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1. Introduction 
 

Cyanotoxins produced as secondary metabolites by 

cyanobacteria poses health hazards to human and animal 

health. (Campinas and Rosa 2010). Among the many types 

of cyanotoxins that have been discovered, microcystins 

(MCs, liver damaging toxins), are the most prevalent in 

water ecosystems and have, therefore, been widely studied 

(Brooks et al. 2016). The most common known congeners 

are m-LR, m-RR, and m-YR, which result from the 

presence of the L-forms of leucine (L), arginine (R), or 

tyrosine (Y) at positions 2 and 4 (Sivonen and Jones, 1999). 

As a result of MCs level of toxicity, the World Health 

Organisation (WHO), set a tolerable daily intake (TDI) 

value of m-LR for a 60 kg adult to be 0.04 μg/kg body 

weight/day, and the guideline value for its presence in 

drinking water as 1 μg/L (Chorus and Bartram, 1999). 

Owing to the high incidence of microcystins occurrence in 

water, coupled with the recognized potential health risk, 

methods/techniques for the detection and removal of 

cyanobacterial toxins has been increasing (Şengül et al. 

2018, Taylor et al. 2011, Zamyadi et al. 2015). Although the 

conventional methods of coagulation/flocculation, 

sedimentation, and filtration can effectively remove cell-

bonded MCs, these methods are ineffective for removing 

dissolved microcystins (Lawton and Robertson, 1999). 

Chow et al. (1999) stated that although conventional 

treatment (coagulation) removes cyanobacteria cells, sludge 

containing toxic cyanobacteria cells can break down rapidly  

 

Corresponding author, Professor 

E-mail: wtlee@kumoh.ac.kr 

 

 

and release dissolved toxin. This may be critical, as 

dissolved toxin is not removed by coagulation, flocculation 

and filtration. In general, micro- and ultra-filtration 

membranes could be expected to remove cyanobacterial 

cells effectively but there is also the risk of the cells 

releasing dissolved toxin in the absence of frequent back 

washing and proper isolation of the backwash water (Chow 

et al. 1997, Gijsbertsen-Abrahamse et al. 2006). There is 

existing literature on the efficacy of chlorination and 

ozonation for the removal of microcystins. A residual of at 

least 0.3 mg/L of ozone for 5 minutes will be sufficient for 

all of the most common microcystins. For chlorine, a dose 

of 3 mg/L applied to obtain a residual of 0.5 mg/L for at 

least 30 minutes will be effective (Acero et al. 2005, Ho et 

al. 2006a, Newcombe 2002, Nicholson et al. 1994, 

Rositano et al. 2001, Rositano et al. 1998). Microcystin LA 

may however require a higher residual, as it is slightly less 

susceptible to oxidation by chlorine (Ho et al. 2006). Yeo et 

al. (2018) also recently developed a numerical model to 

optimize the removal of m-LR with chlorine. Their model 

successfully estimated the removal rate of m-LR in a clear 

well. 
The molecular structure of the hepatotoxin is shown in 

Fig. 1. Prominent among the search for a more accurate, 
robust, and less expensive technique to remove MCs from 
water sources is adsorption by activated carbon (AC). AC 
adsorption is the most widely employed method for 
removing micropollutants, particularly hydrophobic 
compounds,  in water treatment plants  (Cook and 
Newcombe, 2002). Owing to the unique properties of 
activated carbon fibers in comparison to other carbonaceous 
materials, they are considered reliable for industrial 
applications (Dellero et al. 1999, Xie et al. 2004). Most 
studies relating to the adsorption of cyanotoxins by AC 
have focused on microcystins (Donati et al 1994, Keijola et 
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Abstract.  Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources 

worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as 
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Table 1 Review of literature analyzing microcystins in water streams 

MCs identified Technique Focus of study References Location 

m-RR, m-YR, m-LR, m-FR, m-WR HPLC-DAD, LC-MS Q, T Douma et al. (2010) Morocco 

m-RR, m-LA, m-LR, m-YR HPLC-MS/MS Q Amé et al. (2010) Argentina 

m-RR, m-LR, m-YR HPLC-PDA, LC-MS/MS Q 
Triantis et al.(2010) 

