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Abstract.   A refined projection-based purely Lagrangian meshfree method is presented towards reliable 
numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-
varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with 
incorporation of volume fraction. These principal equations of mixture are discretized in the context of 
Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of 
governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), 
resulting in modified source term. The linear and nonlinear force terms are included in momentum equation 
to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration 
on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. 
The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical 
examples including the interactions between fluid flow and saturated/unsaturated porous media of 
uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of 
particle volumes and regular distributions of particles at the interface between fluid and porous media. 
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1. Introduction 

 

Fluid flow interaction with porous structures is ubiquitous in the coastal/ocean engineering fields. 

Representative examples are found in several types of significant coastal infrastructures, such as 

rubble mound breakwater, embankment and porous seabed. Indeed, in view of complex systems of 

interactions in between coastal waves and porous structures, evaluations of safety and functionality 

of such structures require detailed understanding on their mechanisms, e.g., wave interaction, 

reflection/dissipation properties. Accordingly, advancement of computational method for numerical 

analysis of fluid flow interaction with porous media presents great contributions to coastal/ocean 

engineering fields. 

With respect to characteristics of such important phenomena, e.g., presence of complex 

topologies, violent free-surface flows/waves and variable porosities in porous structure (Losada et 
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al. 2016), particle methods, or purely Lagrangian meshfree computational methods represented by 

SPH (Smoothed Particle Hydrodynamics; Gingold and Monaghan 1977, Lucy 1977), ISPH 

(Incompressible SPH, Shao and Lo 2003) and MPS (Moving Particle Semi-implicit; Koshizuka and 

Oka 1996), can be appropriate candidates for numerical modeling of fluid flow interaction with 

porous media. Up to now, indeed, thanks to their potential robustness as well as distinct advantages 

in simulating violent flows with moving boundaries (e.g., Shimizu et al. 2018, 2020, Vacondio et al. 

2021, Tazaki et al. 2021, Harada et al. 2019, Kim and Kim 2018), considerable efforts have been 

done to development of particle methods for ocean/coastal engineering phenomena (e.g., Gotoh and 

Khayyer 2018, Gotoh et al. 2021, Luo et al. 2021, Sun et al. 2019, Tsuruta et al. 2019, Khayyer et 

al. 2017a, Nguyen et al. 2021). 

Several studies have focused on development of WCSPH (Weakly Compressible SPH; 

Monaghan 1992)-based numerical wave flumes for analysis of fluid flow interaction with porous 

media. Ren et al. (2014) developed a porous flow model on the WCSPH solutions of spatially-

averaged continuity/Navier-Stokes equations with SPS (Sub-Particle-Scale; Gotoh et al. 2001) 

turbulence model. In their model, for satisfaction of fluid-porous media interface boundary condition, 

an imaginary transition area was assumed along the interface for update of spatially averaged 

velocity fields. Ren et al. (2016) developed an improved WCSPH method capable of simulating 

fluid-porous media interaction problems based on the VAFANS (Volume Averaged and Favre 

Averaged Navier–Stokes) equations together with SPS turbulence model. Fixed background 

porosity points were utilized to impose a transition zone on which porosity gradually change. The 

model was extended to three dimensions by Wen et al. (2018). Recently, Kazemi et al. (2019, 2020) 

incorporated macroscopic equations for numerical modeling of porous flow with WCSPH method, 

which resulted in accurate reproduction of several coastal engineering benchmarks. 

In the projection-based particle method framework, namely ISPH and MPS, Shao (2010) 

configured an ISPH method for simulation of fluid flow interaction with porous media. Fluid flows 

inside and outside porous media were separately solved, and then information of stresses and 

velocities were transferred between inside and outside through imaginary grid-lines located along 

the interface between fluid and porous media. Gui et al. (2015) developed an ISPH-based numerical 

wave flume for reproduction of solitary wave interaction with porous structures. An interface zone 

for smoothing pressure field was located along the fluid-porous media interface line. However, these 

interface treatments improved the stability of the methods, although a distinct advantage of 

projection-based methods, i.e. satisfaction of divergence-free velocity field, was not guaranteed any 

more. Khayyer et al. (2017b) applied their Enhanced ISPH model for porous flow simulations, 

where the continuity of pressure at fluid-porous media interface is well guaranteed without any 

artificial treatment on interface thanks to the incorporated refined schemes. Recently, Tsurudome et 

al. (2020, 2021) applied their ISPH porous flow model for numerical analysis of solitary wave run-

up on permeable beaches. 

