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Abstract.  Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in 
port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be 
interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method 
is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of 
area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the 
acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) 
positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters 
using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 
250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric 
multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies 
as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a 
seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 
71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the 
study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%). 
 

Keywords:   bathymetric difference; clayey sand; kappa coefficient; overall accuracy; sandy silt; silt; 

silty sand 

 
 
1. Introduction 

 

Coastal areas (coastlines, beaches and coastal environments) have been known to attract people 

for thousands of years and continue to do so today. Many human activities are concentrated in this 

coastal area, as evidenced by the many large cities with dense populations growing there. Coastal 

activities require nautical charts to support economic and environmental activities on the coast. 

Nautical charts are essential in providing data and marine information and describing the seabed and 

coastline (NOAA 1997).  

Nautical charts contain graphical information about the sea and coastal areas, including sea 

depths, seabed sediments, natural, and artificial shores, navigational hazards, natural aids to 

navigation, and artificial tides, currents, and man-made structures (IHO 2005). In addition, equally 

important information that must be included in a nautical chart is the characteristics of seafloor 
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sediments (Garlan et al. 2018). Characteristics of seafloor sediments are an essential research topic 

in shallow coastal waters, such as hydrology, marine and coastal spatial planning, marine 

engineering (dredging, underwater, cable and road laying pipes), harbor development, benthic 

habitat mapping, and underwater communications (Penros et al. 2005). The interpretation, 

classification, and distribution of seafloor sediments can be accomplished by collecting sediment 

samples directly in the field using a grab or corer. However, of course, this requires much effort in 

terms of time and cost, which results in low resolution. Another method is optical, especially using 

underwater cameras and videos (Fonseca and Calder 2005). However, this method needs to be 

improved due to the difficulty of underwater positioning and the high turbidity of groundwater, 

leading to clearer image and video results. Additionally, it is difficult to identify different 

sedimentary boundaries due to sampling over considerable periods. Therefore, more than these 

methods are needed to meet the needs of modern marine research and development (Zheng et al. 

2013). Therefore, more than these two methods are needed to map seafloor sediments over large 

areas and on large scales. 

The weakness of the above method lies in the use of underwater acoustic technologies such as 

single beam echosounder (SBES), side-scanning sonar (SSS), and multibeam echo sounder (MBES). 

At first, this acoustic technology was only used for bathymetric mapping of the seafloor (SBES and 

MBES) and seafloor imaging (SSS). The development of acoustic technology for measuring water 

depth began with SBES and MBES. Over the past two decades, multibeam echosounders have 

significantly increased the efficiency, accuracy, and spatial resolution of coastal and ocean mapping 

(Hell 2011). MBES is also a commonly used acoustic tool for observing and mapping the water 

column and seafloor (Lamarche and Lurton, 2018, Khomsin et al. 2021). 

MBES data commonly used for sediment classification are monospectral and multispectral 

backscatter data (Brown et al. 2017, Feldens et al. 2018, Gaida et al. 2018, Brown et al. 2019). 

Multifrequency MBES is an instrument that can be used to carry out surveys based on ping-to-ping, 

which means emitting acoustic wave signals alternately from one frequency to another. According 

to Gaida et al. (2018) tested this method using multifrequency MBES backscatter (MBES R2Sonic 

2026) to better distinguish the acoustic response of seafloor sediments compared to using single-

frequency data. Typically, researchers only use backscatter data (Pratomo et al. 2018, Ji et al. 2020, 

Zhang et al. 2022, Nitriansyah and Cahyono 2022), which combines bathymetry and backscatter 

data reverse (Zakariya et al. 2018, Janowski et al. 2018, Xu et al. 2021, Wan et al. 2022) to determine 

sediment classification. Some researchers still only use MBES bathymetric data to classify seafloor 

sediments. This study will propose the classification of seafloor sediments in coastal waters using 

bathymetric and bathymetric derivatives MBES multifrequency using deep neural networks. There 

is expected to be a positive correlation between bathymetric and bathymetric derivative and seafloor 

sediment types. 

 

 
2. Materials and methods 

 

Multifrequency MBES survey was carried out in the coastal shallow water at PT. Gresik Jasa 

Tama (PT. GJT) port (Fig. 1), located in Gresik Regency, East Java Province, Indonesia, on 

Wednesday, 4 January 2023. The survey area is about 41 ha and is a port for loading and unloading 

wooden ships. The depth in the survey area is from -2.5 m to -25.5 m LWS. 

