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Abstract.  Comprehensive understanding of the flood risk assessments via frequency analysis often 
demands multivariate designs under the different notations of return periods. Flood is a tri-variate random 
consequence, which often pointing the unreliability of univariate return period and demands for the joint 
dependency construction by accounting its multiple intercorrelated flood vectors i.e., flood peak, volume & 
durations. Selecting the most parsimonious probability functions for demonstrating univariate flood 
marginals distributions is often a mandatory pre-processing desire before the establishment of joint 
dependency. Especially under copulas methodology, which often allows the practitioner to model univariate 
marginals separately from their joint constructions. Parametric density approximations often hypothesized 
that the random samples must follow some specific or predefine probability density functions, which usually 
defines different estimates especially in the tail of distributions. Concentrations of the upper tail often seem 
interesting during flood modelling also, no evidence exhibited in favours of any fixed distributions, which 
often characterized through the trial and error procedure based on goodness-of-fit measures. On another side, 
model performance evaluations and selections of best-fitted distributions often demand precise 
investigations via comparing the relative sample reproducing capabilities otherwise, inconsistencies might 
reveal uncertainty. Also, the strength & weakness of different fitness statistics usually vary and having 
different extent during demonstrating gaps and dispensary among fitted distributions. In this literature, 
selections efforts of marginal distributions of flood variables are incorporated by employing an interactive 
set of parametric functions for event-based (or Block annual maxima) samples over the 50-years 
continuously-distributed streamflow characteristics for the Kelantan River basin at Gulliemard Bridge, 
Malaysia. Model fitness criteria are examined based on the degree of agreements between cumulative 
empirical and theoretical probabilities.  Both the analytical as well as graphically visual inspections are 
undertaken to strengthen much decisive evidence in favour of best-fitted probability density. 
 

Keywords:  flood; block (annual) maxima; parametric functions; marginal distribution; 

goodness-of-fit 

 
 
1. Introduction 
 

Basin perspective water resources operational planning, the management or either flood-related 

infrastructure designing often demands accurate estimations of the flow exceedance probability or 

                                                      
Corresponding author, Ph.D. Research Scholar, E-mail: macet.shahid@gmail.com 



 

 

 

 

 

 

Shahid Latif and Firuza Mustafa 

design quantiles under the different notations of return periods in the form of joint probability 

distributions, conditional distributions or Kendall‟s distributions or survival functions (Cunnane 

1988, Choulakian et al. 1990, Stedinger et al. 1992, 1993, Bobee and Rasmussen 1994, Calver and 

Lamb 1995, Yue et al. 1999, Yue 2000, Martins and Stedinger 2000, Rao and Hameed 2000, 

Morrison and Smith 2002, Coles 2001, Kartz et al. 2002, Shiau 2003, Salvadori 2004, Zhang and 

Singh 2006, Genest et al. 2007, Salvadori et al. 2011, Reddy and Ganguli 2012a, b, Grimaldi et al. 

2013, Xu et al. 2016, Brunner et al. 2016). Flood is a multidimensional extreme hydro-climatic 

consequence, which can‟t be predicted accurately or precisely through any deterministic or 

physical procedures but, it could be possible to derive their design episodes through inferring the 

probability distributions of the historical catchment streamflow characteristics for assessing the 

hydrologic risk (Bras 1990, Singh and Singh 1991, Goel et al. 1998, Sen 1999, Yue and 

Rasmussen 2002, De Michele et al. 2005, Poulin et al. 2007, Sraj et al. 2014, Fan et al. 2015, Xu 

et al. 2015). Flood frequency analysis or FFA usually comprises an inter-association between 

extreme events quantiles and their non-exceedance probabilities or return periods by fitting 

univariate or multivariate probability distribution functions or PDF (Cunnane 1989, Yue 1999, 

Salvadori and De Michele 2004, Zhang and Singh 2007, Karmakar and Simonovic 2009). 

Trivariate characteristics of the flood hydrograph such as flood peak discharge flow, volume and 

duration could limit the reliability of univariate frequency analysis and their associated return 

periods which would be incapable for providing a full screen of the flood hydrograph (Grimaldi 

and Serinaldi 2006, Serinaldi and Grimaldi 2007, Genest et al. 2007, Fan and Zheng 2016). For 

example, flood events with a peak flow of 100-yr recursion interval could be less intensive and 

damaging than the same events described based on the joint occurrence between multiple flood 

vectors such as between the peak-volume /or peak-duration /or volume-duration. Therefore, 

univariate flood probability constructions would be revealed for the underestimation or 

overestimations of hydrologic risk and thus could be demanding for the accountability of multiple 

intercorrelated flood design variables for deriving the return period contours (Veronika and 

Halmova 2013, Graler et al. 2013, Grimaldi et al. 2013, Reddy and Ganguli 2012a, b). Frequency 

analysis through introducing the hydrological models in conjunctions with stochastic rainfall 

generators, for recognizing the catchment‟s rainfall-runoff profile through lumped or distributed 

models (i.e., Claver and Lamb 1995, Boughton et al. 2002, Blazkova and Bevan 2004, Lawrence 

et al. 2014), usually demands quite longer computational time and also high spatial and temporal 

resolutions to achieve a justifiable demonstration of flood extreme (Raquenna et al. 2016). 

Therefore, the statistical treatments of the flood samples under multivariate distributions 

framework would be an effective & flexible approach. 

In general, multivariate constructions usually comprises a combination of the joint probability 

density functions or PDF and joint cumulative distribution functions or CDF where, statistically 

defines the probability of event „X‟ less than their pre-defined critical or threshold values „x‟ i.e., 

P(X ≤ x) (Yue and Rasmussen 2002, Veronika and Halmova 2013). In the recent decades, copulas 

function widely accepted for dealing several hydro-climatic issues, which continuously 

emphasizing the desire of hydrologist & water practitioner for achieving much comprehensive and 

higher flexibility in the uncertainty analysis through capturing a wider extent of mutual 

dependencies (for both the linear and non-linear) in comparison with the traditional multivariate 

functions (Saklar 1959, Genest and Rivest 1993, De Michele and Salvadori 2003, Salvadori and 

De Michele 2004, Favre et al. 2004). Copulas function frequently incorporated for establishing 

bivariate joint dependency (i.e., Salvadori 2004, De Michele et al. 2005, Nelsen 2006, Zhang and 

Singh 2006). Similarly, few other demonstrations switched from bivariate into tri-variate 
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probability distribution framework for investigating the importance of tri-variate return periods 

(Bedford and Cook 2002, Grimaldi and Serinaldi 2006, Genest et al. 2007, Kao and Govindaraju 

2008, Madadgar and Moradkhani 2013, Graler et al. 2013, Daneshkhan et al. 2016, Fan and Zheng 

2016). One of the insightful flexibilities of copulas methodology, it allows statistician or water 

experts for separate modelling of their intercorrelated univariate random vectors (i.e., marginal 

density approximations independently from their joint dependence structure) (Nelsen 2006, 

Dupins 2007, Mirabbasi et al. 2012, Papaioannou et al. 2016). 

Selecting the most justifiable and parsimonious distributions for defining univariate flood 

marginals is often a mandatory pre-processing desire before introducing the random vectors into 

multivariate distribution framework (Reddy and Ganguli 2012, Tosunglou and Kisi 2016). 

Parametric family functions are frequently targeted to inference about the populations of extreme 

samples based on finite data, which already mentioned in the above-cited literature. Parametric 

distribution-based modelling often based on the assumption that the undertaken samples must be 

following some specific distributions or predefined PDF. In hydrologic data modelling, no 

universally accepted distributions are assigned from any literature or in favour of any probability 

distribution functions to model any extreme series (Adamowaski 1985, 1989, Silverman 1986, 

Dooge 1986, Yue et al. 1999, Santhosh and Srinivas 2013). Several models often would fit the data 

equally well but, each would give different estimates of a given quantile especially, in the tails of 

the distribution which is solely based on the goodness-of-fit procedure to visualize the 

compatibility of the fitted distributions (Karmakar and Simonovic 2008). Also, increasing the 

number of statistical parameters of the fitted distributions usually allows for better flexibility in the 

context of model complexity (Graler et al. 2013). In the most real case study, the best probability 

distribution for defining flood marginals need not be from the same family. On another side, the 

performance evaluation of the fitted distributions often demands much precise investigation by 

comparing their relative fitness measures in the context of the degree of agreement between the 

cumulative empirical. (i.e., based on plotting-positioning approach) and the theoretical 

observations (i.e., targeted functions) to assign the best fitted marginal density (Zhang and Singh 

2006, Veronika and Halmova 2014) for each flood or hydrologic vectors. Adaption of both the 

quantitative as well as graphically inspection simultaneously could provide an effective way for 

revealing much decisive evidence in favour of the most justifiable flood probability density.  

Different quantitative based fitness measures based on EDF criteria such as 

Kolmogorov-Smirnov & Anderson-Darling (A-D) statistics (i.e., Conover 1999, Fan et al. 2015, 

Anderson and Darling 1954), Information criteria statistics such as Akaike information criteria 

(AIC), Bayesian information criteria (BIC) & Hannan-Quinn Information criteria (HQC) (Akaike 

1974, Schwarz 1978, Hannan and Quinn 1979) and either based on error index statistics (i.e., 

Singh et al. 2004, Moriasi et al. 2007, Bennett et al. 2013) often defines different extent of their 

strength and limitations to investigate the model suitability. Similarly, in the context of graphically 

visual inspections i.e., based on Probability-probability (p-p) plot (Chamber et al. 1983), 

Quantiles-quantiles (q-q) plot (Beirlant et al. 1996, Willems 1998) or either the Probability 

difference plot (Mathwave), which usually define different extent to demonstrates the fitness level 

of fitted distributions. Such as P-P plot defines the theoretical probabilities against specifies fitted 

distributions while q-q plot estimates the quantiles of data distribution with the standardized 

theoretical distribution from a specifies parametric family to interpret the shape of the tail of fitted 

distributions. Selecting an appropriate procedure for estimating the distribution parameter of the 

fitted distributions is also an essential concern in the fitting process. Maximum likelihood 

estimation or MLE (i.e., Cohn et al. 1997, Owen 2008) often consider as a standard parametric 
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estimator which poses minimum sampling variance during the parameter estimations (Tosunoglu 

and Kisi 2016) and more effective during the large sample size due to its asymptotic optimal 

properties (Shao et al. 2008). Besides this, L-statistics based L-moment estimators (Hosking and 

Wallis 1987) and the Method of moment (MOM) (Bain and Engelhardt 1991, Rao and Hameed 

2000) also seems quite popular in the fitting procedure where the L-moment estimators frequently 

undertaken for meteorological data analysis also, their performance seems competitive for small 

sample size and heavy tail distributions in relative with their peer estimators i.e., MLE and MOM.   