Recently, mixture theory (Drew 1983) has been incorporated for development of fluid-porous 

media two-phase particle-based methods. Peng et al. (2017) founded an improved WCSPH method 

on the basis of the solution of reformulated continuity/Navier-stokes equations by considering 

volume fraction concept regarding the two-phase mixture theory. Bui and Nguyen (2017) proposed 

EISPH (Explicit ISPH)-based numerical framework capable of simulating fluid-deformable porous 

media interaction problems. The governing equations were reformulated according to Biot’s two-

phase mixture theory whereas the deformable porous media were modeled by SPH-based elasto-

plastic material model. Khayyer et al. (2018a) developed an Enhanced ISPH method with 

incorporation of volume fraction in connection with mixture theory, which can accurately simulate 
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fluid flow passing through spatially-varying porous media. Thanks to the new modified PPE, derived 

from reformulated governing equations based on volume fraction, the method guaranteed 

continuities of pressure/velocity and regularity of particles at the interface of fluid and porous media 

without any use of interface smoothing/averaging. Wen et al. (2020a, b) developed an improved 

fluid-porous media interaction solver in which mixture theory-based governing equations are 

discretized within WCSPH framework. Their solver was proven to well perform a simulation of 

wave interaction with inhomogeneous fully-saturated coral reef body thanks to their mixture theory-

based governing equations. All these aforementioned approaches have presented drastic 

improvements of the numerical methods thanks to precise computational modeling based on mixture 

theory-based governing equations. However, all these models considered constant particle volume 

both inside/outside the porous media, and therefore the applications of those models towards 

unsaturated porous media should be challenging from a theoretical point of view. 

Towards development of reliable particle-based methods for reproduction of fluid-unsaturated 

porous media interaction problems, Akbari and Namin (2013) developed the so-called ISPHP 

(Incompressible smoothed particle hydrodynamics in porous media) method, where a novel concept 

corresponding to apparent density was proposed. The ISPHP method was further developed in the 

work of Akbari (2014) by incorporating SPS turbulence model. Porosities of particles were 

estimated through SPH-based kernel summations of spatially-fixed background meshes and the 

representative particle volumes were altered according to calculated apparent density as particles 

entered/left the porous structure. The apparent density, or particle volume variation, approach has 

been utilized in the context of ISPH (e.g., Pahar and Dhar 2016, 2017), EISPH (Basser et al. 2017), 

and WCSPH (Akbari and Taherkhani 2019, Akbari and Pooyarad 2020). Nevertheless, in the 

aforementioned studies, the representative volumes of particles are varied with keeping the physical 

density constant as fluid particles entered/left the porous region, on which physical inconsistencies 

arise.  

In this paper, a refined ISPH framework is configured for the analysis of fluid flow interactions 

with saturated/unsaturated porous media of uniform/spatially-varying porosities. The two-phase 

mixture theory (Drew 1983, Gotoh 2022) is taken into account for the principal equations, leading 

to a modified source term in PPE. The volume fractions of mixture particles, corresponding to 

porosities, are estimated with SPH-based kernel summation of spatially-fixed porous skeletons. On 

the basis of their volume fractions, the volumes of mixture particles are varied for rigorous 

satisfaction of mass conservation. The incorporation of both volume fraction of mixture theory and 

the concept of volume variation provides physical consistency of the proposed method. In addition 

to volume fraction, the resistance from porous media to fluid flow is expressed through application 

of linear and nonlinear resistance force terms in the momentum equation (Losada et al. 2016, Pahar 

and Dhar 2016, Peng et al. 2017). The proposed ISPH method is enhanced in terms of accuracy and 

stability by adopting several previously developed enhanced schemes, and thus the method is simply 

referred to as Enhanced ISPH method. The Enhanced ISPH would be shown to accurately reproduce 

fluid flow interactions with saturated/unsaturated homogeneous/spatially-varying porous media 

with continuities of velocity/pressure and regularity of particle distributions at the interface between 

fluid and porous media without any uses of numerical interface smoothing/averaging technique.  

The paper is organized in the following manner. In Section 2, the proposed Enhanced ISPH 

method is comprehensively described. Section 3 includes the validations of the method by 

simulating several benchmark tests. Section 4 provides the conclusions of this work and our future 

works. In addition, Appendix section gives a detailed derivation procedures of the governing 

equations considered in this study. 
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2. Numerical method 

 
A schematic figure of the proposed concept is presented in Fig. 1. Similar to the ISPH work by 

Khayyer et al. (2018a), which is rigorously applicable to only saturated porous media of 

uniform/spatially varying porosities, the pure fluid flow (Fig. 1(a)) and flow inside porous media 

are governed by unique governing equations reformulated based on mixture theory (Fig. 1(b1)) by 

Drew (1983). Thanks to the formulation based on the consistent mixture theory-based governing 

equations, the proposed ISPH porous flow model can ensure the pressure/velocity continuities and 

volume conservation property at fluid-porous media interface, as presented in Khayyer et al. (2018a). 

