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1. Introduction 
 

Drinking Water Treatment Sludge (DWTS) is an 

inevitable end product at the end of treatment stages, and 

one of the most promising adsorbent due to its zero price 

and easy availability. The utilization of the waste materials 

is a significant application because of serious disposal 

problems of them. It has been investigated usability of 

DWTS, as an adsorbent for removal of the organic and 

inorganic pollutants (Cu(II), Ni(II), Pb(II), Cd(II), Hg(II) 

and Methylene blue) present in wastewaters, and Artificial 

Neural Network (ANN) models have been developed 

considering the effects of certain experimental parameters 

for adsorption of these contaminants on DWTS (Öztürk 

2014). Also, DWTS has been successfully applied as an 

adsorbent for Pb(II), Cd(II) and Ni(II) removal from 

wastewater (Abo-El-Enein et al. 2017). 

When metals are classified in terms of environmental 

impact, cobalt is class of metals with environmental 

concern due to its high concentration. Cobalt is mainly used 

as a component of very hard, strong and heat resistant 

alloys and in permanent magnets. It is also used as drying 

agent in paintings, as color pigment in porcelain, as a 

catalyzer in the rubber manufacturing and as an additive in  
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fertilizers and fodders. Elevated cobalt concentrations found 

in the terrestrial environment can be caused, by deposition 

from the burning of fossil fuels, wear of cobalt containing 

alloys and spreading of sewage sludge and manure (Lock et 

al. 2004). In industries producing or using cobalt metal and 

cobalt compounds if workers are exposed to inhalation or 

skin contact with higher cobalt levels, harmful health 

effects can thus occur including asthma, pneumonia and 

wheezing as well as allergy (Gault et al. 2010). Therefore, 

cobalt must be removed from waste waters to protect the 

environment and human health. Adsorption, a mass transfer 

process, occurs between a liquid phase and solid phase to 

eliminate undesirable substances (Sunil and Saifiya 2015). 

Even though there are several treatment techniques carried 

out for removing the heavy metals from aqueous solutions, 

adsorption is amongst the most commonly preferred 

methods as its technology has environmentally reliability, 

high capacity, relative simplicity and low cost (Khan et al. 

2016, Varma and Misra 2016, Lee et al. 2017, Jafari and 

Bandarchian 2017). Today, a range of solid materials such 

as biochar (Vilvanathan and Shanthakumar 2018), biomass 

(Peres et al. 2017, Vafajoo et al. 2017, Hymavathi and 

Prabhakar 2017), carbonaceous material (Ozbay and Yargıc 

2017), modified activated carbon (Dobrowolski and Otto 

2012), ion-imprinted activated carbon (Turan et al. 2018), 

ion-imprinted polymer (Li et al. 2011, Khoddami and 

Shemirani 2016), nanomaterial (Amer et al. 2017) and 

nanocomposite (Zhang et al. 2017) have been used as 

adsorbent for efficient removing of Co(II). In this study, it 

was investigated that DWTS was utilized as an adsorbent to 

remove Co(II) from aqueous solutions by using adsorption 
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Abstract.  In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling 

adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of 

drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption 

experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, 

XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS’s Co(II) 

removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial 

pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA 

method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. 

Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination 

coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained 

better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in 

modeling adsorption experiments. 
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method and adsorption of Co(II) was modelled via Artificial 

Bee Colony (ABC) and Genetic Algorithm (GA) methods. 

ABC and GA, meta-heuristic algorithms, were used to find 

out the optimum coefficient in the regression functions. 

The ABC algorithm was developed by Karaboğa (2007) 

inspired from nectar-seeking behavior of bees (Karaboğa 

2007). The GA is known as a frequently used optimization 

algorithm in technical literature developed by John Holland 

(Goldberg 1989). 

The aim of the present study is to develop equations 

being quadratic, exponential, linear and power functions for 

prediction of Co(II) adsorption using ABC and GA 

methods. 