As, copulas multivariate constructions eliminated the restrictions, in the context of 

approximating univariate flood marginals not necessary from the same parametric families, which 

would be following different distributions and need to model separately. On the other side, few 

demonstrations such as Schwarz (1967), Duin (1976), Singh (1977), Bowman (1984), Silverman 

(1986), Adamowski et al. (1989), Scott (1992), Lall (1995), Wand and Jones (1995); Jones et al. 

(1996), Lall et al. (1996), Adamowski (1996), Bowman and Azzalini (1997), Efromowhich (1999), 

Duong and Hazelton (2003), Kim et al. (2003, 2006), Ghosh and Mujumdar (2007) and Srinivas 

and Santhosh (2013) pointed the limitations of parametric distributions in case of unsymmetrical 

or multimodal distributions type and pointed towards the flexibility of nonparametric probability 

framework. The applicability of nonparametric estimations based on kernel density functions are 

beyond the scope of this literature and will be tackled in the separate paper. This paper only 

focuses via parametric estimation procedures for demonstrating the adequacy of an interactive set 

of probability distribution functions for characterizing the univariate flood marginals for at-site 

event-based methodology. 

From the past few decades, the Kelantan River basin often subjecting to the most severe 

monsoonal flooding in Malaysia and perceiving for increasing in term of their frequency and 

magnitude (DID 2000, 2003, 2004, MMD 2007, Adnan and Atkinson 2011). According to Chan 

(1995) investigation and DID, (2000-2006) reports, the expectation of the occurrence of 

catastrophic flooding has increased from once in every 50 years to 15 years from 2004 in Kelantan. 

For example, intense and prolonged precipitation in the year 2002 caused flooding of a total area 

of 1640 km2 and affected the population of 714 287. Similarly, in the early month of December 

2014, much heavy precipitation occurred for many of days triggered the flood event in the several 

parts of the east coast of the Kelantan river basin. It was the worst flood ever recorded in history 

and affected more than 20,0000 people. The Kelantan River basin is one of the largest basin 

Malaysia, which known to be flood prone. The maximum length and breadth of this catchments 

area are 150 km and 140 km, respectively. The river is about 248 km long and drains an area of 

13100 km
2
, occupying more than 85% of the State of Kelantan. The basin has an annual rainfall of 

about 2500 mm much of which occur during the North-East Monsoon (or wet season) between 

mid-October and mid-January. According to the study performed by Adnan and Atkinson (2011), it 

is clearly indicating the existence of a significant trend in streamflow samples for both the 

upstream (River Galas) and downstream (River Kelantan) sub-catchments such that in the 

downstream area streamflow increased in the wet season. Similarly, Hussain and Ismail (2013) 

investigation pointed that Gulliemard Bridge, Lebir and Galas stations have highest in flood 

frequency rather than Nenggiri station and also the value of damaged property got increased 

according to the frequency of flood happening. Abdulkareem and Sulaiman (2015) investigated the 

variability of precipitation in flood source area of Kelantan river basin through the trend analysis 

using based on annual maximum series of 24-hour precipitation data and annual maximum flood 

data and revealed that no statistically significant trend was detected in the annual maximum series 

of 24-hr precipitation between for the period 1984-2014 while the AMF series were significant at 5% 
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level at the targeted locations. Alamgir et al. (2018) performed multivariate analysis of flood 

episodes and established the joint distribution relation among multiple intercorrelated flood 

vectors for the different gauge station of this river basin. Result revealed that for most of the 

station, Normal or Log-normal fitted best for duration samples, Gamma or Gumbel for flood peak 

series and Exponential or Log-normal for volume series. Nashwan et al. (2018) performed flood 

susceptibility assessments at the different gauge station locations of Kelantan river basin and based 

on the multivariate joint return period of the flood variables, it concluded that the downstream area 

is the highest risk of devastating flood events. In the recent years, a lot of attention has been 

pointed out towards the impact of land use changes may affect the catchments response such as 

Hassan (2004) report revealed the substantial land use changes in this region and which might 

influence the rate of evapotranspiration and infiltrations (Wooldridge 2001). Wan (1996), Jamaliah 

(2007) literature also pointed the existence of rapid land use changes from the year 1970s to 2000s, 

mainly due to deforestation and conversion from natural land into agriculture for oil palm and 

rubber.   

The cause of frequent failure of hydrologic or flood defence infrastructure in Malaysia due to 

the impact of moderately severe of flood episodes might be attributed due to the lack of complete 

flood hydrograph or in other words, where only flood peak discharge samples often targeted in 

deriving flood frequency curve during the structural development. Importance of the 

accountability of all three flood characteristics i.e., flood peak discharge flow, hydrograph volume 

and duration for practical applications in hydrology or hydrologic risk assessments are already 

discussed in the above paragraph. For example, according to Gaal et al. (2015) the designing of 

retention basins and spillways of reservoirs or any other flood defence hydraulic structures where 

the storage is involved, in such circumstances the estimation of hydrograph volume must be 

required along with peak discharge, in order to calculate the impact of inflow on the storage. 

Similarly, estimating the joint behaviour of flood peak-volume and volume-duration would be 

effective for flood diversion practices and flood control pressures practical (Fan et al. 2015, Xu et 

al. 2015). Therefore, multivariate designs and their associated return periods could be a 

comprehensive way of tackling such extreme issues through making a defensive risk-based 

decision making in this river basin.  

The entire investigation process is divided into the two study portions, where each part covered 

a full paper. The objective of this study portion is to perform a better selection procedure and 

practices in the model evaluation criteria for pointing the most parsimonious marginal distribution 

of flood characteristics i.e., flood peak discharge flow, hydrograph volume and duration, by 

introducing a variety of mono-parametric (1-parameter), bi-parametric (2-parameters) and 

tri-parametric (3-parameters) and also tetra-parametric(4-parameters) probability distribution 

functions. At-site event-based or block (annual) Maxima-based methodology is adopted over the 

50-years (1961-2016) continuously-distributed streamflow characteristics for the Kelantan River 

basin at Gulliemard Bridge gauge station, Malaysia for selecting an appropriate marginal density 

for flood distributions series. The flood characteristics such as flood peak, volume and duration are 

derived from the daily basis streamflow records at an annual scale, where hydrograph volume and 

duration series are derived corresponding to each flood peak samples, details are provided in 

section 3.2. The demonstrations over how these multiple inter-associated flood marginals will be 

introduced further for establishing copula-based multivariate dependency simulations will appear 

in the next paper separately which are beyond the scope of this study. As a prerequisite, an 

overview of distinct varieties of univariate parametric family functions as well as the briefing of 

different inferential measuring or goodness-of-fit test statistics for identifying most parsimonious 
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and best-fitted models are given subsequently in the sub-section of the second section. Details of 

the case study and extraction of multivariate flood characteristics via event- based flood sampling 

procedure are in the third section. Fourth section provides result and discussion. Research 

conclusion are pointed in the fifth section. 

 

 

2. Theoretical framework 
 

2.1 Univariate parametric density function 
 

Every joint distribution practice implicitly defines both the descriptive information about 

marginal behaviour of each targeted random vectors and their joint dependence structure for 

capturing mutual concurrency or correlation structure (Singh and Singh 1991, Rao and Hameed 

2000, Kartz et al. 2002).  If 𝑥1, 𝑥2, 𝑥3, ……….𝑥𝑛 defines the nth set of historical random 

observations with independent and identically distributions or i.i.d i.e., time-independency 

behaviour or no serial correlations then the procedure for the univariate density approximation 

usually comprises (1) choosing distinguish class of probability functions as a candidate structure, 

(2) selecting a parameter estimations algorithm for determining vectors of unknown statistical or 

distribution parameters of fitted distributions, (3) outlining of uncertainty between the distributions 

parameters and fitted probabilities based on the models compatibility or goodness of fit criteria 

(Benth and Saltyte- Benth 2005, Cong and Brady 2012). In other words, marginal distribution 

construction of the flood vectors is the procedure to make an inference about populations based on 

finite random sample size or to extrapolate flood design quantiles beyond the existing data range 

(Sen 1999, Coles 2001, Griffis and Stedinger 2007). 

The traditional approach of flood frequency analysis often incorporated via time-invariant or 

static probability distribution framework and which often a mandatory desire before introducing 

flood vectors into the univariate or multivariate framework (Khaliq et al. 2006, Tosunoglu and Kisi 

2016, Daneshkhan et al. 2016). Therefore, samples will be undergoing for some statistical 

treatments such as, time-trend analysis (e.g., monotonic trend investigations) (Mann 1945, Kendall 

1975, Zhang 2005, Liu and Cui 2008, Hameed 2008, Hamid et al. 2014) or either via the 

Q-statistics, for identifying serial correlations (Ljung and Box 1978, Cong and Brady 2012). Table 

1 listed a distinguish variates of some frequently incorporated 1-dimensional probability functions, 

where each function exhibited a different modelling extent to capture flood distribution samples.  

Earlier demonstrations such as McMohan and Srikanthan (1981), Rossi et al. (1984), Wallis 

(1988), Vogel et al. (1993) explored much closer attention towards flood probability analysis in the 

light of most favourable distribution framework. Besides this, Cunnane (1989) undertaken an 

extended review through investigating the issue of flood frequency for a region and country and 

revealed that the empirical suitability plays a much larger role in the selection of distributions. 

Adamowski (1989), Hall (1984) pointed towards the GEV distributions as most consistence 

parametric functions for the UK region. Similarly, the Log-Pearson Type-III are recommended as 

the most justifiable distribution among their peer parametric functions for the US river basin 

according to US Water Resources Council (Adamowski 1989). The Gumbel functions are 

categorized as a standard and most effective distribution over the Spain and Finland region 

(Salinas et al. 2014). Actually, the Gumbel function is highly flexible to make an accurate 

representation of any extreme maxima samples (i.e., peak flood discharge or maximum rainfall 

samples) (Alam et al. 2018). Mathematically, Gumbel and Frechet distributions are the special 
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categories which can be derived from the GEV distribution. Such that, by letting the shape 

parameter of GEV functions to zero i.e., „𝑘 → 0  (tends to zero)‟ could result for Gumbel 

functions which, usually characterized by the thin upper or light tail and exhibited unbounded 

behavior (Coles 2001, Khaliq et al. 2006). Similarly, by approximating the positive value to the 

GEV shape parameter i.e., „𝑘 > 0 (greater than zero)‟, it will take the form of Frechet distribution, 

which usually characterized via heavy or polynomially decreasing tail structure with unbounded 

behavior (Graler et al. 2013, Reddy and Ganguli 2012b). The Weibull distribution is also 

categorized in the GEV distribution family, which often signifies for bounded upper tail behaviour 

(Stedinger et al. 1993). Ekanayake and Cruise (1993) performed a comparative analysis between 

the Weibull distribution and Exponential distribution for partial duration-based flood 

characteristics. On another side, the Exponential function is a special class of Gamma distribution 

family (Hosking and Wallis 1997). Chen et al. (2017) demonstrated the importance of Generalized 

Gamma distribution in the flood frequency analysis where the principle of maximum entropy 

(POME) theory is adopted to estimate the distribution parameter for the flood samples. It is a 

generalized version of 2-parameter Gamma distribution.  