In addition, the proposed method also incorporates the volume increase concept inside porous media 

(Fig. 1(b2)) by Akbari (2014), which improves adaptivity towards fluid-unsaturated porous media 

interaction phenomena. Nevertheless, this numerical modeling brings physical inconsistency i.e. 

artificial treatment of density is needed only for calculation of particle volume. In this study, as 

shown in Fig. 1(c), thanks to incorporation of both concepts, physically consistent modeling of fluid 

flow interaction with saturated/unsaturated porous media of uniform/spatially varying porosities is 

achieved. 

 

2.1 Governing equations 

 

Based on the two-phase mixture theory (Drew 1983), the continuity and linear momentum 

equations governing fluid motion in inside and outside domains of porous media are described as 

follows (Peng et al. 2017, Bui and Nguyen 2017, Khayyer et al. 2018a).  

0
D

Dt


  u                              (1) 

D

Dt
   

u
σ g R                            (2) 

where u is seepage velocity vector, t represents time, ρ denotes density, g signifies gravitational 

acceleration vector, σ refers to stress tensor, R stands for the resistance force from porous media; 

superscript bar “－” refers to partial variables, described as follows 

φ  ; φR R ; φσ σ  ; 2p   σ I S                  (3) 

where p is pressure,  indicates dynamic viscosity; φ signifies the volume fraction of fluid phase, 

which corresponds to the percentage of volume occupied by fluid (V F) within the local volume (V), 

i.e., φ = V F/V.  
The resistance force acting on fluid phase from porous media, R, is described as follows 

2 3ch

p p

F ρμ
φ φ φ p φ

K K
     R R u u u   ; 

 

3 2

2
1

c
p

φ D
K

φ



; 

3

1.75

150
chF

φ
   (4) 

where Kp denotes permeability;  is a tuning parameter ( = 100-2000; Pahar and Dhar 2016) and 

 = 150 is considered in this study (Peng et al. 2017). The variable Dc is characteristic length, that 

is set as mean grain diameter of porous material, d50 (i.e. Dc = d50). In Eq. (4), the first and second 

terms on the right hand side are linear (Darcy 1856) and nonlinear (Forchheimer 1901) drag 
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Fig. 1 Schematic sketch of (a) reference variables corresponding to those of particles outside porous media; 

concepts of (b1) mixture theory as well as (b2) volume variation for particles inside porous media; and (c) 

concept of proposed method 

 

 

forces (Losada et al. 2016, Pahar and Dhar 2016, Peng et al. 2017). The third term is called 

“buoyancy term” (Drew 1983, Drumheller 2000, Bandara and Soga 2015, Bui et al. 2017), which is 

of importance to be considered for immiscible mixtures e.g. mixture of fluid and porous medium. 

The buoyancy effect is induced due to presence of fluid-porous media interface, which is associated 

with momentum sinks by the pressure distributions on surfaces of surrounding porous skeletons 

(Drew 1983, Ni and Beckermann 1991, Farrokhnejad 2013).  
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Accordingly, Eqs. (1) and (2) will be rewritten as follows 

D Dφ

Dt φ Dt

 
   u                           (5) 

  21 ch

p p

FD ν ν
p φ φ φ

Dt ρ φ K K
        

u
u g u u u             (6) 

The detailed derivations of Eqs. (5) and (6) are presented in Appendix section. 

 

2.2 Modifications attributed to incorporation of volume fraction – source term, definition 
of density, volume change 

 

The volume fraction of target particle i (φi) is calculated through consideration of the volume 

fraction of its neighboring solid (porous medium) particles (φp) as follows 

1
P

i p ij j

j Ω

φ φ w V


    ; 1p wφ n                        (7) 

where ΩP stands for the solid (i.e., porous media) sub-domain, V denotes the particle volume; nw 

signifies porosity of porous structure; w is kernel function (fifth-order quintic Wendland kernel; 

Wendland 1995). Note that fluid volume fraction, φ, is equal to 1 for the particle without any solid 

particles inside influence area (i.e. the particle belongs to pure fluid domain), which automatically 

results in no resistance force (R = 0). Whilst, for the fluid particles entirely inside of porous media, 

fluid volume fraction will be estimated equal to the porosity of porous media (φ = nw). 