 

 

2. Materials and methods 
 

2.1 Equipments 
 

Autosorp-6B model specific surface area analyzer was 

used to determine DWTS’s specific surface area. The FT-IR 

spectrum of the DWTS was recorded between 500 and 4000 

cm-1 in a Perkin Elmer Frontier ATR – FTIR spektrometer. 

SEM-EDS analyses were applied using Zeiss Evo LS-10- 

Quanta 400F Field Emission apparatus. Elemental analysis 

of DWTS was performed on a LECO, CHNS-932 

apparatus. Rigaku D/MAX-3C, Thermo ARL and Seteram 

Labsys analyzer was used for XRD, XRF and TGA/DTA 

analysis of DWTS, respectively. A Perkin Elmer model 

AAnalyst-400 Flame Atomic Absorption Spectrometer 

(FAAS) with deuterium background corrector was used for 

the Co(II) determination in solutions. Edmund Bühler 

GmbH model mechanical shaker was used for batch 

adsorption experiments. The pH measurements were made 

on Hanna pH-211 (HANNA instruments/Romania) digital 

pH meter. A centrifuge Sigma 3-16P was employed for the 

centrifugation of solutions. Distilled/deionized water was 

obtained from Sartorius Milli-Q system (arium® 611UV). 

 

2.2 Chemicals 
 

Used reagents were analytical grade of Merck 

(Darmstadt, Germany) and Fluka (Buchs, Switzerland). The 

working solutions of Co(II) for batch adsorption were 

prepared by diluting from 1000 mg L−1 Co(II) with Milli Q 

water. 

 

2.3 Preparation of DWTS 
 

DWTS was dried at 105oC in a hot air oven for 24 h and 

then ground and sieved to the particle size of 74 µm. 

 

2.4 Batch adsorption procedure 
 

Batch adsorption experiments were carried out by 

optimizing the operation conditions for Co(II) adsorption 

onto DWTS. In a typical experiment, 10 mL of Co(II) 

solution in the concentration range of 100-1000 mg L-1 was 

transferred into a 15 mL polyethylene centrifuge tube. Then, 

50 mg of DWTS (5 g L-1) was added to the solution and 

content was agitated on a mechanical shaker at 400 rpm  

Table 1 Basic statistic for the experimental data of Co(II) 

adsorption on DWTS 
Experimental 

Parameters 
Unit Min Mean Max 

Standard 

Deviation 

Coefficient of 

variation 
Correlation 

Initial Co(II) 

concentration 
mgL-1 80.8 255.125 946 228.575 89.593 0.808 

Initial pH - 2 4.104 7 0.755 18.409 -0.074 

DWTS dosage g 0.01 0.052 0.2 0.03 57.315 -0.083 

Contact time min 1 168.226 480 109.678 65.197 -0.09 

Co(II) 

adsorption 
mgg-1 1.57 12.587 26.5 6.233 49.52 1 

 

 
for 4.0 h. After equilibrium, the phases were separated by 

filtration and the Co(II) concentration in the filtrate was 

determined by FAAS. Adsorption parameters such as initial 

pH of Co(II) solution, initial concentration of Co(II), 

contact time and adsorbent dosage were optimized by 

continuous variation method. For pH optimization, the 

initial pH of each Co(II) solution was adjusted to the 

required pH by addition of 0.1 M HCl or NaOH solutions. 

Throughout the study, the pH was varied from 2 to 7, the 

initial Co(II) concentration from 100 to 1000 mg L-1, the 

contact time from 1 to 480 min, and the adsorbent dosage 

from 1 to 20 g L-1. 

The adsorption capacity was calculated using the 

following formula 

( )–
 

o e

e

C C V
Q

W
=

 
(1) 

where Qe is the amount of metal ion adsorbed on the 

adsorbent (mg g-1), Co and Ce are the initial and the 

equilibrium Co(II) concentrations (mg L-1),V is the volume 

of metal ion solution used (L), and W is the mass of dry 

adsorbent used (g). 