In probability theory, the Inverse Gaussian distribution (also known as Wald distribution) is a 

two-parameter family of continuous distribution with support on (0 ∞). According to Table 6, if the 

shape parameter of the Inverse Gaussian tends to infinity, it becomes more like a Gaussian 

distribution. Markiewicz et al. (2015) modelled flood samples via Inverse Gaussian and 

Generalized exponential distributions. Daneshkhan et al. (2016) introduced Inverse Gaussian 

distribution in modelling of flood peak and volume samples. Haktanir (1992) pointed out the 

prediction capability of bi-parametric (two-parameters) and tri-parametric (three parameters) 

Log-normal and Gumbel functions for inferring the right-tail extreme events for annual basis flood 

peak series. Similarly, Log-logistic function also exhibited a lot of attention in extreme value 

analysis (Singh et al. 1993, Shoukri et al. 1988, Ashkar and Mahdi 2003). The 3-parameter 

Log-Gamma function also exhibited considerably level flexibility and importance in hydrological 

data stimulations (Veronika and Halmova 2014). Besides this, a special class of four parameters 

Johnson family functions called Johnson SB distribution are rarely incorporated in hydrologic or 

flood modelling (Johnson (1994) & Cugerone and De Michele (2005). Few demonstrations 

introduced Johnson SB function such as a dynamic stochastically hydrological simulation of the 

probable maximum discharge series by Kushment and Gelfan (2011) or either, investigating the 

rainfall integral parameters estimation by comparing Johnson SB distribution with 3-parameter 

Gamma function by D‟Adderio et al. (2016). Johnson SB functions would be a better choice for 

modelling extreme samples, as their PDF are thinner and decreasing more exponentially rather 

than algebraically for a larger value of the given observations, which also suitable for investigating 

survival functions of a given sample. Table 6 listed the probability density function or PDF, 

cumulative function or CDF and parameters of marginals distribution going to incorporate in this 

study. 

 

2.2 Model compatibility investigation based on goodness-of-fit measures 
  

Selecting a justifiable probability distribution based on the degree of agreement between 

empirical and theoretical observations often demands higher accuracy and precision by adopting a 

series of quantitative as well as graphical inspections. Empirical non-exceedance probabilities i.e., 

P(K ≤ k) are frequently derived from the Gringorten based plotting-positioning formula 

(Gringorten 1963, Cunnane 1978) and which usually compared against the CDF of the fitted 
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distributions for pointing the gaps or deviations between empirical and fitted samples and can be 

mathematically formulated as 

Empirical Cumulative frequency =  P(K ≤ k) = (k − 0.44) (N + 0.12)⁄            (1) 

where, N signifies the length of the sample (i.e., the total number of observations) and k is the kth 

smallest observations in the data set arranged in ascending order. Statistical approaches of the 

several analytical fitness measures i.e., based on empirical distribution functions (or EDF), 

information criteria statistics and error indices statistics are reviewed in the next paragraph which 

is often considered as the most effective ways for outlining the relative gaps and discrepancy 

(Dufour et al. 1998, Seier 2002, Arshad et al. 2003). 

The Kolmogorov-Smirnov or K-S is an empirical distribution function (or EDF) for investigating 

the largest vertic 

Dn = supx|F
∗(x) − Fn(x)|                          (2) 

P(Dn ≤ Dn
α) = 1 − α                             (3) 

where, F∗(x) and Fn(x) pointed out the theoretical & empirical probabilities and 𝐷𝑛 is the 

critical value at level of significance „𝛼‟. Statistically, the individual flood characteristics which 

following some specific or pre-defined distribution are usually taken under the null hypothesis „H0‟ 

against their alternative hypothesis „H1‟ as given below: 

Null hypothesis (H0) = data follow the specified distribution  

Alternative hypothesis (H1) = data didn‟t follow any specific distribution 

 

 
Table 1 Families of univariate probability distribution functions 

Parametric family 

functions 

References 

Log-Pearson Type III Bobee 1974, Rao 1980, McMohan and Srikanthan (1981), Arora and Singh 

1988, Singh and Singh 1988,Adamowaski 1989, Haktanir and Horlacher 1993, 

Singh 1998, Griffis and Stedinger 2007, Vogel et al. 1993, Haddad and 

Rahman 2008  

Log-Logistic Haktanir and Horlacher 1993, Singh et al. 1993 

Gamma  Reddy and Ganguli 2012, Xu et al. 2015 

Generalized Gamma Keshtkaran et al. 2011, Chen et al. 2017 

Johnson SB Keshtkaran et al. 2011, Cugerone and De Michele 2015 

Lognormal  Yue 2000, Yue 2001, Karmakar and Simonovic 2008 

Generalized extreme 

value (or GEV) 

Karim and Choudhary 1995, Nadarajah and Shiau 2005 

Exponential Correia 1987, Krstanovic and Singh 1987, Chouklian et al. 1990  

Gumbel  Jain and Singh 1987, Veronika and Halmova 2014  

Inverse Gaussian  Daneshkhan et al. 2016 and Markiewicz et al. (2015) 

Log Gamma Veronika and Halmova 2014 

Frechet Reddy and Ganguli 2016 

Weibull Ekanayake and Cruise 1993, Graler et al. 2013, Rauf and Zeephongsekul 2014 
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The acceptance of null hypothesis „H0‟ will be based on the p-value of the fitted distributions 

and that must be greater than the critical value i.e., pcritical(0.05) < 𝑝𝑚𝑜𝑑𝑒𝑙 for considerably 

better performance (Xu et al. 2015). Also, the estimated K-S value must be below their critical 

value i.e., 𝑑𝑚𝑜𝑑𝑒𝑙 < 𝑑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 at a pre-defined significance level i.e., „𝛼 = 0.05‟ that could be 

revealed for the positive decision in favor of good agreement between fitted and empirical 

distributions otherwise performance could be inferior and liable for the rejection (Yue and 

Rasmussen 2002, O‟Connor and Kleyner 2012, Reddy and Ganguli 2012, Madadgar and 

Moradkhani 2013, Zhang et al. 2016).  

Farrel and Stewart (2006) study revealed that the K-S statistics are characterized by relatively 

flat in their tail distributions for both the empirical and fitted probabilities thus, would be 

complicating for handling maxima samples. Also, K-S is quite less sensitive near the distribution 

tails in relative with the center of distributions (ITL NIST e-Handbook). Therefore, the quadratic 

class of EDF, also called the Anderson-Darling (A-D) statistics widely accepted for evaluating the 

model performance through examining whether the random samples come from some specified 

distributions (Anderson and Darling 1954, Scholz and Stephens 1987, Farrel and Stewart 2006, 

Fan et al. 2015, Alam et al. 2018) can be mathematically expressed as 

A2 = −n −
1

n
∑ (2i − 1)*logFX(xi) + log (1 − FX(xn+1−i)
n
i=1                 (4) 

where, 𝐹𝑋(𝑥) representing the theoretical cdf for i
th
 sets of random samples „xi‟. In compare with 

K-S statistics, A-D statistics facilitates an extra weight towards the tail of probability distributions 

and quite be more consistent in case of large extreme modelling (Farrel and Stewart 2006, Alam et 

al. 2018). The estimated A-D values are below their critical level at the significance level 'α', could 

indicate better model performance with the observed samples. 

On another side, the Kullback- Leibler information measures (i.e., Kullback-Leibler (1951)) 

often comprises a key to derive the information criteria statistics which investigate the fitness 

compatibility of the distribution models. Information criteria statistics such as Akaike Information 

criteria (or AIC) (Akaike 1974, Cong and Brady 2012), Schwartz‟s Bayesian Information criteria 

(or BIC) (Schwarz 1978) and Hannan-Quinn Information criteria (HQC) (Hannan and Quinn 1979, 

Burnham and Anderson 2002) usually highlights the trade-off relationship between model bias or 

uncertainty with the number of fitted parameters. The AIC statistics included the lack of the fit of 

model at one hand and unreliability of the model due to the number of model parameters on the 

other hand (Zhang and Singh 2007) and mathematically expressed as 

𝐴IC =
−2 log(Maximized Likehood for Fitted Model) + 2(Number of Fitted Model Parameters) (5) 

It can be express in the context of Mean Square Error (or MSE) (Karmakar and Siminovic 

2008) 

𝐴IC = −2 log(MSE) + 2(Number of Fitted Model Parameters)            (6) 

Minimum the AIC value indicates for best-fitted distribution among their peer candidates.  

Similarly, the Bayesian based information criteria statistics or BIC can be formulated as 

𝐵IC =
−(Sample size) log(Maximized likehood for fitted distirbutions) +

                                                                   [No. of fiited model parameters Log(Sample size)     (7) 
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or 

𝐵IC = −(Sample size) log(MSE) + [No. of fiited model parameters Log(Sample size)  (8) 

Minimum the BIC value indicates for the best-fitted distribution among their peer candidates.  

On the other side, Hannan-Quinn Information criteria or HQC is another alternative to AIC and 

BIC statistics which can be formulated as (Hannan and Quinn 1979, Burnham and Anderson 2002) 

HQC = −2Lmax + 2klog(log(N))                      (9) 

where, Lmax signifies the model log-likelihood of the total number of fitted parameters „k‟ for 

the „N‟ sample size. According to Burnham and Anderson (2002), HQC is not the estimator of 

Kullback-Leibler divergence and also not exhibited asymptotically efficient criteria (Claesken 

and Hjort 2008, Haggag 2014). Such characteristics are identical with the BIC criteria statistics. 

As pointed from the same literature that HQC exhibited a higher level of consistency in compare 

to AIC or BIC. Minimum the value of HOQ statistics usually indicates for justifiable model 

performance with the observational samples. 