 
Greece 

m-RR, m-YR, m-LR,  

m-LF, m-LA, m-LW, m-LY 
LC-MS/MS Q, C Graham et al. (2010) United States 

m-LR, m-RR, m-YR,  

m-LA, m-LF, m-LW 
LC-ESI-MS/MS C, T Krüger et al. (2010) China 

m-LR, m-RR HPLC-UV T Peng et al. (2010) China 

m-LR, m-RR. m-YR HPLC-MS/MS D, Q Li et al. (2010) China 

m-RR, m-YR, m-LR, m-FR, m-WR, 

Demethyl m-LR, Demethyl m-YR, 

Demethyl m-RR 

MALDI-TOF C, T Fathalli et al. (2011) Tunisia 

m-LR, m-RR, m-YR, 

m-LY, m-LF, m-LW 
LC-MS/MS O, Q Mooney et al. (2011) Ireland 

m-RR, m-YR, m-LR,  

m-LF, m-LA, m-LW 
LC-ESI-MS D, Q Yen et al. (2011) Taiwan 

m-LR, m-RR, m-YR HPLC-UV D, Q Liu et al. (2011) China 

m-RR, m-YR, m-LR, m-WR, m-YR LC-ESI-MS I, Q Mbukwa et al. (2012) South Africa 

m-RR, m-YR, m-LR, m-LW DGGE/qPCR/UPL Q, C Yen et al. (2012) China 

m-LR, m-RR, m-YR, PCR/LC-MS I, Q Srivastava et al. (2012) India 

m-RR HPLC-DAD, MALDI-TOF I Vasas et al. (2013) Hungary 

m-LR, m-RR, m-YR. m-LA, m-LF, 

m-RY, m-LY, m-LW, m-RL, m-RA 
LC-HRMS, LC-MS/MS NMR I, C Miles et al. (2013) Tanzania 

m-LR, m-RR HPLC-MS Q Duong et al. (2013) Vietnam 

m-LR, m-RR, m-YR LC-ESI/Ion trap-MS/MS D, T Rodrigues et al. (2013) Portugal 

m-LR, m-RR, m-YR HPLC-DAD D, Q Tian et al. (2013) China 

m-LR, m-RR, m-YR, m-LA SPE/LC-ESI-MS/MS D, Q Kaloudis et al. (2013) Greece 

m-RR, desMe m-RR MALDI-TOF-MS, LC/ESI-q/TOF-MS/MS D, C Ferranti et al. (2013) Italy 

m-LR, m-YR, m-RR,  

m-LF, m-LY, m-LW 
LC-MS/MS D, T Faassen and Lürling (2013) Netherlands 

m-LR, m-RR UPLC-MS/MS I, Q, T Rodriguez et al. (2014) Germany 

m-LA, m-RR HPLC-DAD O Zastepa et al. (2014) Canada 

m-LR, m-RR HPLC-DAD Q Yu et al. (2014) China 

m-LR, m-RR, m-YR PCR/ LC-MS C, Q, T Srivastava et al. (2012) India 

m-LR, m-RR, m-YR HPLC-DAD I, Q, T Pavlova et al. (2015) Bulgaria 

m-LR, m-RR, m-YR, 

m-LA, m-LF, m-LW 
UPLC-MS/MS D, Q Zhang et al. (2015) China 

m-LR, m-RR, m-YR LC-MS C, Q, T Singh et al. (2015) India 

m-LR, m-RR, m-YR HPLC-MS/MS D, T Jia et al. (2016) China 

m-LR, m-RR, m-YR, m-LF, m-LW UPLC-MS/MS I, Q Pekar et al. (2016) Sweden 

m-LR, m-RR, m-YR, m-FR, m-WR, LC-MS/MS, PPIA I, C Bouhaddada et al. (2016) Algeria 

m-LR, m-RR SPE/ LC-MS/MS D, Q Hu et al. (2017) China 

m-LR, m-RR, m-YR UPLC-MS/MS T Zhong et al. (2017) China 

m-LR, m-RR HPLC-UV O He et al. (2018) China 

m-LR, m-RR, m-YR, m-LA, m-LF, 

m-WR, m-LY, m-LW 
LC-MS/MS Q, T Turner et al. (2018) England 

m-LR, m-RR, m-YR HPLC-DAD D, Q Shang et al. (2018) China 

C: Characterization, D: Detection, I: Identification, O: Occurrence, Q: Quantification, T: Toxicity, HPLC-DAD/HPLC-