 
2.5 Experimental data preprocessing 

 
Selected input parameters (initial pH, contact time, 

initial Co(II) concentration, DWTS dosage) affect 

adsorption of metal ion and play an important role in 

modelling. The experiments were conducted in triplicate at 

room temperature and the final experiment result was 

presented as the arithmetic mean of the triplicate 

experiments. The main statistics of the experimental 

parameters are given in Table 1. Input data were normalized 

between 0.1 and 0.9 to avoid numerical overflows because 

of parameters in different orders. The utilized normalization 

function is defined as follows: 

min

max min

0.8 0.1i

E E
E

E E

−
= +

−
 

(2) 

where E is input and output data, Ei is the normalized value 

of E, the Emax and Emin are the maximum and minimum 

value of E, respectively. 

Regression models such as quadratic, exponential, 

linear, and power functions are used in modelling of Co(II) 

adsorption on DWTS. Coefficients of regression functions 

are optimized for effective model using ABC and GA.  
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Fig. 1 FT-IR spectrum of DWTS 

 

 
These algorithms pseudo-codes are given below (Öztürk et 

al. 2016). 

 
2.6 Artificial Bee Colony (ABC) algorithm 

 
The algorithm simulated the intelligent foraging 

behavior of honey bee is composed from three main 

components namely nectar sources, employed bees and 

unemployed bees. Unemployed bees are onlooker and scout 

bees. In the optimization problem, possible solutions 

correspond to nectar sources (Karaboğa et al. 2014, 

Aderhold et al. 2010). In this study, ABC algorithm was 

applied to find out optimum coefficient of the regression 

functions. Pseudocode of ABC algorithm is given below: 

1:  Initialize the population  

2:  Evaluate the population  

3:  cycle=1 

4:  repeat 

5:  Produce new solution and evaluate them 

6:  Apply selection process according to greedy 

selection applied to the current and new solution  

7:  Calculate the probability values for the solutions 

8:  Produce the new solutions for onlooker bees from 

the solution selected depending on probability 

values and evaluate them 

9:  Apply selection process according to greedy 

selection applied to the current and new solution 

10:  Determine the abandoned solution for the scout, if 

exists and replace it with a new randomly 

produced solution  

11:  Memorize the best solution 

12:  cycle =cycle + 1 

13:  until cycle =MCN 

 
2.7 Genetic algorithm (GA) 

 
GA, search algorithm, is based on concepts of natural 

selection and natural genetics (Holland 1992). GA was 

developed to simulate some of the processes observed in 

natural evolution, a process that operates on chromosomes 

(organic devices for encoding the structure of living being). 

The GA method differs from other search methods in that it 

searches among a population of points and works with a 

coding of parameters set, rather than the parameter values 

themselves (Goldberg 1989, Ding et al. 2018, Sivanandam 

and Deepa 2008, Donelli 2017). GA was used to obtain 

optimum coefficient of the regression functions. The 

working principle of GA is illustrated in the form of a 

pseudocode as follows: 

1:  Initialize the population   

2:  Evaluate the population 

3:  cycle=1 

4:  While cycle=MCN do 

5:  Calculate objective functions  

6:   Calculate fitness  

7:  Select parents for crossover 

8:  Set the crossover and mutation probability  

9:  Perform crossover and mutation 

10:  Evaluate population 

11: Memorize the best solution 

12: cycle =cycle + 1 

13:  EndWhile 

 
2.8 Performance of the developed models 

 
Since the pollutant removal efficiency and performance 

of developed ABC and GA models are measured, different 

types of statistical parameters can be used to determine the 

generalization error. In the present work, the objective 

function of the models is sum square error (SSE) calculated 

as follows: 

( ) ( )
1

min
N

i i

i

f x P E
=

= −
 

(3) 

where N is the number of experiments, Ei is the ith 

experimental adsorption value, and Pi is the ith predicted 

adsorption value for the regression functions.  