 

 

 
Table 2 Error indices statistics and their analytical expression 

Measuring statistics Analytical expressions References 

Mean Square Error 

(MSE) & Root 

Mean Square Error 

(RMSE) 

𝑀𝑆𝐸 = ∑ (𝑥𝑖
𝑀𝑜𝑑𝑒𝑙 − 𝑥𝑖

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
)
2

𝑁
𝑖=1 𝑁⁄  & 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √∑ (𝑥𝑖
𝑀𝑜𝑑𝑒𝑙 − 𝑥𝑖

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
)
2

𝑁
𝑖=1 𝑁⁄ , where xi 

indicating the ith series of sample size „N 

also, 𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖
𝑀𝑜𝑑𝑒𝑙 − 𝑥𝑖

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
)
2

𝑁
𝑖=1 𝑁⁄ − 𝑘, in term of 

accounting the number of fitted model parameters „k‟. 

Singh et al. 

2004, Moriasi et 

al. 2007, Gupta 

et al. 2009, Chai 

et al. 2014 

Mean Absolute 

Error (MAE) 
1

𝑁
∑|𝑥𝑖 − 𝑥𝑖|̂

𝑁

𝑖=1

 

Singh et al. 

2004, Moriasi et 

al. 2007, 

Bennett et al. 

2013 

RMSE-observations 

standard deviations 

ratio (RSR) 

√∑ (𝑥𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑥𝑖

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)
2𝑁

𝑖=1 ∑ (𝑥𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑥𝐴𝑣𝑒𝑟𝑎𝑔𝑒)

2𝑁
𝑖=1⁄ , 

where 𝑥𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  & 𝑥𝑖

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  demonstrating the empirical and 

fitted probabilities of a random series „xi‟ and their mean value 

𝑥𝐴𝑣𝑒𝑟𝑎𝑔𝑒 . 

Moriasi et al., 

2007, Bennett et 

al. 2013 

Nash-Sutcliffe 

Efficiency (NSE) 
1

− √∑(𝑥𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑥𝑖

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)
2

𝑁

𝑖=1

∑(𝑥𝑖
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑥𝐴𝑣𝑒𝑟𝑎𝑔𝑒)

2
𝑁

𝑖=1

⁄  

Nash and 

Sutcliffe 1970, 

Sevat and 

Dezetter 1991, 

Legates and 

McCabe 1999, 

Gupta et al. 

2009 
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Table 2 summarizing some frequently undertaken error indices statistics in the field of 

hydro-climatic model validations. Statistical metrics such as mean square error or MSE, root 

mean square error or RMSE and mean absolute error or MAE, usually defines error statistics in 

the units of constituents of interest such that, a value closer or either zero often indicates for 

consistency or optimum model performance (Singh et al. 2004, Moriasi et al. 2007, Chai and 

Draxler 2014). Both MAE & RMSE metrics are frequently incorporated over the literature 

where the MAE statistic is solely based on the absolute value to minimize bias towards the large 

events in relative with the RMSE (Bennett et al. 2013). Willmott and Matsuura (2005) study 

revealed that MAE would be a better approach than RMSE while, Chai and Draxler (2014) 

pointed that RMSE performance could be dominating over the MAE statistics only for Gaussian 

distribution samples. The RMSE-observations standard deviations ratio or RSR statistics often 

facilitates additional flexibility to achieve simultaneous significance of error index statistics and 

normalizations factors (Singh et al. 2004, Bennett et al. 2013). In actual, RSR statistics are 

obtained through standardizing the RMSE statistics by integrating the influence of samples 

standard deviations. Numerically, the RSR statistics often defined within a range of 0 (which 

revealing for justifiable performance) to any larger positive value which usually indicates for 

model inconsistencies. Similarly, Nash-Sutcliffe Efficiency or NSE based model evaluation 

criteria compared the data and residual variance structure and numerically defined within a range 

of -∞ (i.e., inferior performance) to 1(i.e., ideal fitness level) (Nash and Sutcliffe 1970). 

Numerically, the value of NSE within the range of [0.0, 1.0] must signify for good agreements 

where the zero value often reveals that the model performance is no better than simply using 

their average value (Bennett et al. 2013). Literature such as Sevat and Dezetter (1991), Legates 

and McCabe (1999) demonstrated the fitness measuring strength of NSE statistics, especially 

during the hydro-climatic model simulations. 

 

 

3. Details of the case study 
 

3.1 Study Area 
 

Monsoonal flood happening seems to be increased in the Kelantan River basin, Malaysia from 

the last few decades in term of frequency as well as magnitude, according to the report of Drainage 

and Irrigation Department, Malaysia (DID 2000, 2003, 2004) and Malaysia Meteorological 

Department (MMD 2007). Few flood related studies pointed that such extreme hydrologic 

consequences are mainly due to rapid human intervention from natural to land use activities in the 

form of deforestations or land clearance either for promoting the agricultural activities i.e., palm 

oil and rubber plantations or either due to logging activities (Chan 1995, Jamaliah 2007, Adnan 

and Atkinson 2011). The Kelantan River is the longest river of Kelantan state originating from the 

Tahan mountain range to the South China Sea in the north-eastern part of Peninsular Malaysia 

between the geographical location of 

Lat 4° 30′ N to 6° 15′ N and Long 101°E to 102° 45′ E. River Galas and River Lebir are the two 

major tributaries of Kelantan River. The river is about 248 km long and drains an area of 13100 

km
2
, occupying more than 85% of the state of Kelantan. According to DID flood report i.e., DID 

(2000), the estimated runoff is about 500 m3sec−1 and the variations of annual precipitations for 

this region in between 0 mm (dry period)-1750 mm (wet or north-eastern monsoonal period). The 

major land use of this area is agriculture (i.e., paddy, rubber and oil palm) for midstream and 
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downstream and forest for upstream (i.e. near to Gua Musang). The study performed by Adnan and 

Atkinson (2011), clearly indicating the existence of a significant trend in streamflow samples for 

both the upstream (River Galas) and downstream (River Kelantan) sub-catchments such that in the 

downstream area streamflow increased in the wet season. Also, precipitation trends were also 

increasing in the wet season or winter monsoon circulation in the downstream region. Also, 

Hussain and Ismail (2013) investigation pointed that Gulliemard Bridge, Lebir and Galas stations 

have highest in flood frequency rather than Nenggiri station and also the value of damaged 

property got increased according to the frequency of flood happening. Therefore, this literature 

targeted 56 years (1961-2016) daily basis streamflow discharge records which are collected and 

provided by the Drainage and Irrigation Department (DID) Malaysia for the Gulliemard Bridge 

gauge stations, which is located at the downstream of Kelantan river near the Kuala Kari region. 

At-site event-based methodology is adopted for constructing univariate marginal density of flood 

characteristics (i.e., flood peak flow, volume and duration). 

 

3.2. Sampling of flood episodes 
 

Flood probability construction via the partial data series only focuses the extreme hydrograph 

portion i.e., either high flow (for flood episodes) or low flow (for drought events) instead of 

visualizing the entire hydrograph (Kite and Stuart 1977, Hosking et al. 1985, Chow et al. 1988, 

Bras 1990, Rao and Hameed 2000, Brunner et al. 2016). Annual (Maximum) series or AM also 

called block (annual) maxima and Peak over Threshold (or POT) are the two frequently modelling 

techniques widely accepted in the extreme probability simulations (Hosking 1987, Bras 1990, 

Madsen 1997). Event-based or AM series usually defining the random distributions at an annual 

scale for each targeted or study site by pointing the maximum streamflow discharge value i.e., 

flood peak. On the other side, POT based flood sampling includes all the peak values above the 

pre-defined threshold values not just by considering a single peak like the AM series. Therefore, 

such restrictions in the AM based flood sampling sometime might be problematic, if the second 

largest peak in the same years is larger than the other year samples events. On another side, POT 

based event sampling could demand for time independency between the two-consecutive peak 

within the same observation year, which usually a complicated effort during the selection of flood 

peak (Wilems 2005).  

Therefore, the present study incorporated event-based procedure, which often revealing an 

intuitive procedure for handling complex hydrological practical and also facilitates to establishing 

conditional distribution relations among the multiple design vectors in case of multivariate joint 

distribution analysis (Reddy and Ganguli 2012a, Sraj et al. 2014, Papaiannou et al. 2016, 

Tosunglou and Kisi 2016). The flood characteristics which are used in this study such as flood 

peak discharge flow (P), hydrograph volume (V) and duration (D) are obtained from daily basis 

stream flow observations. The characterizations of flood peak flow are based on their maximum 

streamflow discharge records at an annual scale which means for each year there will be only one 

flood episodes at the targeted site (Yue et al. 2000, Yue and Rasmussen 2002, Xu et al. 2015, Fan 

et al. 2015). On the other side, its other inter-associated vectors i.e., hydrograph volume & 

duration are retrieved corresponding to each annually basis peak flow samples by separating the 

base flow (i.e., low frequency components) from high frequency or direct runoff components (i.e., 

volume extraction), and based on time differencing between the rising (SDi) and recession (EDi) 

limb of targeted peak curve for exacting the durations series (Yue and Rassumsen 2002, Yue et al. 

2002, Sraj et al. 2014). Recursive digital filtering procedure in the form of either one parameter 
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digital filtering (i.e., Lyne and Hollick 1979, Nathan and McMahon 1990, Arnold and Allen 1999, 

Eckhardt 2004, Ladson et al. 2013) or either based on Eckhardt (2005) recursive filtering 

algorithm are the two different ways for extracting the low- frequency components or base flow 

separation. Eckhardt (2005) algorithm usually provided an effective way for discriminating low 

frequency from direct-surface runoff portions and would be effective for the wider verity of 

catchments to reveal much consistent measure (Lim et al. 2005, Zhang 2013). Besides this, readers 

are advised to follow Gonzales et al. (2009) for the extended comparison among several baseflow 

separation algorithms. 

Flood peak discharge often attains their maximum value but not mandatory for hydrograph 

volume & duration series (Sraj et al. 2014, Xu et al. 2015). Mathematically, we are required to 

derive three random vectors for each of the ith years can be formulated as 

Vi = Vi
total − Vi

Baseflow = ∑ Qij −
ED
j=SDi

 
(1+Di)(Qis+Qie)

2
=  hydrograph volume series    (10) 

Di = EDi − SDi = Hydrograph durations for ith year               (11) 

and 

 Pi = max{Qij, j = SDi + SDi + 1,…… . . , EDi} = Annual flood peak series for the ith year (12) 

where ′Qij′ signifies for j
th
 days streamflow magnitude for the i

th
 year; ′Qis′ & ′Qie′ reveals for 

streamflow magnitude for the start date „SDi′ and end date „EDi
′ of the flood runoff. 