This study acquired seabed backscatter using an R2Sonic 2020 MBES, with the sonar head 

deployed through a moon pool in the side-mounted survey vessel. Survey dilaksanakan dengan  
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Fig. 1 Research Survey Location at PT. Gresik Jasa Tama, Gresik Regency, East Java, Indonesia 

 
 

Table 1 Characteristic of R2Sonic 2020 MBES used during acquisitions (R2Sonic 2020) 

Frequency 200 – 450 kHz; 700 kHz optional 

Number of soundings Up to 1024 soundings per ping 

Beam width (Ωtx and Ωrx) 
1° x 1° at 700 kHz (optional); 1.8° x 1.8° at 450 kHz; 

4° x 4° at 200 kHz 

Selectable Swath sector 10° to 130° User selectable in real-time 

Nominal pulse Length τn 15 μs – 1 ms 

Pulse type Shape CW 

Sounding Pattern 
Equiangular Equidistant single / double / quad modes 

Ultra High Density (UHD 

 

 

menggunakan mbes multifrekuensi dengan basis ping by ping. At the time of the survey, the MBES 

system collected data alternately with frequencies of 200, 250, 300, 350, and 400 kHz with 

equiangular mode. The system settings are all accessible to the user or predefined in automatic 

acquisition modes such as transmit power, gain, and pulse length. 

Table 1 shows the technical characteristics of the R2Sonic 2020 MBES and some parameters 

used during the acquisition. This system uses differential GNSS for horizontal positioning and 

heading and an Inertial Motion Unit (IMU) sensor to measure the vessel's attitude (pitch, roll, and 

yaw). In addition, it is also equipped with tidal observations during the survey to correct chart datum 

and sound velocity profiler (SVP) measurements at the beginning, middle, and end of the survey to 

obtain a correction for the speed of sound waves underwater.  
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(a) (b) (c) (d) 

Fig. 2 Setup for patch test survey (a) latency, (b) pitch, (c), roll (d) yaw (Hoy and Kissinger 2010) 

 

 

This research method generally consists of collecting, processing, and analyzing. The first step 

is setting all survey equipment in the data collection. The next step is to measure the patch test (Fig. 

2) to calibrate the transducer's alignment to the ship's attitude (pitch, roll, yaw, and latency). The 

patch test data is first processed to get the latency, pitch, roll, and yaw correction angles. Latency is 

calibrating time first to eliminate a source of error while conducting the other tests. Run one line 

twice, in the same direction, at two different speeds (Fig. 2(a)). Pitch can use the same coincident 

lines as the time delay. It must include a 10-20o slope with a flat surface on each side (Fig. 2(b)). 

The roll must be conducted on a flat bottom to show the same offset in the port and starboard outer 

beams (Fig. 2(c)). The object of yaw should be centered between the two lines and half the distance 

of each line (Fig. 2(d)). SVP data is used for sound velocity correction underwater, and tidal data is 

used to correct datum reference. Patch test, SVP, and tidal data were entered into each survey data 

line to get the data corrected.  

The next step is splitting the data into five files containing one frequency and data editing to 

eliminate existing noise. Finally, multifeature multispectral backscatter is input and sediment sample 

type as output to the deep neural network to classify seabed sediments. The DNN in this study used 

a multi-layer perceptron (MLP) with five hidden layers, each consisting of 45 neurons and one 

output layer containing four neurons, each representing the seabed classes. The activation function 

was set to the rectified linear unit (ReLU) for hidden layers due to its simplicity, speed, and ability 

to prevent gradient vanishing problems (Agarap 2019). As for the output layer, the softmax function 

was used as the activation function. The function is selected since it constrains the sum values of all 

neurons in the output layer to be equal to 1, ensuring the probability at each neuron lies in the range 

of 0 to 1. In optimization, the Adam optimizer, which applies an adaptive learning rate and moment, 

was used (Kingma and Ba 2015), and the loss function was set to categorical cross-entropy. Hence, 

to prevent the overfitting problem, a dropout strategy and L1+L2 regularization were employed. In 

addition, the maximum number of epochs was 100. However, the epochs which stored the highest 

accuracy were extracted using a model check-point technique and further used for seabed 

classification. 