The regression equations were evaluated using data in 

training set for each experimental parameter and the best 

ones having minimum SSE are determined. Root mean 

square error (RMSE), mean absolute error (MAE), average 

relative error (ARE), and coefficient of determination (R2) 

for training and testing sets were selected to measure the 

performance of models ABC and GA. 
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Fig. 3 XRD pattern for DWTS 

 
 
3. Results and discussion 

 

3.1 Characterization of DWTS 
 

The chemical structure and functional groups of 

adsorbents can define its adsorption capacity. For this 

purpose, the infrared spectrum (500-4000 cm-1) of DWTS 

was depicted in Fig. 1. The broad peak observed at 3385cm–

1 is due to stretching vibrations of the bonded hydroxyl (–

OH) groups present in the sample. The peak at 1635 cm–1 

can indicate C=C group and/or hydroxyl deformation of 

water. The peak appearing at 1400 cm–1 can be stretching 

vibrations peak of C–H group. Two peaks at 990 and 694 

cm–1 point to existence Si–O group and the peak at 776 cm–

1 is Al–O–H peak (Öztürk 2014).  

The Scanning electron microscopy (SEM) analysis 

method was used to determine the grain size and surface 

morphology of the mineral phases in DWTS. As a result of 

micro structure analysis of DWTS, it was observed that it 

contained flocked square and leafy particles at the changing 

sizes (Fig. 2). EDS analysis was also performed to 

determine the presence of elemental information on DWTS. 

The prominent peaks in the EDS spectrum (Fig. 2) 

correspond to CKα, OKα, FeKα, AlKα, SiKα, MgKα, 

CaKβ, etc. in DWTS. 

 

Table 2 XRF analysis of DWTS 

Components % by mass 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O 

52.50 17.70 7.30 4.60 2.70 1.90 1.80 

TiO2 SO3 MnO P2O5 BaO SrO V2O5 

0.6 0.25 0.2 0.2 0.06 0.02 0.02 

ZnO ZrO2 CuO Loss on ignition Total 

0.02 0.02 0.01 9.70 99.6 

 

 

Fig. 4 DTA/TGA plot of DWTS 

 

 

The crystallinity of the DWTS was determined by X-ray  

diffraction (XRD) and the result indicates that DWTS 

consists mainly of calcite, kaolinite, muscovite and quartz 

(Fig. 3). 

The chemical composition of DWTS was determined by 

XRF. As seen from Table 2, SiO2, Al2O3, Fe2O3 and CaO are 

found mainly in DWTS. It is known, adsorbents with 

inorganic oxides (such as SiO2, Al2O3 and Fe2O3) can show 

an extremely high adsorption ability. 

Thermal behavior of DWTS was observed by employing 

TGA/DTA analysis. In air atmosphere, changes occurring in 

the DWTS structure were investigated by drawing 

temperature versus DTA/TGA plot. As can be seen from 

Fig. 4, the rate of mass change decreased by increasing the 

temperature. The results of the BET (Brunauer-Emmett-

Teller) surface area (SBET), t-plot micropore area (Smicro), 

mesopore area (Smeso), total pore volume (Vt), micropore 

 

Fig. 2 (a) SEM micrograph of DWTS (magnification: 2000 folds) and (b) EDS spectrum 
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Table 3 Characteristics of DWTS 

Pore structure of DWTS  

SBET (m2 g-1) 15.53 

Smicro (m2 g-1) 16.15 

Smeso (m2 g-1) 6.93 

Vt (cm3 g-1) 0.041 

Vmicro (cm3 g-1) 0.006 

Dp (nm) 2.80 

Elemental analysis (wt%)  

C 2.37 

H 0.91 

N 0.60 

S 0.25 

Surface functional groups (mmol g-1)  

Carboxylic 1.93 

Phenolic 0.11 

Lactonic 0.05 

Total acidic value 2.09 

Proximate analyses (wt%)  

Moisture 1.78 

Volatile matter 10.46 

Fixed carbon 4.76 

Ash 84.77 

Iodine number (mg g-1) 235.8 

Methylene Blue number (mg g-1) 256.9 

pH 6.65 

pHPZC 6.95 

 
 

volume (Vmicro) and average pore diameter (Dp) calculated 

from 4Vt/SBET formula for DWTS were listed in Table 3. 

The BET surface area of the DWTS shows that it does not 

have a porous structure, and SEM images support this. 