 

 

4. Results and discussions  
 

4.1 Test for independency and identical distribution  
 

Each univariate flood vectors exhibited positively skewed distributions in which, the duration 

series exhibited a quite a higher degree of unsymmetrical behaviour as observed from Table 3 and 

Fig. 2. Thus, the preliminary investigation pointed towards the sharp with right-tailed distributions 

would be suitable for each individual series (i.e., Xu et al. 2015). The individual flood 

characteristics need to be stationary or time-independency behaviour before introducing into the 

univariate distribution framework. Statistically, the independent series usually comprising for no 

inter-connection between any two or more random events while, the identical distribution could 

indicate for zero trend/or fluctuations which also reveals that all samples are drawn from the same 

probability distributions (Khaliq et al. 2006, Daneshkhan et al. 2016, Tosunglou et al. 2016). 

For this, Ljung and box (1978) based hypothesis testing also called Q-statistics, are undertaken 

for investigating whether the individual series are time-independent (i.e., stationary) with no serial 

correlation or autocorrelation (Benth and Saltyte- Benth 2005, Cong and Brady 2012).          

Actually, the presence of autocorrelations increases the variance of residual and could be 

responsible for minimizing model efficiency (Cong and Brady 2012). Statistically, under the null 

hypothesis H0, Q-statistics usually follows a chi-square distribution with „h‟ degree of freedom 

(Ljung and Box 1978 and Daneshkhan et al. 2012). Thus, Q-statistics for the sample size „n‟ with 

total no of lag being tested i.e., „t‟ with sample autocorrelations at the specific lag i.e., 𝜌�̂� are 

given below 

Q = n(n + 2)∑ ρ̂t
2 n − t⁄h

t=1                            (13) 
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Fig. 1 A typical hydrograph characteristic for the i
th

 flood episodes 

 

 

where, the null and alternative hypothesis is 

Null hypothesis (H0) = zero autocorrelation or independent distributions 

Alternative hypothesis (H1) = existence of serial correlation (or autocorrelation) 

Table 4a summarizing the estimated Q-statistics and their associated p-value for different lag 

size (i.e., 30, 20, 15, 10 & 5) and which pointing for almost negligible or zero first-order 

autocorrelations as their estimated statistics are below their critical value for each of the 

univariate series by accepting the null hypothesis (H0) at 5% or 0.05 significance level against 

their alternative hypothesis (Ha). Besides this, Fig. 3 illustrating the sample autocorrelation as 

well as partial autocorrelation graphs and which also indicating the existence of no serial 

correlation.  

Also, the non-parametric rank-based Mann-Kendall or M-K test is also incorporated for 

visualizing the monotonic trend within the historical series under the null hypothesis (H0) against 

their alternative hypothesis (H1) (Mann 1945, Kendall 1975, Hameed et al. 2008). Such 

time-series manipulations exhibited a lot of flexibility such as tackling of skewed or 

unsymmetrical distributions, also justifiable performance for the missing distributions along with 

the higher degree of resistance with outliers (Kahya and Kalayci 2004, Xu et al. 2005, Modarres 

and da Silva 2007). 

S = ∑ ∑ sgn(Tj − Ti)
n
j=1+1

n−1
i=1                          (14) 

sgn(Tj − Ti) = {

1   , if Tj > Ti
0   , if Tj = Ti
−1   , if Tj < Ti 

                        (15) 

where, Tj & Ti   representing the annual value in year „j‟ and „i‟, respectively.  
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(a) 

 

(b) 

 

 

Continued- 

 

 

301



 

 

 

 

 

 

Shahid Latif and Firuza Mustafa 

 

 

(c) 

 

(d) 

Fig. 2 Characterization of flood characteristics in the context of (a)Time series representations based on 

the daily streamflow discharge between 1961-2016, (b) box whisker plot, (c) Histogram plot and (d) 

Normal q-q plot 
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Under the two-tailed hypothesis attempts which usually define as 

Null hypothesis (H0) = zero trend within flood series 

Alternative Hypothesis (H1) = existence of monotonic trend within series 

Thus, the estimated statistics from Table 4b, revealing the acceptance of null hypothesis (H0) 

which further pointing the existence of zero monotonic trends at the 5% or 0.05 level of 

significance level within each flood series. Similarly, an existence of homogenous environment 

between any two-given time point are also investigated for each flood characteristics through 

incorporating a series of test i.e., Pettit test (Pettitt 1979, Kang and Yusof 2012), Buishand test 

(Buishand 1982), von Neumann‟s test (Toreti 2011, Jaiswal 2015) and Alexanderson‟s SNHT based 

hypothesis testing (Alexandersson 1986, Toreti 2011). The p-value for each undertaken statistic is 

computed based on Monte-Carlo simulations at the confidence interval of 99% or 0.09. From Table 

6, and Fig. 4, it could be revealing that each computed statistic is in favour of the null hypothesis 

(H0), which further revealing for the existence of homogeneity within the flood characteristics. In 

conclusion, no significant trends are detected for the flood characteristics, therefore detrend or 

pre-whitening procedure is not adopted (i.e., Razawi and Vogel 2018) before introducing the flood 

samples into univariate probability distributions framework. 

 

 
Table 3 Basic descriptive summary of the flood characteristics 

Descriptive 

measure 

P(m3/sec) V(m3) D(day

s) 

Percentile P(m3/se

c) 

V(m3) D(da

ys) 

Sample Size 50 50 50 Min 916.3 3182.3 7 

Range 19670 71558 57 5% 1209.1 4334.7 8 

Mean 6078 19122 19.04 10% 1647.1 4811.7 9.1 

Variance 2.15E+07 2.14E+08 117.7

5 

25% (Q1) 2671.8 8668.5 12 

Std. Deviation 4639 14623 10.85

1 

50% (Medi

an) 

4961 15959 16 

Coef. of Variation 0.76324 0.76473 0.569

93 

75% (Q3) 7711.7 24476 25 

Std. Error 656.05 2068.1 1.534

6 

90% 11584 43077 28.9 

Skewness (Fisher) 1.5532 1.6392 2.279

3 

95% 18581 47790 43.35 

Skewness (Pearson) 1.506 1.590 2.210 Max 20586 74740 64 

Kurtosis (Pearson) 1.883 2.864 6.252     

Excess Kurtosis 

(Fisher) 

2.2158 3.3029 7.055

7 

    

Standard error of 

the mean 

656.050 2068.071 1.535     

Lower bond on 

mean (95%) 

4759.628 14966.495 15.95

6 

    

Upper bound on 

mean (95%) 

7396.392 23278.381 22.12

4 

    

Standard error of 

the variance 

4347713.616 43203375.9

75 

23.79

0 
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(a) 

 

(b) 

 

Fig. 3 Testing the existence of serial correlations within time series of flood characteristics (a) sample 

autocorrelation and (b) partial autocorrelation functions 
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4.2 Parametric estimations  
 

In the hydro-climatic data smoothing practices, no fix distributions from any parametric family 

functions are assigned or in support to model any of the extreme random vectors (Karmakar and 

Siminovic 2008) where each probability function usually have different capability to estimates for 

the pre-define quantiles, especially in the tail of distribution (Lall 1995, Adamowski 1996, Yue et 

al. 1999, Sharma 2000, Kim et al. 2006).  
 

 

Table 4 (a) Q statistics and their corresponding p-value (b) Mann Kendall (or M-K) test for identifying 

monotonic time trend existence within time series of flood episodes 

 

 

 

(a) 

Flood 

vectors 

Box-Ljung test Lag size 

(30) 

Lag size 

(20) 

Lag size 

(15) 

Lag size 

(10) 

Lag size 

(5) 

Peak-flow X-squared 

(Q-statistics) 

18.869 14.88 13.338 9.7188 4.89 

 df 30 20 15 10 5 

 P-value 0.9427 0.7828 0.5762 0.4655 0.4295 

Volume X-squared 

(q-statistics) 

14.724 11.981 10.683 7.4968 0.49837 

 df 30 20 15 10 5 

 P-value 0.9912 0.9167 0.7747 0.6779 0.9922 

Duration X-squared(Q-statistics) 23.343 15.702 13.958 6.1707 3.035 

 df 30 20 15 10 5 

 P-value 0.8009 0.7349 0.5287 0.8007 0.6946 

(b) 

M-K TEST Peak volume duration 

z 0.066919 0.058556 -0.40259 

P-value 0.9466 0.9533 0.6872 

S 9 8 -4.9000e+01 

varS 1.429167e+04 1.429067e+04 1.42150e+04 
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The cumulative distribution function or CDFs for flood characteristics estimated by parametric 

procedures are fitted to the data series of peak flow, volume and duration and are compared with 

their empirical nonexceedance probabilities, 𝑃[𝑋 ≤ 𝑥] = 𝐹(𝑥). Empirical probabilities for each 

flood series are estimated from the Gringorten unbiased position-plotting formulae using Eq. (1) 

(Gringorten 1963, Cunnane 1978, Guo 1990). An interactive set of 1-dimensional functions with 

varying numbers of the unknown statistical parameter (i.e., 1-parameter, 2-parameters, 

3-parameters & 4-parameters) are introduced as a candidate functions in modelling univariate 

marginals of the flood characteristics. Table 6 listed the PDFs and CDFs of candidate parametric 

functions. The vector of the unknown statistical parameter of the fitted distributions for each flood 

series are estimated based on maximum likelihood estimation or MLE, method of moments or 

MOM, least square method or LS, and method of L-moments, as listed in Table 7 and estimated 

parameters are listed in Table 8. 