The volume of fluid particles, V , is calculated using the following equation 

0 0i
i

i i i i

m m V
V

ρ ρ φ φ
                             (8) 

where m represents mass; m0 and V0 correspond to reference particle mass and volume (i.e., particle 

mass and volume in pure fluid domain; Fig. 1(a)), respectively. Eq. (8) implies that the volume of 

fluid particles increases while entering porous domain, similar to the previous works (Akbari 2014, 

Pahar and Dhar 2016, Harada et al. 2021). This volume change is induced by the fact that partial 

density, φ  , varies according to volume fraction while partial mass of each computational point, 
m , is constant in both inside and outside porous media. 

The partial density of target particle i is estimated by taking the summation of mass for 

neighboring particles as follows 

F

i j ij

j Ω

ρ m w


                               (9) 

where ΩF stands for the fluid sub-domain. By considering φ   (Eq. 3) and 0m m , Eq. (9) 

will be rewritten as 

0
0

1

F F

i ij ij

j Ω j Ωi j

m
ρ m w w

φ φ 

                       (10) 
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The linear momentum conservation is guaranteed between inside and outside of porous media as 

shown in the following equation 

0
0

V
V φ V

φ
   u u u                          (11) 

The left and right hand-sides of Eq. (11) correspond to fluid’s linear momentum of outside and inside 

of porous media, respectively. 

In general, the PPE (Poisson Pressure Equation) is obtained based on the concept of Chorin’s 

projection method (Chorin 1968, Chorin and Marsden 1993). In accordance with the work by 

Khayyer et al. (2018a), the modified PPE is described as follows 

2 1

0

Δ 1 1
c c

k

i iii

t Dρ Dφ
p

ρ ρ Dt φ Dt

    
     

   
               (12) 

where the superscript c represents the correction time step. 

 

2.3 Enhanced ISPH schemes 

 
The proposed method adopts several refined schemes, i.e. Higher-order Source term of PPE (HS; 

Khayyer and Gotoh 2009); Higher-order Laplacian of PPE (HL; Khayyer and Gotoh 2010); Error 

Compensating Source term of PPE (ECS; Khayyer and Gotoh 2011); Gradient Correction (GC; 

Khayyer and Gotoh 2011); and Dynamic Stabilization (DS; Tsuruta et al. 2013). Note that by 

considering volume variations of particles explained in Eq. (8), multi-resolution ISPH framework 

of Khayyer et al. (2021a) is implemented, i.e. the common smoothing length based on the largest 

particle (or the fluid particle entirely inside porous domain) is applied for all fluid particles (i.e., h = 

1.2 0 /sD
wV n ; where h is smoothing length and Ds is the number of space dimensions). 

The modified PPE of Eq. (12) is further revised by incorporating the ECS scheme in order for 

minimization of projection-related numerical errors 

2 1
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c c

k

i iii

t Dρ Dφ
p S
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    
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 (14) 

where 0 represents the reference (initial) density, which is computed in perfectly regular particle 

distribution. 
The left hand side and the first term on the right hand side of Eq. (13) are respectively discretized 

by HL and HS schemes as follows 

2

2 1
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j Ω ij ij ij ij ij
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*

F

c

j ij ij

j Ωi

Dρ
m w

Dt 

 
    

 
 u                       (16) 

where uij = uj  ui, pij = pj  pi , rij = rj  ri , r = |r|, and r denotes the position vector; the superscript 

* signifies the pseudo time step k+1/2.  

The discretization of the second term on the right hand side of Eq. (13) is carried out as follows 

similar to the work by Khayyer et al. (2018a) 

*

P

c

P ij i j

j Ωi

Dφ
φ w V

Dt 

 
   

 
 u                        (17) 

A Taylor-series consistent pressure gradient operator model enhanced by GC and DS schemes 

are considered as: 
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where Li signifies Gradient Corrective matrix; Fij
DS represents a stabilizing force for target particle 

i by its neighboring particle j; Πij is a parameter to adjust the magnitude of Fij
DS; αDS denotes a 

constant for adjusting active range of Fij
DS; αdt is the ratio of the time step to Courant number; d 

stands for the particle diameter; rij
*

| | symbolizes the parallel vector of rij
* and rij

*
⊥

 denotes the normal 

vector of rij
* with rij

* rij
*
| | rij

*
⊥. 

Detailed information on the adopted refined ISPH schemes are comprehensively described in 

several recent publications (Khayyer et al. 2018b, 2019a, 2021b, c, Shimizu et al. 2021) and 

textbook of Gotoh (2018). In regard to the incorporated enhanced schemes, the proposed ISPH 

method is simply called as Enhanced ISPH. 

 
 
3. Numerical validations and investigations  
 

In this section, verifications are performed from the viewpoints of accuracy and stability, through 

reproduction of numerical examples including rapid seepage flows in rockfill dam (Larese et al. 

2012, Peng et al. 2017), rapid seepage flow in rockfill material with protection layer (Larese et al. 