However, surface area and porosity of an adsorbent may not 

explain its the adsorption properties. When we look at the 

pore size distributions of DWTS (Table 3), it is seen that the 

adsorbent is composed of micro and meso pores. Macro 

pores are less effective in the adsorption process, but they 

play an important role in separating very large molecules. 

Therefore, meso and micro pores are highly active in the 

adsorption process. Percentage amount of moisture, volatile 

matter, fixed carbon, ash and C, H, N, S and O contents 

obtained from the elemental analysis of DWTS was given 

in Table 3. According to proximate analysis results, low 

amounts of fixed carbon and volatile matter and high ash 

content indicate that the structure of the adsorbent has an 

inorganic content, also elemental analysis results support 

this. The quantity of acidic functional groups affecting 

adsorption capacity on DWTS surface were determined and 

listed in Table 3. The quantitative values of the carboxylic, 

phenolic and lactone groups present on the DWTS have 

been determined by Boehm titration. When the values in 

Table 3 are examined, it is seen that there are more 

 

Fig. 5 Effect of pH on the adsorption of Co(II) by DWTS  

(Initial Co(II) conc.: 100 mg L-1, DWTS conc.: 5.0 g L-1, 

contact time: 45 min; agitation speed: 400 rpm) 
 

 

Fig. 6 Effect of contact time (initial Co(II) conc.: 100 

mgL-1; DWTS conc.: 5.0 g L-1; pH: 4.0; agitation speed: 

400 rpm) 
 

 

carboxylic groups among the acidic groups on the surface 

of the adsorbent. Methylene blue and iodine numbers, can 

give an idea about the mesopore and micropore (pore 

diameter lower than 1nm) structure respectively, were 

defined (ASTM D4607-94 2006). Iodine and Methylene 

Blue numbers have given a preliminary idea of the 

development of pore structures of DWTS. It has an average 

pore diameter (2.80 nm) in excess. DWTS’s pH value and 

value of pHPZC were determined. The pHPZC is the pH value 

at which net surface charge of the adsorbent is neutral 

(Mestre et al. 2007). The surface charge of DWTS was 

negative at pH>pHPZC, while it was positive at pH<pHPZC 

(Öztürk 2014). The pH value of the adsorbent is 6.65. The 

pH value of the adsorbent is found to be slightly acidic and 

the pHPZC values lower than 7 (6.95) indicate that the acidic 

groups are more dominant than the basic groups. Although 

the net surface charge of the adsorbent is still positive at 

this pH value (4.0) because of pH< pHPZC, the adsorption of 

this metal on the DWTS is highly efficient in the aqueous 

solution. At this pH value (4.0), although the surface 

functional groups of the adsorbent are slightly protonated, 

the proton and metal cations can be displaced, and so the 

adsorbent is more likely to prefer metal ions. The 

protonated surface functional groups of DWTS can play a 

crucial role in Co(II) removal. 
 

3.2 Effect of solution pH 
 

The pH of the solution is an important parameter 

affecting the activity of the functional groups on the  
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Fig. 7 (a) Effect of adsorbent dosage on the adsorption of 

Co(II), (b) effect of initial Co(II) concentration on the 

adsorption of Co(II) 
 

 

adsorbent surface and the competition of metal ions to get 

adsorbed to the active sites. The effect of pH on the 

adsorption of Co(II) onto DWTS was investigated in the pH 

range of 2-7 using 10 mL of model solutions containing 5.0 

g L-1 of DWTS suspension for 2.0 h as shown in Fig. 5. The 

experimental results revealed that the maximum adsorption 

(8.3 mg g-1) of Co(II) took place at pH 4.0. 
 

3.3 Effect of contact time 
 

The effect of contact time on the adsorption Co(II) ions 

onto DWTS was investigated in the time ranges of 1-480 

min by contacting 100 mg L-1 of Co(II) solutions at initial 

pH 4.0 with 5.0 g L-1 of DWTS suspensions to decide 

whether the equilibrium was reached. It was observed that 

Co(II) adsorption rate is high at the beginning of the 

adsorption because of more available adsorption sites easily 

adsorbing Co(II) ions and then Co(II)-DWTS interactions 

reached equilibrium at 4.0 h (Fig. 6). Thus, the contact time 

of 4.0 h was used in the following adsorption experiments. 
 