 

 

 
Table 5 Homogeneity test statistics of flood characteristics 

Test Statistics P V D  Overall Conclusion 

Pettitt K 138.000 140 128 HOMOGENOUS 

T 4 8 34 

p-value (two-tailed) 0.715 0.744 0.555 

Confidence 

interval@99% on 

p-value 

]0.704, 0.727 [ ] 0.591, 0.616 [ ] 0.542, 0.568 [  

SNHT T0 3.614 2.992 2.504  

 

HOMOGENOUS 
T 13 6 34 

p-value (Two-tailed) 0.501 0.603 0.697 

Confidence 

interval@99% on 

p-value 

]0.488, 0.513 [ 4.051 ] 0.685, 0.708 [ 

Buishand‟s Q 5.956 4.015 5.273  

 

HOMOGENOUS 
T 13 6 34 

p-value (Two-tailed) 0.363 0.817 0.519 

Confidence 

interval@99% on 

p-value 

] 0.351, 0.376 [ ] 807, 0.827 [ ] 0.506, 532 [ 

Von Nuemann‟s N 2.080 2.015 2.441  

 

HOMOGENOUS 
p-value (Two-tailed) 0.592 0.501 0.970 

Confidence 

interval@99% on 

p-value 

] 0.580, 0.605 [ ] 0.488, 0.513 [ ] 0.965, 974 [ 

Note: p-value are computed using 10,000 Monte Carlo simulations 
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Table 6 Families of 1-dimensional parametric probability distribution functions 

Parametric marginal 

distribution functions 
PDF Remarks 

Exponential (1P) & 2(P) f(x) =  e− x  &   f(x) =   e− (x− )   
 > 0 - continuous inverse scale parameter; 

 - continuous location parameter  

Domain: y < x < +  

Frechet (2P) & (3P) f(x) =  
α

 
(
 

x− 
)
α+1

e( x− ⁄ )  & f(x) =

 
α

 
(
 

x
)
α+1

e
−(

 

 
)
 

    

α > 0 (shape),  > 0(scale) ,  >
0 (location), such that,    0  yield 

2-parameter Frechet functions 

Domain: y < x < +  

Gamma (2P) & (3P) f(x) =  
(x− )   

   (α)
e
 (   )

   &  f(x) =

 
x   

   (α)
e
  

    

α > 0,  > 0,  > 0 - shape, scale and 

locations parameter such that    0  yield 

2-parameter gamma structure 

GEV(3P) f(x) =
1

 
e−(1+k )

   ⁄ (1+k )      ⁄
for k  0    

1

 
e(−1−e

(  )) for k = 0  

 k,  ,   signifies for shape, scale & their 

location parameter, such that,  > 0 & 

z  
(x− )

 
 

Domain: 1 + k (x −  )  ⁄  for k  0 & −
 < x < +  for k = 0 

Gen. Gamma (3P)  f(x) =
k(x)    

    (α)
e−(x  ⁄ )    

Domain:y ≤ x < +   k > 0 &  α > 0  
(shape),  > 0(scale),  > 0(location)  

Gumble max(2P) f(x) =  
1

 
e(− −e

  )   {z =
x− 

 
} Domain: − < x < +  

  &  > 0 be the scale and location 

parameter 

Inv. Gaussian (2P) f(x) = √
 

2 x 
e
−
 (   ) 

   ( )       
 > 0,  > 0 (continuous parameter,    

 for  < x < +  

Johnson SB(4P) f(x) =  
 

 √2  (1− )
e
− . ( + ln

 

   
)
 

  
Domain:  ≤ x ≤  +   
 ,  > 0 (shape)   
> 0 (scale)    location parameter) 

Log-Gamma (2P) f(x) =
(ln x)   

x   (α)
e
−(

   

 
)
  

Domain: 0 < x < +  

α > 0 ,  > 0 (shape parameter)  

Log-Logistic (3P) & (2P)  f(x) =  
α

 
(
x− 

 
)
α−1

(1 + (
x− 

 
)
α
)
−2

 &  

f(x) =  
α

 
(
x

 
)
α−1

(1 + (
x

 
)
α
)
−2

 

Domain:  < x < +  

α > 0 (shape)   > 0(scale)&  
> 0 (location) 

Lognormal (3P) & (2P) 

f(x) =  
e
  . (

  (   )   
 

)
 

(x− ) √2 
 & f(x) =

 
e
  . (

  ( )   
 

)
 

(x) √2 
   

 < x < +  ;  > 0 (shape parameter)  
  (location parameter)    (scale parameter) 
 

Log-Pearson (3P) f(x)

=
1

x| | (α)
(
ln(x) −  

 
)
α−1

e
−(
  ( )  

 
)
 

0 < x < e  for  < 0  & e  ≤ x <
+  for  > 0  

α > 0,   0,   (continuous parameter) 

Weibull (2P) & (3p) 
f(x) =  

α

 
(
x− 

 
)
α−1

e
−(

   

 
)
 

 & f(x) =

 
α

 
(
x

 
)
α−1

e
−(

 

 
)
 

  

Domain:  ≤ x < +  

α > 0 (shape),  
> 0 (scale) &   (location parameter) 
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Fig. 4 Homogeneity level within flood distributions series 

 

 
 
Table 7 Parameter estimation procedure for marginal distributions 

Functions Parameters estimation method 

EXPONENTIAL(1P) Method of moments 

EXPONENTIAL(2P) Maximum likelihood method 

FRECHET(2P) Least square method 

FRECHET(3P) Maximum likelihood method 

GAMMA(2P) Method of moments 

GAMMA(3P) Maximum likelihood method 

GEV(3P) Method of L-moments 

LOG-GAMMA(2P) Method of moments 

LOG-LOGISTIC(2P) Least squares method 

LOG-LOGISTIC(3P) Maximum likelihood method 

LOG-PEARSON(3P) Method of moments 

GUMBEL MAX (2P) Method of moments 

LOG-NORMAL(2P) Maximum likelihood method 

LOG-NORMAL(3P) Maximum likelihood method 

WEIBULL(2P) Least squares method 

WEIBULL(3P) Maximum likelihood method 

INV.  GAUSSIAN (2P) Method of moments 

JOHNSON SB (4P) Method of moments 

GEN.  GAMMA (3P) Maximum likelihood method 

 
 

308



 

 

 

 

 

 

Multivariate design estimations under copulas constructions. Stage-1… 

 
 
Table 8 Estimated parameters of marginal distribution of flood characteristics 

Parametric Functions Flood Peak (P) Flood Volume (V) Flood Durations (D) 

EXPONENTIAL(1P) l=1.6453E-4 l=5.2295E-5 l=0.05252 

EXPONENTIAL(2P) l=1.9373E-4  g=9

16.3 

l=6.2735E-5  g=3182.3 l=0.08306  g=7.0 

FRECHET(2P) a=1.576  b=3207.

5 

a=1.5703  b=10017.0 a=2.6001  b=13.304 

FRECHET(3P) a=3.1238  b=776

4.6  g=-4076.2 

a=2.8923  b=22571.0  g=-

11129.0 

a=3.6283  b=20.616  g=-6.76

47 

GAMMA(2P) a=1.7166  b=354

0.6 

a=1.71  b=11183.0 a=3.0786  b=6.1845 

GAMMA(3P) a=1.2106  b=429

0.0  g=884.47 

a=1.0848  b=14723.0  g=3

150.8 

a=1.4696  b=8.3319  g=6.795

8 

GEV(3P) k=0.22596  s=26

83.6  m=3765.6 

k=0.20446  s=8736.0  m=

11890.0 

k=0.20682  s=6.0766  m=13.987 

 

LOG-GAMMA(2P) a=129.15  b=0.06

544 

a=164.32  b=0.05839 a=35.165  b=0.08037 

LOG-LOGISTIC(2P) a=2.2801  b=454

1.7 

a=2.2731  b=14202.0 a=3.6928  b=16.426 

LOG-LOGISTIC(3P) a=2.0775  b=421

7.5  g=423.18 

a=1.8662  b=12305.0  g=2

091.6 

a=2.3027  b=10.393  g=5.654 

LOG-PEARSON(3P) a=663.54  b=-0.0

2887  g=27.608 

a=1787.0  b=-0.01771  g=

41.234 

a=14.523  b=0.12506  g=1.00

99 

GUMBEL MAX (2P) s=3617.0  m=399

0.2 

s=11402.0  m=12541.0 s=8.4608  m=14.156 

LOG-NORMAL(2P) s=0.7362  m=8.4

513 

s=0.74093  m=9.5943 s=0.47178  m=2.826 

LOG-NORMAL(3P) s=0.75437  m=8.

4267  g=85.951 

s=0.8237  m=9.4858  g=1

115.2 

s=0.69194  m=2.413  g=4.89

82 

WEIBULL(2P) a=1.599  b=6398.

7 

a=1.5993  b=20008.0 a=2.5437  b=20.375 

WEIBULL(3P) a=1.1175  b=538

9.8  g=899.42 

a=1.0689  b=16369.0  g=3

155.6 

a=1.1951  b=12.878  g=6.927

9 

INV.  GAUSSIAN 

(2P) 

l=10434.0  m=60

78.0 

l=32699.0  m=19122.0 l=58.617  m=19.04 

JOHNSON SB 

(4P) 

g=1.5161  d=0.74

495 

l=27319.0  x=130

4.2 

g=2.2027  d=1.0357 

l=1.3052E+5  x=961.8 

g=2.5314  d=0.92215 

l=118.81  x=8.2791 

GEN.  GAMMA 

(3P) 

k=1.054  a=1.812

7  b=3540.6 

k=1.0521  a=1.8019  b=11

183.0 

k=1.0877  a=3.4664  b=6.184

5 
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4.3 Models compatibility testing based on Goodness-of-fit (or GOF) statistics 
 

The theoretical cumulative density for each flood distribution series of P, V and D, are 

estimated by parametric procedure and compared against the empirical non-exceedance 

probabilities for the outlining data reproducing and fitness consistency with observational samples. 

The estimators such as maximum likelihood, method of moments, least squares method and 

method of L-moment are employed for estimating the vectors of model parameters. Model 

compatibility investigations are conducted based on both the analytical as well as graphical visual 

inspections. 

In the first stage for investigating model compatibility with observational samples, EDF based 

distance statistics i.e., Anderson-Darling (ADn) and Kolmogorov- Smirnov (K-Sn) test are 

estimated for each model fitted to flood characteristics where K-S statistics investigating the 

largest vertical gaps between cumulative empirical and theoretical probabilities based on Eqs. (2) 

and (3). On another side, the quadratic class of EDF or A-D statistics examines whether the 

random samples come from some specified distributions based on Eq. (4). Table 9(a) listed the 

estimated K-S & A-D values and revealed for the satisfactory performance for most of the 

candidate functions for each flood characteristics. 
From section 2.2, it is already mentioned that if the estimated p-value of the fitted distribution in 

the K-S test is above 0.05 (i.e., p-value >pcritical(0.05)), which often indicated for considerably 

better performance, otherwise liable to reject. Also, if the D-statistics of the estimated K-S value is 

below the critical value (i.e., 𝑑𝑚𝑜𝑑𝑒𝑙 < 𝑑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ) at a pre-defined significance level then it often 

indicating for the positive decision in favour of good agreement between fitted and empirical 

distributions otherwise performance liable for the rejection (Yue and Rasmussen 2002, O‟Connor 

and Kleyner 2012, Reddy and Ganguli 2012). Similarly, if the estimated A-D values are below 

their critical level at the significance level ′𝛼′ then it often indicated for better model performance 

with the observed samples. Also revealed from section 2.2 that the K-S statistics exhibited 

relatively flat in their tail distributions for both the empirical and fitted probabilities and quite less 

sensitive near the distribution tails in relative with the center of distributions in compare with A-D 

statistics which facilitates an extra weight towards the tail of probability distributions and quite be 

more consistent in case of large extreme modelling. K-S & A-D test statistics of Table 9(a) 

revealing that the performance of Log-Pearson-3P and Lognormal-2P distribution are much 

satisfactory for flood peak flow samples in comparison with other candidate functions. Such that 

the K-S value (
KS

n (d- max) = 0.05178 with p-value 0.99833) for Log-Pearson-3P distribution and 

(
KS

n (d- max) = 0.05293 with p-value 0.9977) for Lognormal-2P distribution and where, the 

D-critical value for K-S test for sample size 50 is 0.1884 at 5% significance level. Similarly, the 

A-D value (
AD

n(d-max) = 0.18403) for Log-Pearson-3P and (0.19412) for Lognormal-2P 

distribution where, the D-critical for A-D test for sample size 50 is 2.5018 at 5% significance level. 