2015, Morán 2013) and wave interaction with porous structure (Liu et al. 1999).  
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Fig. 2 Schematic sketches of benchmark test of rapid seepage flows in rockfill dam, (a) without drain zone 

and (b) with drain zone 

 
 
3.1 Rapid seepage flow in rockfill dam  
 
Rapid seepage flows in rockfill dam, corresponding to the experiment by Larese et al. (2012), is 

simulated. Similar to the numerical study by Peng et al. (2017), two test cases, without and with 

draining zone (i.e., uniform and variable porosity, respectively), are considered as illustrated in Figs. 

2(a) and 2(b), respectively. 

The computational condition of benchmark test in the absence of draining zone (uniform porosity) 

is demonstrated in Fig. 2(a). The pressure head is measured at the pressure transducers (P1-P4; 

located at x = 2.75 m, 3.25 m, 3.75 m, 4.30 m; Fig. 2(a)). The setup is of 1m height and 2.64 m width. 

Both upstream and downstream slopes of rockfill dam are set 1.5H:1V and its crest is of 0.2 m length. 

The inlet flow with a discharge of Q = 25.46 l/s is imposed from left inlet boundary. The rockfill 

dam comprises of gravel with the mean grain diameters and porosity of d50 = 0.03504 m and nw1 = 

0.41, respectively. The particles are set as to be of 2.0E-2 m in diameter (d0 = 2.0E-2 m) and the 

computational time step size is adjusted based on CFL condition (Courant-Friedrichs-Lewy 

condition; CFL number = 0.2) and a preset maximum allowable time step size of Δtmax = 2.0E-3 s. 

The density and kinematic viscosity of the water is set as 1.0E+3 kg/m3 and 1.0E-6 m2/s. 

Fig. 3 illustrates the pressure head time variations measured at pressure transducers. From this 

figure, a steady state is reached at about t = 250.0 s. Fig. 4 portrays snapshots illustrating pressure 

fields at unsteady (t = 75.0 s) and steady (t = 500.0 s) states reproduced by the proposed Enhanced 

ISPH method. As shown in this figure, the proposed method provides smooth/stable pressure field, 

including the fluid-porous media interface. The gradual variations of particle volumes and almost 

regular distributions of particles at interface of fluid and porous media are also clearly shown from 

the presented figure.  
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Fig. 3 Time variations of pressure heads measured at reference points P1-P4 – rapid seepage flows in 

rockfill dam without drain zone 

 

 
Fig. 4 Typical snapshots of particles illustrating the spatial distributions of pressure field at unsteady and 

steady states (t = 75.0 s and 500.0 s, respectively) – rapid seepage flows in rockfill dam without drain zone 

 

 

The pressure head (Hp) profiles at steady state flow (t = 500.0 s) are presented in Fig. 5, where 

the reproduced results by Enhanced ISPH under different spatial resolutions (d0 = 2.0E-2 m, 3.0E-2 

m and 4.0E-2 m) are compared with corresponding experimental data of Larese et al. (2012). 

Acceptable agreement are obtained in the pressure head profiles for all considered resolutions. 

The benchmark test with draining zone (variable porosity), corresponding to the computational 

setup shown in Fig. 2(b), is also carried out by Enhanced ISPH. The porosities of main porous 

material of rockfill dam and draining zone material are set as 0.41 and 0.8, respectively (nw1 = 0.41 

and nw2 = 0.8). Figs. 6(a) and 6(b) present particle distribution illustrating pressure and particle 

diameter fields in a steady state (t = 500.0 s). As shown in Fig. 6(a), continuous/smooth pressure  

72



 

 

 

 

 

 

An enhanced incompressible SPH Method for simulation of fluid flow interactions… 

 
Fig. 5 Quantitative comparison of pressure head (Hp) profiles reproduced by Enhanced ISPH with three 

sets of different particle diameters with respect to that in the experiment by Larese et al. (2012) – rapid 

seepage flows in rockfill dam without drain zone 

 

 
Fig. 6 Typical snapshots of particles together with (a) pressure/(b) diameter fields illustrating the pressure 

continuity, regularity of particle distributions as well as gradual variation of particle diameter at the fluid-

porous media interfaces for the case of (nw1, nw2) = (0.41, 0.80) at t = 500 s – rapid seepage flows in rockfill 

dam with drain zone 

 