Furthermore, based on previous experiments, models that use datasets to train 70% of the 

population and test 30% of the population can achieve the best accuracy. In this study, the 

hyperparameter tuning, including the activation function, loss function, optimizer, and regularization, 

was set based on the theoretical approach. Detailed information on hyperparameter tuning is 

described in chapter 3. 
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Fig. 3 Digital Bathymetric Model in Area Survey for 200 kHz 

 
 
Table 2 Patch Test Mounting Results 

Calibration Type Area Used Result 

Time No area 0 s 

Pitch 177.59 m2 -0.950 

Roll 31.32 m2 0.630 

Heading 10.85 m2 -0.450 

 
 
3. Result and discussion 
 

3.1 Patch test 
 

Sensors' misalignment or mistiming relative to one another can create dynamic residuals and a 

static bias (e.g., roll bias). The patch test aims to align the transducer with the existing reference 

system on the ship, namely by calculating the rotation angle concerning the y-axis (roll), the x-axis 

(pitch), and the z-axis (yaw), and latency. Most installations will incorporate GNSS time 

synchronization, and no latency is expected in the GNSS position. Roll measurement is carried out 

on one survey line, measured back and forth twice and at the same survey speed. An error in the roll 

will result in an error in sounding depths. Pitch measurement is the same as roll, measured back and 

forth and at the same speed but seabed slope. The effect of pitch error increases significantly with 

depth in the along-track position. The yaw test uses two parallel lines with the ship in the same 

direction on the line. Yaw error will happen in-depth position error, which increases far from the 

nadir. Table 2 shows the patch test results where the pitch is -0.950, the roll is 0.630, and the heading 

is -0.450. The patch test values (pitch, roll, and heading) and latency should be entered into the 

appropriate areas in the data collection.  

105



 

 

 

 

 

 

Khomsin, Mukhtasor, Suntoyo and Danar Guruh Pratomo 

 

Fig. 4 Difference bathymetric inter frequencies between 200 kHz and 400 kHz 

 
 

3.2 Digital bathymetric model 
 

The survey results using R2Sonic 2020 multifrequency MBES with frequencies of 200 kHz, 250 

kHz, 300 kHz, 350 kHz and 400 kHz after correction with patch test data (latency, pitch, roll and 

yaw), sound wave correction (SVP), tidal correction (against datum reference) and noise will 

produce bathymetric data for each frequency. One of the digital bathymetric data is shown in Fig. 3. 

Fig. 3 shows the depth in the survey area (GJT port) is from 2.44 m LWS to 25.5 m LWS. The 

area on the beach (around the port pool) is the area in the west has a depth of 2.44 m LWS to 8.21 

m LWS; the area on the west, which is the western shipping channel area of Surabaya, shows a depth 

of more than 13.97 m LWS to 25.5 m. Meanwhile, the middle area, the channel to the port pool, has 

a depth of 8.2 1 m LWS to 13.97 m. This shows that the GJT port area can still accommodate ships 

with a draft of 2.5 m at the time of the most receding conditions. With a tide interval of 2.5 meters, 

ships with a draft of 5 m can enter at the highest tide.   

 

3.3 Difference bathymetric inter frequency 
 
Each bathimetric data of each frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz) 

is subtracted with each other. Fig. 4 shows the difference in bathimetry between frequency depths 

of 200 kHz and 400 kHz. In general, a frequency of 200 kHz has a deeper depth than the depth of 

400 kHz frequency.  

Generally, in the area survey, the difference between 200 kHz depth and 400 kHz depth ranges 

from 0 m to 0.85 m (light brown to yellow). However, there are some areas (very small) where the 

depth difference between 200 kHz and 400 kHz is negative (dark brown). In addition, there are some 

locations where the depth difference is more than 0.5 m (yellow to blue). Depth differences that are 

negative and more than 50 cm can be due to noise by interpolation. 
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Fig. 5 Slope the area survey with 200 kHz 

 
 

Fig. 6 Aspect of bathymetric feature with frequency 300 kHz 

 
 
3.4 Bathymetric feature 
 
3.4.1 Slope 
The slope is the change in elevation from one point to another expressed by a gradient (m). The 

unit of slope can be both degrees and even percent. According to Van Zuidam (1983), slopes are 

classified as flat (0% - 8%), gentle slope (2% - 7%), sloping (7% - 15%), moderately steep (15% - 

30%), steep (30% - 70%), very steep (70% - 140%) and extremely steep (> 140%). Fig. 5 shows the 

slope in the survey area which is dominated by less than 15% (flat – gentle slope with brown), 15% 

– 70% (moderately steep – steep with light brown – yellow – light green), and over 70% (very steep 

with green). The very steep area is a hard sediment (gravel or rock), so this area is not easy to slide. 
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Fig. 7 Bathymetric Position Index (BPI) feature with frequency 400 kHz 

 

 

Fig. 8 Roughness of bathymteric feature with frequency 250 kHz 

 

 

3.4.2 Aspect 
Aspect is a bathimetric feature that shows the direction of inclination expressed by degrees. 

According to Kobryn (2022) grouped aspects into classes: east (45 – 135), south (135 – 225), west 

(225 – 315) and north (315 – 360 and 0 – 45). The aspect of bathymetric features in the survey area 

is dominated by north (green / 315 - 360) and brown (0 - 45), west 9 light green) and south (yellow). 