By comparing the LP-3P and LN-2P distribution it must be revealed that LP-3P distribution poses 

much consistent and quite better performance than LN-2P for capturing the peak flow series.  

In the second stage, information criteria-based statistics are incorporated to find out the 

acceptability of the distribution functions pointed on the basis of K-S and A-D test as presented in 

Table 9(a). The relative performance measuring between the LP-3P and LN-2P distribution is 

further analyzed based on AIC, BIC & HQC, which usually highlights the trade-off relationship 

between model bias or uncertainty with the number of fitted parameters and estimated based on 

Eqs. (6)-(9). Minimum the value of AIC, BIC & HQC could indicate for the best-fitted model. 

From Table 9(b) it is indicating that the AIC, BIC and HQC values are at minimum for  
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 Table 9 Comparison of flood variables for different statistical distributions based on (a) K-S & A-D 

distance (or  d m a x  cri ter ia)  (b)  Information cri ter ia  stat ist ics ( i.e. ,  AIC, BIC & HQC) 
 

(a) 

[[Note: D-critical for A-D and K-S test statistics @ significance level of 5% or 0.05 for samples size 50 are 2.5018 & 

0.1884] 

 
(b) 

 
Peak                    peak volume Durations 

Functions AIC BIC HQC AIC BIC HQC AIC BIC HQC 

FRETCH(2P) -284.118 -280.294 -282.66 -274.569 -270.745 -273.11 -307.04 -303.22 -305.588 

FRETCH(3P) -371.057 -365.32 -368.87 -353.796 -348.06 -351.61 -331.1 -325.361 -328.912 

GEV(3P) -374.335 -368.599 -372.15 -268.985 -263.249 -266.8 -336.32 -330.583 -334.135 

LOG-GAMMA(2P) -370.146 -366.322 -368.69 -359.914 -356.09 -358.46 -340.53 -336.709 -339.077 

LOG-LOGISTIC(2P) -360.392 -356.568 -358.94 -294.927 -291.103 -293.47 -321.32 -317.493 -319.861 

LOG-LOGISTIC(3P) -371.549 -365.813 -369.36 -350.302 -344.566 -348.12 -330.41 -324.673 -328.225 

LOG-PEARSON(3P) -379.039 -373.303 -376.85 -375.318 -369.582 -373.13 -339.08 -333.347 -336.899 

GUMBEL(2P) -294.924 -291.1 -291.43 -308.477 -304.653 -307.02 -293.6 -289.775 -292.143 

GAMMA(2P) -335.861 -332.037 -334.4 -360.025 -356.201 -358.57 -260.55 -256.722 -259.089 

GAMMA(3P) -216.301 -210.565 -214.12 -210.107 -204.371 -207.92 -343.62 -337.886 -341.438 

EXPONENTIAL(1P) -242.501 -240.589 -164.07 -248.425 -246.513 -247.7 -179.33 -177.416 -178.6 

Continued- 

 peak volume durations 

Parametric 

candidate’s 

functions 

P-value KSn  

(d- max) 

and 

(d-max) 

P-value KSn  

(d- max) 

ADn 

(d-max) 

P-value KSn 

 (d- max) 

ADn (d-max) 

FRETCH(2P) 0.32428 0.13147 1.0751 0.28744 0.1359 1.1173 0.36268 0.1272 0.58456 

FRETCH(3P) 0.99732 0.05351 0.21153 0.96141 0.06828 0.3033 0.68038 0.09849 0.36878 

GEV(3P) 0.99655 0.05451 0.21667 0.99931 0.04897 0.24945 0.82259 0.086 0.35244 

LOG-GAMMA(2P) 0.97557 0.06486 0.22646 0.95247 0.07004 0.26683 0.85726 0.08255 0.3451 

LOG-LOGISTIC(2P) 0.96909 0.06655 0.24216 0.88242 0.07982 0.32827 0.73162 0.09416 0.49615 

LOG-LOGISTIC(3P) 0.9968 0.05421 0.23129 0.9471 0.07101 0.36216 0.6921 0.09751 0.38531 

LOG-PEARSON(3P

) 

0.99833 0.05178 0.18403 0.9919 0.05836 0.21229 0.80879 0.08731 0.33025 

GUMBEL(2P) 0.4966 0.11417 0.90135 0.62555 0.10307 0.74771 0.51472 0.11255 1.0798 

GAMMA(2P) 0.81376 0.08684 0.44712 0.94562 0.07126 0.34627 0.54764 0.10968 1.1617 

GAMMA(3P) 0.8802 0.08007 0.26953 0.98701 0.06089 0.21109 0.89254 0.07865 0.37708 

EXPONENTIAL(1P) 0.03558 0.19698 2.3258 0.0784 0.17643 2.1603 0.0000381 0.32306 6.9597 

EXPONENTIAL (2P) 0.45829 0.11768 2.3535 0.9265 0.07425 2.094 0.25721 0.13985 1.661 

LOG-NORMAL(2P) 0.9977 0.05293 0.19412 0.98539 0.06157 0.2338 0.60127 0.10511 0.4602 

Log-normal (3p) 0.99466 0.05638 0.20029 0.93057 0.07365 0.28195 0.79396 0.08867 0.33032 

BURR(3P) 0.99539 0.05573 0.20556 0.99847 0.05147 0.23983 0.564 0.10827 0.44764 

WEIBULL(2P) 0.81311 0.0869 0.73212 0.89172 0.07875 0.63575 0.23928 0.14235 1.5472 

WEIBULL(3P) 0.86868 0.08134 0.28905 0.99653 0.05454 0.194 0.88156 0.07992 0.45987 

INV.GAUSSIAN(2P) 0.98175 0.06293 0.38095 0.81919 0.08633 0.48954 0.87056 0.08114 0.60496 

GEN. GAMMA(3P) 0.66896 0.09944 0.45939 0.89941 0.07782 0.36811 0.28097 0.13672 0.91168 

GEN. GAMMA(4P) 0.42425 0.12092 2.4528 0.95878 0.06883 2.0178 0.89623 0.07821 0.3294 

INV. GAUSSIAN 

(3P) 

0.99323 0.05748 0.2024 0.92454 0.07453 0.27218 0.84885 0.08341 0.33031 

PEARSON 5 (3P) 0.99812 0.05219 0.20465 0.96087 0.0684 0.29419 0.7184 0.09529 0.35172 

PEARSON 6(3P) 0.84394 0.08391 0.31412 0.61982 0.10355 0.56175 0.82964 0.08532 0.35655 

Pearson 6(4p) 0.99812 0.05219 0.20465 7.0585

E-07 

0.37656 11.459 0.71263 0.09578 0.35114 

JOHNSON SB 0.84788 0.84788 14.822 0.99811 0.05222 0.17314 0.56249 0.1084 11.874 
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EXPONENTIAL (2P) -249.916 -246.092 -248.46 -345.901 -342.076 -344.44 -280.58 -276.758 -279.126 

LOG-NORMAL(2P) -379.344 -375.52 -377.89 -371.028 -367.204 -369.57 -327.46 -323.633 -326.001 

LOG-NORMAL (3P) -285.412 -279.676 -283.23 -352.906 -347.17 -350.72 -340.76 -335.026 -338.578 

BURR(3P) -373.626 -367.89 -371.44 -374.982 -369.246 -372.8 -320.24 -314.505 -318.057 

WEIBULL(2P) -329.681 -325.857 -328.23 -342.868 -339.044 -341.41 -292.91 -289.085 -291.453 

WEIBULL(3P) -200.361 -194.625 -200.9 -376.477 -370.741 -374.29 -200.15 -194.418 -197.97 

INV.GAUSSIAN(2P) -362.489 -358.665 -361.03 -344.722 -340.898 -343.27 -325.76 -321.938 -324.306 

GEN. GAMMA(3P) -321.553 -315.817 -319.37 -338.918 -333.182 -336.73 -290.95 -285.21 -291.856 

GEN. GAMMA(4P) -290.892 -283.325 -294.08 -360.62 -352.971 -357.71 -343.42 -335.769 -340.504 

INV. GAUSSIAN (3P) -199.634 -193.898 -197.45 -352.161 -346.425 -349.98 -343.74 -338.007 -341.559 

PEARSON 5 (3P) -371.12 -365.384 -367.9 -354.967 -349.231 -352.78 -334.53 -328.796 -332.348 

PEARSON 6(3P) -337.894 -332.158 -335.71 -237.013 -231.277 -234.83 -333.99 -328.253 -331.805 

PEARSON 6(4p) -371.698 -364.05 -368.79 -143.365 -135.717 -140.45 -332.8 -325.154 -329.89 

JOHNSON SB (4P) -340.899 -333.251 -337.99 -381.821 -374.173 -378.91 -223.65 -216.006 -220.742 

 

 

Log-normal-2P (AIC= -379.344, BIC= -375.52, HQC= -377.89) in comparison with 

Log-Pearson-3P for flood peak series (AIC=-379.039, BIC= -373.303, HQC= -376.85). 

In the third stage, the error indices statistics are estimated using the equations which are listed 

in Table 2 for the distributions selected in the first and second stage. It is seen in the Table 10 that 

MSE, RMSE, MAE and RSR values are at minimum for LP-3P distribution (MSE=0.0004525, 

RMSE=0.2127141, MAE=0.01840788, RSR=0.07387798) in comparison with LN-2P distribution 

(MSE=0.0004681, RMSE=0.02163505, MAE=0.018146725, RSR=0.075140942). Minimum the 

value of MSE, RMSE, MAE and RSR must be indicated for a better fit. Similarly, the NSE 

statistics for LP-3P distribution is higher (NSE= 0.994542) than LN-2P distribution 

(NSE=0.994354) such that value closer to „1‟ often indicates for better performance.  