3.4 Effect of DWTS and initial Co(II) concentrations 
 

The adsorption process was conducted with initial 

Co(II) concentrations between 100 and 1000 mg L-1 and 

DWTS concentrations between 1.0 and 20.0 g L -1 at 

constant values of pH (4.0) and contact time (4.0 h) to 

investigate the effect of Co(II) and DWTS concentration on  

Table 4 The coefficient obtained from the analysis 

Coefficients 
Quadratic 

Function (QF) 

Exponential 

Function (EF) 

Linear 

Function (LF) 

Power 

Function (PF) 

 ABC GA ABC GA ABC GA ABC GA 

w0 0.9672 0.0978 -0.7341 0.0372 0.2289 0.2606 1.1094 1.1958 

w1 2.6597 3.4763 0.0950 -1.3018 0.8269 0.8133 0.5258 0.5355 

w2 -0.7446 0.7175 0.5942 1.4377 -0.0218 -0.0489 0.1169 0.0946 

w3 -0.0019 -1.0759 -0.0585 -0.0487 -0.1771 -0.2061 -0.1390 -0.1177 

w4 -2.9202 -0.7929 -0.2482 -0.3736 0.1739 0.1544 0.1932 0.2417 

w5 -5.0000 -4.3327 0.0282 0.3317     

w6 -4.1034 -5.0000       

w7 5.0000 1.6754       

w8 -1.8020 1.1365 x1 : 
Initial Co(II) 
concentration 

  

w9 4.6889 0.8150 x2 : Initial pH   

w10 5.0000 5.0000 x3 : DWTS dosage   

w11 -0.3695 -0.1333 x4 : Contact time   

w12 -1.0887 -0.8514 y : Co(II) adsorption   

w13 -0.1429 -0.0113       

w14 -0.8011 -0.7654       

𝑦𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 +𝑤4𝑥4 +𝑤5𝑥1𝑥2 + 𝑤6𝑥1𝑥3 

+𝑤7𝑥1𝑥4 + 𝑤8𝑥2𝑥3 + 𝑤9𝑥2𝑥4 + 𝑤10𝑥3𝑥4 + 𝑤11𝑥1
2 + 𝑤12𝑥2

2 +𝑤13𝑥3
2 

+𝑤14𝑥4
2 

𝑦𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑤0 + 𝑒𝑥𝑝(𝑤1 + 𝑤2𝑥1 +𝑤3𝑥2 +𝑤4𝑥3 +𝑤5𝑥4) 

𝑦𝐿𝑖𝑛𝑒𝑎𝑟 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 +𝑤4𝑥4 

𝑦𝑃𝑜𝑤𝑒𝑟 = 𝑤0𝑥1
𝑤1𝑥2

𝑤2𝑥3
𝑤3𝑥4

𝑤4 

 

 

Fig. 8 The comparison of the experimental adsorption 

with the predicted ones by ABC and GA models for 

training set  

 

 

Fig. 9 The comparison of the experimental adsorption 

with the predicted ones by ABC and GA models for 

testing set 
 

 

the removal of this metal. The experimental results showed 

that percentage of Co(II) adsorption increased by increasing 

DWTS concentration even though the amount of Co(II) 

adsorbed by per gram of DWTS decreased (Fig. 7(a)) 

because the available adsorption sites or functional groups 

increased with more adsorbent present, and the interactions 

may also take place between adsorbent and metal ions as 
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Table 5 Modelling results for training set 

 Algorithm 
SSE  

(mg/g) 

RMSE 

(mg/g) 

MAE  

(mg/g) 