 

field is reproduced by Enhanced ISPH at the interfaces between fluid and main porous material as 

well as at the one between main porous dam and draining zone. From Fig. 6(b), Enhanced ISPH 

method is shown to provide regular distributions of particles and stable/gradual variation of particle 

volume both at fluid-porous media and porous-porous interfaces. 
Fig. 7 describes the pressure head profiles by the proposed method with different porosities of 

draining zone (nw2 = 0.41, 0.6, 0.8). According to this figure, as the porosity of draining zone 

increases, the pressure head gradually drops, implying applicability of the proposed method towards 

the problems of fluid flow interactions with unsaturated porous media of spatially varying porosity. 
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Fig. 7 Quantitative comparison of pressure head (Hp) profiles reproduced by the proposed Enhanced ISPH 

with a set of different combinations of porosities – rapid seepage flows in rockfill dam with drain zone 

 

 
Fig. 8 Schematic sketch of benchmark test of rapid seepage flow in rockfill material with protection layer 

 

 

3.2 Rapid seepage flow in rockfill material with protection layer 
 
The experimental benchmark test of rapid seepage flow in rockfill material with protection layer 

(Larese et al. 2015, Morán 2013) is performed, in order to investigate stability and accuracy of the 

Enhanced ISPH method towards fluid-porous media interaction problems with variable mean grain 

diameter. Fig. 8 presents a sketch of computational setup. The rockfill dam is of 1.32 m width, which 

is composed of two types of gravels. The main body of rockfill dam is made of fine gravels (d50 = 

0.0126 m) with a porosity of nw = 0.41. The toe of the dam is covered with protection layer consisting 

of coarse grains (d50 = 0.0350 m) with a porosity of nw = 0.41. The water flows from left inlet 

boundary with three sets of unit discharges of q = 9.2 l/m/s, 11.2 l/m/s and 15.9 l/m/s. The particle 

diameter and maximum allowable time step size are considered to be d0 = 2.0E-2 m and Δtmax = 

2.0E-3 s, respectively. The fluid is water with a density of 1.0E+3 kg/m3 and a kinematic viscosity 

of 1.0E-6 m2/s. 

Fig. 9 presents snapshots of particles illustrating the spatial distributions of pressure with a set of 

unit flow rates of q = 9.2 l/m/s, 11.2 l/m/s and 15.9 l/m/s simulated by the proposed ISPH method at 

steady state (t = 500.0 s). For all cases of unit discharge rates, smooth pressure fields are reproduced 

by Enhanced ISPH at the interfaces between outer fluid and porous media as well as between main 

porous material (d50 = 0.0126 m) and protection layer (d50 = 0.0350 m). 
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Fig. 9 Typical snapshots illustrating the spatial distributions of pressure field with a set of unit flow rates q 

= 9.2 l/s/m, 11.2 l/s/m and 15.6 l/s/m at t = 500.0 s (steady state) – rapid seepage flow in rockfill material 

with protection layer 

 

 

Fig. 10 plots the pressure head profiles simulated by the proposed method in comparison with 

those of the experiment (Morán 2013) considering a set of unit discharge rates. From the presented 

figure, Enhanced ISPH is quantitatively found to provide an almost acceptable accuracy for all cases 

of unit discharges.  

 
3.3 Wave interaction with porous structure 
 

Wave interaction with porous structure, the experiment by Liu et al. (1999), is reproduced by 

Enhanced ISPH method. Fig. 11 describes a schematic sketch of the benchmark test. The porous 

structure consists of gravels with a mean grain diameter of d50 = 0.0159 m and porosity of nw = 0.49.  
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Fig. 10 Quantitative comparisons of pressure head (Hp) profiles reproduced by Enhanced ISPH with three 

sets of different unit flow rates with respect to those in the experiment by Morán (2013) – rapid seepage 

flow in rockfill material with protection layer 

 

 
Fig. 11 Schematic sketch of benchmark test of wave interaction with porous structure 

 

The particles are 5.0E-3 m in diameter (d0 = 5.0E-3 m) and the maximum allowable time step size 

is set as Δtmax = 8.0E-4 s. The water with a density of 1.0E+3 kg/m3 and a kinematic viscosity of 

1.0E-6 m2/s is considered as fluid. 

Fig. 12 presents a set of snapshots corresponding to the simulation of wave interaction with 

porous structure using Enhance ISPH along with free surface profiles of the corresponding 

experiment (Liu et al. 1999). From this figure, the free surface profiles reproduced by Enhanced  
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Fig. 12 Typical snapshots illustrating the spatial distributions of pressure field at t = 0.2 s to 2.2 s together 

with experimental data by Liu et al. (1999) – wave interaction with porous structure 

 

 

ISPH are shown to be in good agreement with those of experiment. According to these figures and 

presented enlarged views, the Enhanced ISPH also has presented smooth/continuous pressure field 

and almost regular distribution of particles across the interface between fluid and porous media. 
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Fig. 13 Typical snapshots illustrating the spatial distributions of pressure field reproduced by Enhanced 

