14) 
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samples are analyzed through railway track dynamics, and 1,117 wheel-rail contact accelerations 
were obtained at 1,117 different time nodes. The output of the first model is the size of corrugation. 

When designing neural networks, the main emphasis is on experimentation and discussion of 
multiple model schemes. In the process of selecting the hidden layer, if the number of hidden 
nodes is too few, the network cannot have the necessary learning ability and information 
processing ability. On the contrary, if it is too much, it will not only greatly increase the 
complexity of the network structure, but the network is more likely to be overfitting, and the 
learning speed of the network will become very slow. In the process of neural training, only a 
small number of hidden nodes are selected first, and then the number of hidden nodes is 
continuously increased until satisfactory performance is obtained. The training process is 
performed to repeatedly adjust the weight and threshold according to the error between the target 
value and the network output value, until the error reaches a predetermined value (Karsoliya 2012). 

Initially, the training data set containing 397 random parts (70%) among the 567 available parts 
is selected as the learning stage. In the remaining 30% of the data set, 15% is used to verify the 
model, and the other 15% is used to test the model. 

In this study, the different numbers of hidden nodes are tired. It is found that R is 0.57 when the 
number of hidden nodes is 1 and the accuracies increase when the number of hidden nodes 
increases up to 15 which R is 0.94. After that, the accuracies decrease significantly when the 
number of hidden nodes is more than 20 which might be resulted from the overfitting. Therefore, 
to demonstrate the results of the models in this study, the number of hidden nodes is set up from 10 
nodes and increased continuously, and the correlation coefficients of the test are compared to 
select the optimal number of hidden nodes. 

When the number of hidden nodes = 10, the neural network in Fig. 4 can be obtained. 
Through neural network training, the test correlation coefficient results are as Fig. 5. 
Through continuous experimentation, it can be found that when the number of hidden nodes is 

13, the correlation coefficient of the test is the highest. 
 
4.2.2 Training of the second neural network model 
In this study, when analyzing the dynamics of the railway track through D-track, not only the 

rail corrugation of the track surface is defined, but also parameters such as speed, track type, and 
vehicle type are selected. Based on the previous NN model, a new combined model containing two 
outputs is proposed. The input is the same as the first model. The first output is still the rail 
corrugation value of the corresponding model. The second output is the rolling stock’s speed of the 
corresponding model. 

As in the first model, the numbers of hidden nodes are tired. To demonstrate the performance 
of the model, the number of hidden nodes is set to start from 10, the following neural network can 
be shown in Fig. 6. 

Through neural network training, the test correlation coefficient results are shown in Fig. 7. 
 
 

Fig. 6 Neural network of the second NN model (the number of hidden nodes = 10) 
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(a) The number of hidden nodes = 9 (b) The number of hidden nodes = 10 

 

 
(c) The number of hidden nodes = 11 (d) The number of hidden nodes = 12 

Fig. 7 The degree of fit of the second NN model. (the number of hidden nodes = 9, 10, 11, 12) 
 
 
Because when the number of hidden nodes is 11, 12, the test correlation coefficient is lower 

than the result of the number of hidden nodes of 10. Therefore, this study considers reducing the 
number of hidden nodes, and compares the correlation coefficients of the test. 

Through neural network training, it can be found that when the number of hidden nodes is 10, 
the correlation coefficient of the test is the highest. 

 
4.2.3 Training of the third neural network model 
The comparison of the two models is not sufficient to explain the influence of the output node 

on the correlation coefficient. In order to make the research more rigorous, it will compare the 
third new combination model with three outputs - adding orbital types as the third output. The 
output layer consists of three data nerves, as follows: 

 
Output 1: Rail corrugation value (0, 30, 40, 50, 60, 70, 80, 90, 100) 
Output 2: Vehicle speed (60, 70, 80, 90, 100, 110, 120) 
Output 3: Track type (AS50, AS53, AS60) 
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Fig. 8 Neural network of the third NN model (the number of hidden nodes = 10) 
 
 

 
(a) The number of hidden nodes = 10 (b) The number of hidden nodes = 11 

 

 
(c) The number of hidden nodes = 12 (d) The number of hidden nodes = 13 

Fig. 9 The degree of fit of the third NN model (the number of hidden nodes = 10, 11, 12, 13) 
 
 
 
 
The input layer is the same as the previous two models. When the number of hidden layers = 10, 

the following neural network can be shown in Fig. 8. 
Through neural network training, the test correlation coefficient results are shown in Fig. 9. 
Through continuous experimentation, it can be found that when the number of hidden nodes is 

12, the correlation coefficient of the test is the highest. 
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Table 3 Output layers of these three NN models 
Classification of NN models Output layer 