PDA: High-performance liquid chromatography-photodiode array detector, LC-ESI-MS/MS: Liquid chromatography-

electrospray ionization-tandem mass spectrometry, LC-HRMS: High-resolution LC-MS, MALDI-TOF: Matrix-assisted 

laser desorption ionization-time of flight spectrometry, NMR: Nuclear magnetic resonance, PPIA: Protein phosphatase 

inhibition assay, UPLC-MS/MS: Ultra-light liquid chromatography-electrospray ionization-tandem triple quadrupole/mass 

spectrometry. 
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Fig.1 Structure of the peptide hepatotoxin, microcystin 

(Preece et al. 2017) 

 

 

al. 1988, Lambert et al. 1996, Maatouk et al. 2002). 

Activated carbon has been found to be effective for MC 

removal due to the surface change and pore texture that 

activated carbon has (Ho et al., 2011, Huang et al. 2007, 

Pavagadhi et al. 2013, Pendleton et al. 2001). The 

adsorption capacity depends on the accessibility of the 

organic molecules to the inner surface of the adsorbent, 

which depends on their size (Zhu et al. 2016). There are 

different types of carbon precursors that have been used for 

the preparation of activated carbon. These include coconut, 

coal, and wood among others, which have been activated by 

different methods such as chemical and physical activation 

leading to the creation of numerous mesopores (Mashile et 

al. 2018). Activated carbon is undoubtedly considered as a 

universal adsorbent for treatment and is commonly used for 

the removal of various pollutants from water because of 

convenience, ease of operation and simplicity of design 

(Faust and Aly, 1987).  However, its widespread use in 

water treatment is sometimes restricted due to the high cost 

of commercial activated carbon. To address this 

shortcoming, several researchers have explored the use of a 

large variety of naturally occurring and agricultural waste 

materials (which are cheaper, renewable and occur 

abundantly) for the production of AC (Diao et al. 2002, 

Hena et al. 2014, Juang et al. 2000, Mashile et al. 2018, 

Warhurst et al. 1997). 

In this review, previous studies on the detection, 

quantification, characterization, and toxicity of MCs and 

techniques used for their removal are summarized. The 

removal of m-LR, the most toxic microcystin, through 

adsorption using AC is then summarized. The importance of 

the structural and chemical properties of AC and the 

operational conditions affecting the adsorption process are 

also studied. The occurrence, quantification, and toxicity of 

MCs in water resources worldwide are presented in Table 1. 

 

 

2. Adsorption of microcystin by activated carbon 

 

Adsorption is a promising treatment technology for the 

removal of m-LR. The application of a granular activated 

carbon (GAC) contactor effectively reduced the m-LR 

concentrations below the guideline values (Chennette, 

2017). Various studies have used activated carbon 

(granulated and powdered) to remove MCs and found that it 

performed well (Falconer et al. 1989b). For MC adsorption 

to occur, the MC must be able to penetrate activated carbon 

pores that are larger than or equal to its own size. MCs have 

been found to preferentially adsorb to mesopores than 

macro and micropores owing to its size (1.33 to 2.94 nm), 

which lies within the carbon mesopore size range of 2 to 50 

nm (He et al. 2016b). An analysis of the different properties 

of GAC used by treatment plant showed that carbon with 

the largest volume of mesopores and macropores adsorbed 

the most m-LR (Huang et al. 2007). 

A large amount of literature discussing AC sources (raw 

material) has identified the AC source as an important 

characteristic that dictates the AC’s pore size and 

distribution, which then influences MC removal (Huang et 

al. 2007). Wood based activated carbon adsorbents have 

been found to have higher efficiencies in MC adsorption 

because of the presence of a number of mesopores in a 

small portion of the material. (Huang et al., 2007, Lee and 

Walker, 2006, Pendleton et al., 2001, Yan et al., 2006). 