ISPH by Khayyer et al. (2018a) (left) and proposed Enhanced ISPH (right) at t = 0.4 s and 1.2 s together 

with experimental data by Liu et al. (1999) – wave interaction with porous structure 

 

 
Fig. 14 Time variations of water surface elevations at the center of the tank (x = 0.445 m) reproduced by 

proposed Enhanced ISPH, Enhanced ISPH by Khayyer et al. (2018a), MMPP by Akbari (2014) and that of 

experiment by Liu et al. (1999) - wave interaction with porous structure 

 

 

Fig. 13 provides a qualitative comparison of present Enhanced ISPH and Enhanced ISPH 

corresponding to that of Khayyer et al. (2018a), which is developed for fluid-saturated porous media 

interaction problems. As shown in this figure, thanks to the implemented volume change concept 

explained in section 2.2, the accuracy of Enhanced ISPH is drastically improved with respect to 
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ISPH of Khayyer et al. (2018a), in terms of agreement with free surface profiles observed in 

experiment.  

Fig. 14 shows time series of free surface elevations at the center of the tank (x = 0.445 m) 

simulated by the proposed Enhanced ISPH and the Enhanced ISPH of Khayyer et al. (2018a) along 

with the result of Modified Moving Particle method in Porous media (MMPP) method by Akbari 

(2014) and that of experiment by Liu et al. (1999). It can be seen that the proposed Enhanced ISPH 

has outperformed Enhanced ISPH of Khayyer et al. (2018a) quantitatively with respect to that of 

experiment. Also, both the proposed Enhanced ISPH and the MMPP model by Akbari (2014) have 

resulted in accurate estimation of the free surface elevation, indicating the significance of 

incorporation of volume variation concept (Akbari 2014) towards the simulation of fluid-unsaturated 

porous media interaction problems. 

 
 
4. Conclusions 

 
This study presents a refined projection-based purely Lagrangian meshfree method for numerical 

analysis of fluid flow interactions with both saturated/unsaturated porous media of 

uniform/spatially-varying porosities. The governing equations correspond to reformulated 

continuity and Navier-Stokes equations based on the volume fraction of two-phase mixture theory 

(Drew 1983). The proposed method is founded on an enhanced Incompressible SPH (ISPH) that 

adopts a set of refined schemes for stability and accuracy. 

The effect of porous media is expressed through i) linear/nonlinear resistance force terms in the 

linear momentum equation, ii) additional source term of PPE (Poisson Pressure Equation), and iii) 

variations of particle volumes based on volume fraction. The volume fraction of fluid is estimated 

with a SPH-based kernel summation of spatially-fixed porous particles, which results in gradual 

variations of volume fraction and consequently particle volume at fluid-porous media interfaces. 

The effect of additional source term of PPE (Khayyer et al. 2018a) is also included at the phase 

interface, stabilizing the variations of source term at interface. Thanks to incorporations of these 

approaches and several refined schemes, the continuities of pressure and space (i.e., regularity of 

particle distributions) at interface between fluid and porous media are guaranteed, even in the cases 

of spatially varied porosity without the uses of numerical techniques (e.g., Shao 2010, Ren et al. 

2014, Fu and Jin 2018, Gui et al. 2015). The computational framework of proposed method is 

comprehensively described and shown to be physically/mathematically consistent. 

For model validation, the proposed Enhanced ISPH method is applied to several numerical 

examples, corresponding to rapid seepage flows in rockfill dam (Larese et al. 2012, Peng et al.  

2017), rapid seepage flow in rockfill material with protection layer (Larese et al. 2015, Morán 2013) 

and wave interaction with porous structure (Liu et al. 1999). In general, the method has provided 

acceptable accurate results from both qualitative and quantitative viewpoints. In specific, smooth 

pressure field and almost regular distributions of particles are observed at the interface between fluid 

and porous media, verifying the accuracy and robustness of the proposed method. 
Future works correspond to further enhancements of the proposed method in terms of accuracy 

and stability, e.g. incorporation of optimized particle shifting scheme (OPS; Khayyer et al. 2017c, 

2019b) or high-order time integration schemes (Shimizu et al. 2016, Matsunaga and Koshizuka 

2022). In addition, specific focus will be devoted to the inclusion of soil model (Ikari et al. 2020) 

into the present framework in order to extend the method for simulation of the fluid flow interaction 

with deformable porous media (e.g., Bui and Nguyen 2017). 
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Appendix 
 

Referring to the mixture theory (Drew, 1983), the governing equations for mass and linear 

momentum conservations, which can be applied in an arbitrary position in the domain, are derived 

by incorporating the concept of volume fraction φ (Drew 1983, Pitman and Le 2005). In this study, 

the solid phase (porous media) is fixed in time and space, and hence governing equations are 

described only for fluid domain. In the present appendix, the detailed derivation procedure of 

principal equations for fluid domain under the existence of solid (porous media) phase is provided.  