From this aspect, it is indicated that sedimentary movement is dominated towards the north.  

 

3.4.3 Bathymetric position index 
Bathymetric Position Index (BPI) is a bathimetric feature that shows the referenced position 

relative to the surrounding location. BPI will show negative values (valley), flat (zero or close to 0) 

and ridge (ridge). Fig. 7 shows the BPI in the survey area which has -254 to 415. Light brown color  
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Fig. 9 Ruggedness of bathymteric feature with frequency 400 kHz 

 

 

with a value of about zero indicates that the area is flat, areas with brown color indicate valley areas 

and yellow to green colors indicate areas with ridge terrain. 

 

3.4.4 Roughness 
The roughness of the seafloor surface is the deviation of the depth value from the average depth 

around it. The roughness value in the survey area showed a value of 0.11 m – 0.89 m. In general, the 

roughness value in the survey area dominated by ranges from 0.40 m – 0.60 m. 

 

3.4.5 Ruggedness  
Ruggedness is a measure of the variation in local location on the seafloor about the central pixel. 

The ruggedness value is calculated by comparing a central pixel to its neighbors, taking the absolute 

value of the difference value, and averaging the results. Fig. 9 shows ruggedness in the survey area 

with values from 0 – 0.030. The survey area is dominated by brown which has a value of about 0. 

 

3.4.6 Curvature 
Curvature is a derivative of bathymetric data that aims to see the seabed basin in an upward or 

downward direction. Describes the steepest curve of either plan or profile convexity through a 

defined cell neighbourhood. The survey area is dominated by curvature with a value of -9.18 m-1 

(Fig. 10). 

 
3.5 Seafloor sediment predicted map 

 

The technique used to predict the distribution map of bottom sediments in the waters of Gresik 

Jasa Tama Port is a deep neural network. Deep neural networks are machine learning using artificial 

neural network systems. A deep neural network (DNN) is a feedforward with data flowing from the 

input layer to the outer layer without feedback. At first, DNNs assigned random numerical values, 

or commonly referred to as "weights", to connections between artificial neurons. Then the weight 

and input data are multiplied and produce an output between 0 and 1 according to the activation  
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Fig. 10 Curvature of bathymteric feature with frequency 200 kHz 

 

 

Fig. 11 Deep Neural Network Model Classifer with 45 neurons 

 

 

function used. If the network has not been able to accurately recognize certain patterns used for the 

learning process, the algorithm will recalculate and adjust the weight value. DNN has several things 

that need to be set to be able to carry out pre-planned functions and can provide optimal performance 

(Arif, 2020). In this case, there are as many as 45 data that are used as input layers, namely 5 

frequency bathimetric data (5 layers), bathimetric differences between frequencies (10 layers), and 

6 bathimetric features for each frequency (5 x 6 = 30 layers). 

Fig. 11 shows the diagram of a multi-layer perceptron (MLP) with five hidden layers, which is 

used in this paper. Each hidden layer consists of forty-five neurons. The activation functions used 

are reLU for the hidden layers and softmax for the output layer. The algorithm of the value of DNN 

properties, such as weights and learning rate, estimates the adaptive moment estimation. Some 

experiments and models use datasets to train 70% of the population and test 30% to achieve  
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Fig. 12 Predicted Seabed Sediment with DNN in the survey area 

 

 

maximum accuracy. Generally, the model with reLU activation function (hidden layer) and softmax 

activation function (output layer) achieve 98.39% training accuracy and 75% testing accuracy. It is 

generated using a batch size setting of 1, a learning rate setting of 0.0001, and an epoch parameter 

of 74. 