ARE 

(%) 
R2 

QF 
ABC 322.65 2.467 2.066 19.98 0.968 

GA 275.64 2.281 1.882 18.07 0.973 

LF 
ABC 619.91 3.42 3.039 29.10 0.937 

GA 618.06 3.415 3.022 28.70 0.937 

EF 
ABC 666.50 3.546 3.104 28.17 0.933 

GA 708.68 3.657 3.307 29.56 0.927 

PF 
ABC 610.92 3.395 3.013 30.21 0.938 

GA 608.82 3.389 2.992 30.08 0.938 

 

Table 6 Modelling results for testing set 

 Algorithm 
RMSE 
(mg/g) 

MAE 
(mg/g) 

ARE 
(%) 

R2 

QF 
ABC 2.95 2.75 24.55 0.942 

GA 2.58 2.15 20.92 0.953 

LF 
ABC 3.44 2.91 31.10 0.889 

GA 3.45 2.96 31.28 0.890 

EF 
ABC 3.69 3.28 33.16 0.880 

GA 3.33 2.97 29.76 0.900 

PF 
ABC 3.82 3.38 35.69 0.868 

GA 3.75 3.22 34.26 0.872 

 
 

the amount of adsorbent decreases at certain metal ion 

concentration. This is related to limiting factor and limiting 

factor in Fig 7(a) could be a limited amount of Co(II) while 

the DWTS amount could be a limiting factor in Fig 7(b). 

Therefore, the Co(II) adsorption (%) continuously decrease 

as both factors increased. Besides, the amount of Co(II) 

uptake increased by increasing the initial Co(II) 

concentration although adsorption percentages decreased 

with increase in the Co(II) concentration (Fig. 7(b)). 

 
3.5 Modelling Results 
 

In this study the parameters of ABC algorithm such as 

colony size, limit and max. number of cycles were taken 

100, 100 and 10000 respectively. The parameters of GA 

such as population size, mutation rate, mutation percentage, 

crossover percentage, max. number of cycles were taken 

100, 0.1, 0.3, 0.7 and 10000 respectively. Roulette wheel 

selection method and two point crossover were used in GA. 

ABC and GA were programmed in MATLAB (2014).  

Four regression functions were used in modeling to 

predict Co(II) adsorption considering with the experimental 

results. ABC and GA were utilized to optimize unknown 

coefficients (wi) of the independent variables (xi). Obtained 

coefficients from the algorithms are shown in Table 4. The 

data set is divided into two parts as training and testing set. 

The training set is chosen larger to train the generated 

regression  equation  in  a good way and this set is used 

to optimize the coefficients whereas the testing set does not 

participate in the optimization process. The testing set is 

randomly selected from the data and used to measure the  

 
 

Fig. 10 The comparison of the experimental adsorption 

with the predicted ones by GA models for training and 

testing sets 
 

 

performance of the generated equation. 

The results obtained from the determined equations 

were compared with considering SSE, RMSE, MAE, ARE 

and R2 indices. The error indices for testing and training 

sets are presented in Table 5-6. It is seen from Table 5 that 

the best equation is obtained from the quadratic function 

employing GA for training set. Also, quadratic function 

employing GA for testing set has the best error and R2 

values. 

Fig. 8 and 9 illustrate a comparison of the experimental 

results with the predicted ones from the determined QF for 

the training and testing sets. Fig. 10 also supplies a different 

presentation of the performance for the best fitting model 

for the training and testing sets. If the points gather around 

the diagonal, smaller error and greater R2 values are 

obtained. 
 

 

4. Conclusions 
 

The utilization of waste materials such as DWTS, 

occurred as a by-product of the use of coagulation-
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flocculation processes in drinking water treatment, in 

wastewater treatment has an important role in terms of the 

environment. Based on the idea that waste materials should 

be recycled, it has been investigated the usage of DWTS as 

an adsorbent to remove Co(II) from aqueous solution in this 

work. Furthermore, the application of ABC and GA to 

model Co(II) adsorption prediction on the experimental 

parameters (initial pH, contact time, initial Co(II) 

concentration, DWTS dosage) is examined and verified by 

conducted experiments. This study shows the best fit 

equation for each parameter is obtained from the quadratic 

function. Performance of GA is better than ABC in the 

prediction of Co(II) adsorption. 
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