Similarly, based on K-S and A-D test statistics for the hydrograph volume series, Johnson 

SB-4P and Weibull-3P distribution are selected such that the K-S value (
KS

n (d- max) = 0.0522 with 

p-value 0.99811) for Johnson SB-4P distribution and (
KS

n (d- max) = 0.05454 with p-value 0.99653) 

for Weibull-3P distribution. The A-D value (
AD

n(d-max) = 0.17314) for Johnson SB-4P and (0.194) 

for Weibull- 3P distribution. The performance of Johnson SB-4P is much satisfactory than the 

Weibull-3P distributions based on both K-S and A-D measures. Similarly, based on the information 

criteria statistics for volume series, AIC, BIC and HQC values are at a minimum for Johnson 

SB-4P distribution (AIC=-381.821, BIC=-374.173, HQC=-378.91) in comparison with 

Weibull-3P distribution (AIC=-376.477, BIC=-370.741, HQC=-374.29). Also, based on the error 

indices statistics of Table 10 for hydrograph volume series, it is revealing that the performance of 

Johnson SB-4P distribution (MSE=0.000412, RMSE=0.02027810, MAE=0.01867, RSR=0.07042) 

dominating and much consistent over the Weibull-3P distribution (MSE=0.0004762, 

RMSE=0.02182, MAE=0.01867, RSR=0.07579). Similarly, the NSE statistics of Johnson SB-4P 

(NSE=0.99450) is much closer to unity than Weibull-3P distribution and thus in support of 

Johnson SB-4P function.  

At first, the Inverse Gaussian-3P, Gamma-3P and Generalized Gamma-4P are selected for the 

duration samples based on K-S and A-D test statistics such that the K-S value (
KS

n (d- max) = 

0.08341 with p-value 0.84885) for Inverse Gaussian-3P distribution, (
KS

n (d- max) = 0.07865 with 
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p-value 0.89254) and (
KS

n (d- max) = 0.07821 with p-value 0.89623) for Generalized Gamma-4P. 

Similarly, the A-D value (
AD

n(d-max) = 0.33031) for Inverse Gaussian-3P distribution, (
AD

n(d-max) 

= 0.37708) for Gamma- 3P distribution and (
AD

n(d-max) = 0.3294) for Generalized Gamma-4P 

function.  
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Fig. 5 Model compatibility investigations in the context of pdf, cdf, p-p plot, q-q plot, probability 

difference plot, K-S test comparison cumulative plot and K-S test comparison percentile plot (a) between 

Lognormal-2P & Log-Pearsson-3P for flood peak, (b) between Johnson SB & Weibull-3P for volume and 

(c) and between Generalized Gamma-4P & Inverse Gaussian-3P for duration series 
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Table 10 Error indices statistics of flood characteristics for different statistical models 

 
 
Based on information criteria-based statistics of Table 10, it is pointing the Generalized 

Gamma-4P (AIC=-343.42, BIC=-335.769, HQC=-340.504) has the minimum values than Inverse 

Gaussian-3P and Gamma-3P distribution. Similarly, the error indices statistics of Table 10 also 

indicating and in favour of Generalized Gamma-4P distribution (MSE= 0.0008864, 

RMSE=0.02977254, MAE=0.023963239, RSR=0.103403315), but NSE statistics for all the three 

distribution are almost identical.  

A qualitative based approach via the graphical investigations are performed for each flood 

distributions series based on probability density plot, cumulative density plot, p-p plot, q-q plot, 

probability difference plot, K-S test comparison cumulative fraction plot and K-S test comparison 

percentile plot as illustrated from Fig. 5(a)-5(c). Based on the probability difference plot and p-p 

plot for flood peak variables are quite more consistent with the LP-3P distribution in comparison 

with LN-2P function such that LP-3P exhibited quite better consistencies near the tail of 

distributions. K-S test comparison cumulative fraction and percentile plot is also in favor of LP-3P, 

which performing quite better than LN-2P distribution. Similarly, for the hydrograph volume and  

duration series, the graphical approaches are also in support of the distribution selected based on 

qualitative approaches such as Johnson SB-4P (for volume series) and Generalized Gamma-4P (for 

duration series) distribution. Overall, based on analytical and graphical fitness measures, pointing 

towards flood peak samples seem to follow heavy-tailed Log-Pearson-3P distribution, hydrograph 

volume seems to follow Johnson SB-4P distribution and the hydrograph duration seems to follow 

Generalized Gamma-4P distribution to constructing the univariate flood marginals. 
 
 
5. Conclusions 

 

The higher degree of randomness and complex dependency among the intercorrelated flood 

characteristics, such as peak, volume & durations, often demanding for multivariate statistical 

treatment for accounting flow exceedance probabilities or design variable quantiles under the 

different notations of return periods. Actually, trivariate behaviour of the flood characteristics 

Flood vectors functions MSE RMSE NSE MAE RSR 

Peak LP-3P 0.0004525 0.021271419 0.994542 0.01840788 0.07387798 

LN-2P 0.0004681 0.021635059 0.994354 0.018146725 0.075140942 

Volume Weibull-3P 0.0004762 0.02182 0.99364 0.01867 0.07579 

Johnson SB (4P) 0.0004112 0.020278103 0.994507 0.017278038 0.07042 

Durations Gen. Gamma (4P) 0.0008864 0.029772541 0.98877 0.023963239 0.103403315 

Inv. Gaussian (3P) 0.0009166 0.030275057 0.988944 0.024196839 0.105148609 

Gamma (3P) 0.000918804 0.030312 0.988917 0.024593 0.105276 
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often limits the reliability of univariate continuous frequency relationship thus could be demanding 

for joint probability assessments of various possible combinations among flood characteristics 

such as between peak-volume/or volume-duration/or peak-duration. Flood become one of the most 

intensive and critical hydro-climatic issues over the Kelantan River basin Malaysia, more likely 

during the wet monsoon circulations. Multivariate hydrologic risk assessments could be an 

essential & practical demand for tackling several basin perspective water-related queries in this 

river basin. From the past decades, such correlation based stochastically hydro-climatic 

generations become much flexible and robust in the light of copulas multivariate framework in 

compare with the traditional multivariate functions which already reviewed in section 1. An 

interactive set of copulas often employed in modelling of extreme samples based on the bivariate 

or trivariate joint distribution analysis. Actually, copulas-based methodology segregated univariate 

marginal modelling independently from their joint dependence constructions thus often facilitating 

to select most justifiable or best-fitted probability density functions. 

Multivariate distribution analysis often demands the selection of most justifiable probability 

distributions for defining the univariate flood marginals before introducing into a joint framework. 

Therefore, in the present study, an extensive selection of marginal distribution for flood 

characteristics is performed by parametric estimation procedures. Actually, in hydrologic data 

modelling, no universally accepted models are assigned from any literature or in favour of any 

probability distribution functions which solely a trial and error procedure (Adamowaski 1985, 

1989, Silverman 1986). Also, several distributions often would fit the data equally well but, each 

would give different estimates of a given quantile especially in the tails of the distribution, which 

is solely based on the goodness-of-fit procedure to visualize the compatibility of the fitted 

distributions. Actually, the model performance evaluations and the selection of best-fitted 

distributions often demand many precise investigations otherwise inconsistencies might reveal for 

uncertainty. Also, the strength & weakness of different fitness statistics usually vary and having 

different extent during demonstrating gaps and dispensary among fitted distributions.  

Distinct varieties of 1-parameter, 2-parameters, 3-parameters and 4-parameters parametric 

family functions are employed and tested for event-based i.e., block (annual) maxima flood 

characteristics derived from the daily basis streamflow discharge records collected at the 

Gulliemard Bridge gauge station for Kelantan River basin in Malaysia. Vector of the unknown 

statistical parameters of fitted distributions for each flood series are estimated based on MLE, 

MOM, least squares method and L-moment density estimators. Different analytical based 

goodness-of-fit measures such as based on K-S and A-D distance criteria statistics, information 

criteria statistics (i.e.., AIC, BIC & HQC) and error indices statistics (i.e., MSE, RMSE, MAE, 

NSE & RSR) are incorporated for the parametric probability distributions for selecting the 

possible marginal structure of peak flow, volume and duration series based on the comparative 

assessments between their empirical cumulative and theoretical probabilities. In the first stage, 

K-S and A-D test value are used to select the closest distributions for each flood characteristics. In 

the second & third fitness stage, information criteria statistics based on AIC, BIC and HQC test 

values as well as error indices measures such as MSE, RMSE, MAE, RSR & NSE are also 

estimated and compared for each parametric distribution to find out the acceptability of the 

distribution functions selected on the basis of first stage fitness measures (i.e., based on K-S and 

A-D test statistics). Overall, after summarizing all the analytical testing measures, it is pointing 

towards the Log-Pearson (3P) distributions for flood peak discharge flow, Johnson SB (4P) for 

hydrograph volume and Gen. Gamma (4P) for modelling durations series. Several graphically 

based visual inspections are also carried out based on PDFs, CDFs, P-P plot, Q-Q plot, probability 
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difference plot, K-S test comparison cumulative plot and K-S test comparison percentile plot, 

which also in favour of the analytical based judgements. Finally, it is concluded that the flood peak 

flow series are best fit with the Log-Pearson-3P distribution, hydrograph volume series with the 

Johnson SB-4P distribution and the durations series are best fit with the Generalized Gamma-4P 

distribution.  

Unless the above univariate constructions are demonstrated in the light of parametric 

distributions framework, but no one could deny from their limitations such as prior to the 

distribution information before fitting random observations. As, no universally accepted 

distributions are assigned from any kinds of literature or either in favour of any probability density 

functions for tackling any hydro-climatic problems (Adamowaski 1985, Silverman 1986, Yue et al. 

1999). Also, based on the histogram of the flood vectors from Fig. 5, clearly pointing towards the 

bimodal distribution behaviour for the peak and volume samples and thus under such distribution 

environment, nonparametric based smoothing would be much consistency and stable (Sharma 

2000, Kim and Yoo 2003). Few attempts adapted the non-parametric i.e., kernel-based data 

smoothing procedure for solving several extreme consequences and their conclusion often 

revealing for much practical efforts in defining their marginal behaviour & design estimations in 

the context of lack of any prior density assumptions over the parametrical density framework (Lall 

and Moon 1993, Lall 1995, Adamowaski 1996, Bowman and Azzalini 1997, Kim et al. 2006). 

Therefore, future motivations will be extended to model such extreme consequences under the 

non-parametric concept in order to reproduce the random attributes represented by distributed the 

flood samples much smoothly. 
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