The first NN model Rail corrugation 
The second NN model Rail corrugation and vehicle speed 
The third NN model Rail corrugation value, vehicle speed and track type 

 
 

Fig. 10 The tests correlation coefficients of the different hidden nodes of the first NN model 
 
 

5. Results and discussion 
 
In the artificial neural network training process, the three possible neural network models have 

achieved excellent results, and the correlation coefficients of the tests are all very high. The first 
NN model has only one output layer of rail corrugation values. This is because, for train vibration 
quantifications, not only the rail corrugation of the track surface is defined, but there are also 
several variables such as speed, track type, and vehicle type. Therefore, parameter variables are 
added to the model to explore the most suitable NN model. The second NN model has two output 
layers, rail corrugation value and vehicle speed. The comparison of the two models is not enough 
to explain the influence of the output layer on the correlation coefficient. Therefore, a third neural 
network model is established, which includes three output nodes of rail corrugation value, vehicle 
speed and track type. For other variables, the three NN models remain consistent. 

The first NN model has only one output layer of rail corrugation values. Through continuous 
experiments, when the hidden layer is 13, the tested correlation coefficient is the highest where R 
= 0.969. 

The second NN model has two output layers, rail corrugation value and vehicle speed. When 
the number of hidden layers is 9, the best result will be displayed, and the tested correlation 
coefficient is the highest where R = 0.951. 

The third NN model includes three output layers of rail corrugation value, vehicle speed and 
track type. Experiments show that when the number of hidden nodes is 12, the tested correlation 
coefficient is the highest where R = 0.953. 

Comparing the results of the hidden nodes of the three NN models, the results show that the 
NN model with one output layer has the best test correlation coefficient. 

On the other hand, the fewer the output layers, the shorter the training time of the artificial 
neural network. The experiment shows that the NN model with only one output layer has the 
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Fig. 11 The tests correlation coefficients of the different hidden nodes of the second NN model 
 
 

Fig. 12 The tests correlation coefficients of the different hidden layers of the third NN model 
 
 

shortest training time. By comparison, it can be found that the first NN model with only one output 
layer of rail corrugation value has the best results, and it is the most suitable NN model for 
monitoring rail corrugation based on this study. 

Moreover, this study also shows that it is not that the more hidden nodes, the greater the 
correlation coefficient R obtained. It is not that the more layers and the more nodes, the better the 
results obtained. However, as the number of hidden layers increases, the model will appear to be 
overfitting and resulting in lower predicted accuracy. While training the neural network, it is 
necessary to consider the number of effective hidden nodes for training to avoid overfitting 
affecting the training results. 

 
 

6. Conclusions 
 
In this study, the D-track software is first used to simulate the railway track dynamics providing 

over a thousand of train vibration data. Through the selection and input of parameters and data 
such as vehicle type, track type, and track surface roughness, 567 railway simulations under 
different conditions are designed. Then through the simulation of D-track software, the 
acceleration of wheel-rail contact is obtained. After obtaining the acceleration of wheel-rail contact, 
Matlab’s artificial neural network is used for training, and three neural network (NN) models with 
different output layers are established. The input layers of the three NN models are all acceleration 
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of wheel-rail contact obtained by D-track software. The output layer of the first NN model only 
has the rail corrugation value. The output layer of the second NN model contains two layers which 
are rail corrugation value and vehicle speed. The third NN model contains three output layers 
including rail corrugation value, vehicle speed and track type. Each NN model obtains the optimal 
test correlation coefficient R of the model by adjusting the number of hidden nodes. Comparing 
the best results of the three models, it is found that the NN model with only one output layer 
containing rail corrugation values is the best. On the other hand, when there are fewer output 
layers, neural network training is faster. In this regard, the NN model with only one output layer is 
also the best. All in all, the most suitable model is the NN model containing only one output node, 
which is the rail corrugation value. 

Most of the rail corrugation detection methods require railway personnel to conduct on-site 
surveys of their tracks within a specific time, and then perform on-site maintenance. These 
methods have great restrictions on the time and location of maintenance. In this study, D-track is 
used to obtain the dynamic simulation of the railway track, and then the artificial neural network is 
used to achieve the purpose of monitoring the rail corrugation status. Such a novel method reduces 
the harsh conditions for monitoring the rail condition. This is a feasible and more effective 
detection method. Practically, the results from this study can be applied by collecting acceleration 
data from axle boxes then applying the developed model to detect corrugation. The novel ANN 
established in this study is not only a very effective diagnostic method for rail corrugation, but also 
can be applied to other railway loss monitoring. Future work will include the commercial 
translation of the neural networks to various field studies. 
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