From the continuity equation (conservation of mass), for a closed imaginary control volume Ω 

with surface boundary Γ, the variation in time of mass inside the control volume is equal to the total 

mass traversing across the surface (i.e., inflow/outflow flux expressed as nu ρφ ). Accordingly, the 

continuity equation of fluid phase for a control volume of fluid/porous medium two-phase system is 

described as 

0
Ω Γ

dV dS
t





  

  u n  ; φ                        (A.1) 

where φ stands for fluid volume fraction; dV represents the fluid particle volume, dS stands for 

surface boundary of control volume; ρ is the fluid density; u denotes particle velocity vector; t 

represents time; n signifies the unit vector normal to the surface on the control volume in outward 

direction. From Gauss divergence theorem, Eq. (A.1) is transformed as follows 

  0
Ω Ω

dV dV
t





   

  u                         (A.2) 

  0
Ω

dV
t




 
  

 
 u                         (A.3) 

The integrand is continuous and the variables inside the integrand are independent on V, and thus 

Eq. (A.3) is reformulated to a partial differential equation as 

  0
t





 


u                            (A.4) 

The second term on the left hand side can be extended as 

  0
t


 


    


u u                         (A.5) 

By considering total time derivative of ρφ as 

 
D

Dt t

 



  


u                            (A.6) 

Eq. (A.5) can be finally reformulated as a Lagrangian form 

0
D

Dt


  u                             (A.7) 

This equation corresponds to the continuity equation in Eq. (1).  

Eq. (A.7) can be further transformed by considering the fact that  and φ are dependent on time 

as 
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D D φ D Dφ
φ

Dt Dt Dt Dt

  
                        (A.8) 

By considering Eqs. (A.7) and (A.8),  

0
D Dφ

φ φ
Dt Dt


    u                      (A.9) 

and thus, 

D Dφ

Dt φ Dt

 
   u                     (A.10) 

This is also the continuity equation of Eq. (5).  

The momentum conservation equation can be described for a considered control volume as 

       
Ω Γ Ω

dV dS dV
t


 


     

  
u

n u u σ f           (A.11) 

where σ represents the stress tensor; φσ σ  and σ = pI +2μS, where p stands for fluid pressure; 

μ signifies fluid dynamic viscosity; S is the strain rate tensor; f refers to the body force. The strain 

rate tensor S is written as 

 

2

uu
S




T

                             (A.12) 

By applying Gauss divergence theorem, Eq. (A.11) will be reformulated into Eq. (A.13). 

  0
Ω

dV
t


 

 
     

 


u
u u σ f             (A.13) 

The integrand is continuous and the variables inside the integrand are independent on V, and thus 

the integral form of momentum conservation equation is reformulated to a partial differential 

equation as 

 
t


 


   



u
u u σ f                 (A.14) 

The first and second terms on the left hand side of Eq. (A.14) can be expended 

 
t t


  

    
         

    

u
u u u u σ f          (A.15) 

By considering the continuity equation (Eq. A4), the first term on left hand side of Eq. (A.15) is 

equal to zero. By considering total time derivative of u, the second term on left hand side of Eq. 

(A.15) is reformulated as 

D

Dt t


  


u u
u u                        (A.16) 

The body force f in Eq. (A.15) comprises the acceleration by resistance force from porous media 

( / R  ) and gravitational acceleration vector (g). Through reformulation of Eq. (A.15) into a 

Lagrangian form, Eq. (A.17) is derived as follows 
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D

Dt
   

u
σ g R                        (A.17) 

which is equivalent to the momentum equation of Eq. (2). 

Eq. (A.17) can be further transformed by considering the relations of φ   , φR R  , 
φσ σ  and  σ = pI +2μS as 

   
D

φ pφ μφ φ φ
Dt

      
u

u g R               (A.18) 

   
D

φ p φ φ p μ φ φ φ
Dt

          
u

u g R             (A.19) 

By applying resistance force term R as 

2

3/2

1.75

150p p

μ ρ
φ φ pφ φ

K K φ
    R u u u ;

 

3 2

2
1

c
p

φ D
K

φ



;

3

1.75

150
chF

φ
   (A.20) 

we have 

  21 ch

p p

FD ν ν
p φ φ φ

Dt ρ φ K K
        

u
u g u u u         (A.21) 

This equation corresponds to the momentum equation adopted in this study (Eq. (6)).  
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