The results of the seabed sediment prediction maps in the survey area using DNN can be seen in 

Fig. 12. Seabed sediments in GJT port are dominated by silt (41.6%), which spreads around the port 

pool (western area), and clayey sand (36.6%) in the size of the eastern part (western shipping channel 

of Surabaya). A small portion of the site around the harbor with silty sand (7.5%) and sandy silt 

(14.2%) sediments spread over the outer east side of the survey area. 

A confusion matrix can assess the results accuracy of seabed sediment prediction for accuracy. 

The confusion matrix (Table 3) is a matrix that contains a cross table between in situ (as a reference) 

and prediction data (Foody 2002). There are four parameters used to evaluate prediction results, 

namely producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and Kappa coefficient 

(Cohen 1960). User accuracy (UA) is the relationship between the prediction class and all in situ 

data, and conversely, the relationship between the correct prediction value and all pixel classes is 

called producer accuracy (PA) (Story and Congalton 1986, Congalton 1991).  

The overall accuracy equals the sum of all correctly classified instances over all instances in the 

confusion matrix. Overall accuracy tells us which proportions were mapped correctly out of all the 

reference locations. Overall accuracy, with an accuracy of 100, is a perfect classification level where 

all reference locations have been correctly classified. The Kappa coefficient considers the possibility 

of agreement occurring by chance (Cohen 1960). The Kappa coefficient evaluates how well the 

classification performed compared to randomly assigning values ranging from -1 to 1. 

In this study, the high PA value was silt class (92.6%) with 25 types of Silt in reference (in situ) 

matching 27 samples, while UA was Sandy Silt (100%), with only five prediction class points 

matching the in-situ sample class. The user and producer accuracy for any given class is typically 

different. In this case, the producer's accuracy for the Silt class was 92.6%, while the user's accuracy 

was 64.1%. It means that even though 92.6% of the reference silt areas have been correctly identified  
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Table 3 Confusion Matrix of Classification Seabed Sediment with DNN 

  Reference (In Situ)   

  Clayey Sand Sandy Silt Silt Silty Sand Total UA 

P
re

d
ic

te
d
 

Clayey Sand 17 3 1 1 22 77.3 

Sandy Silt 0 5 0 0 5 100 

Silt 5 2 25 7 39 64.1 

Silty Sand 0 1 1 6 8 75 

 Total 22 11 27 14 74  

 PA 77.3 45.4 92.6 42.9   

 OA 71.6%      

 Kappa 0.59      

 

 

as Silt, only 64.1% percent of the areas identified as Silt in the classification were Silt. The overall 

accuracy value in this case is 71.6%, where are 53 samples suitable for all classes with details of 

clayey sand 17, sandy silt 5, silt 25, and silty sand 6, with a total sample of 74. At the same time, the 

value of the Kappa coefficient is 0.59. The Kappa value of 0.59, according to Landis and Koch (1977) 

included in the strength of agreement 'moderate,' and the overall accuracy value of 71.6% falls into 

the substantial category. 

While increasing the volume of data typically enhances model reliability, previous studies have 

primarily relied on extensive datasets obtained through established techniques such as angular range 

analysis (ARA), Bayesian methods, and other classification approaches for seabed characterization 

(Mertikas and Karantzalos 2020, Ntouskos et al. 2023). Although utilizing simulated data may 

mitigate data scarcity issues, achieving convergence to the global minimum of the loss function 

presents a formidable challenge, potentially compromising model accuracy. Hence, we advocate for 

utilizing ground-truth data to ensure precision and reliability in our analysis. 

 

 
4. Conclusions 
 

The results of bathymetric surveys with multifrequency R2Sonic MBES with frequencies of 200 

kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz showed that the depth in GJT waters ranged from 

2.4 m LWS to 25.5 m LWS. The depth difference between frequencies is dominated by depth 

difference values ranging from 0 – 50 cm. The bathymetric features of each frequency in the form 

of the slope, aspect, BPI, roughness, ruggedness, and curvature show the same appearance and 

relative values between frequencies. The classification of in situ sediment samples as 74 sample 

points shows the classes of clayey sand, silt, silty sand, and sandy silt. The results of sediment 

mapping using the DNN method with 45-layer inputs (bathymetry (5), bathymetric differences (10), 

and bathymetric features of each frequency (30)) and layer outputs in the form of clayey sand, silt, 

silty sand, and sandy silt showed that the overall accuracy was 71.6% (substantial) and kappa 

coefficient 0.59 (moderate). The distribution of bottom sediment in the survey area was dominated 

by silt (41.6%) and followed by clayey sand (36.6%), sandy silt (14.2%) and silty sand (7.5%). 
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