Donati et al. (1994) also found that wood-based PAC 

contains a higher volume of mesopores than coal, coconut, 

and peat-based PAC. Therefore, wood-based PAC exhibits 

the highest m-LR adsorption capacity. During the 

adsorption of m-LR, it is important to note that m-LR is a 

large molecule (MW= 994) that is a complex aggregate of 

amino acids. Therefore, it is hydrophobic in an aqueous 

solution (Huang et al. 2007). Thus, it is crucial to consider 

the physical and surface chemical properties of the 

adsorbent selected for m-LR removal (Huang et al. 2007). 

In their study on the effects of activated carbon properties 

on the capacity of m-LR adsorption, Huang et al. found that 

the carbon’s properties influence the amount of m-LR 

adsorbed. Although AC can effectively remove MCs, there 

are some drawbacks. A high dose of PAC is required to 

meet the WHO guidelines (Falconer et al. 1989b, Song et 

al. 2005). Furthermore, the presence of natural organic 

matter reduces the MC adsorption capacity of PAC (Donati 

et al. 1994, Svrcek and Smith, 2004).  

Other cyanobacterial toxins have been successfully 

removed by AC adsorption (Huang et al. 2007, Lambert et 

al. 1996, Wang et al. 2007, Yan et al. 2006). Other studies, 

(Chen et al. 1997, Dixon et al. 2011, Drikas et al. 2009, Ho 

et al. 2011, Lalezary-Craig et al. 1988, Ng et al. 2002, Orr 

et al. 2004, Persson et al. 2007) have also proved the 

efficient use of GAC and PAC to remove other 

cyanobacterial metabolites. 

 

2.1 Significant characteristics of activated carbon 

 

To understand the adsorption phenomena and the 

production and selection of an appropriate activated carbon 

for a target micropollutant, the chemical qualities of AC 

have been extensively explored (Greenwald et al. 2015, 

Watanabe et al. 2012). The properties that influence the 

efficiency of substance removal by activated carbon include 

the particle size, internal pore structure (pore size 

distribution), and pore surface chemistry (Watanabe et al. 

2012). These are important factors that should be 

considered in the production and selection of an appropriate  
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type of AC for a target micropollutant and for 

understanding the adsorption process (Greenwald et al. 

2015, Watanabe et al. 2012). The porous structure of 

activated carbon provides it with a large surface area, 

typically between 400 and 1500 m2 /g, which significantly 

increases the number of adsorption sites (He et al. 2016b). 

Powdered and granular activated carbons typically exhibit a 

heterogeneous pore structure of micropores, mesopores, and 

macropores (Kasaoka et al. 1989). Therefore, during the 

adsorption of biological contaminants on ACs, the presence 

of these heterogeneous volumes of pores contributes to its 

importance as a useful adsorbent (Kasaoka et al. 1989).  

Some recent works have reported the successful 

production of AC from different materials and use in 

wastewater treatment for the adsorption of different 

substances (Khaleel et al. 2015, Alighardashi et al. 2017, 

Wijetunga and Gunasekara 2017, Ingole et al. 2016). 

 

2.1.1 Effect of carbon pore volume  

An important property that influences the adsorption 

process is the pore size distribution (PSD) of the adsorbent, 

which determines the fraction of the total pore volume that 

an adsorbate of a given size can utilize (Pelekani and 

Snoeyink, 1999). Previous research has established a link 

 

 

between an adsorbent’s pore size and its consequent 

influence on the adsorption process. First, Newcombe et al. 

(1997) stated that the adsorption strength increases as the 

pore size decreases due to the increased number of contact 

points between the adsorbate and the adsorbent’s surface. 

Second, when the micropore width becomes less than 

approximately twice the adsorbate’s diameter, the 

adsorption potentials between opposing pore walls begin to 

overlap (Dubinin, 1960). In addition, Li et al. (2002) stated 

that size exclusion limits the adsorption of contaminants 

with a given size and shape if the pores are too small. 

Owing to the presence of a greater number of contact points 

between the molecule and the adsorbent, adsorbate particles 

will preferentially access pores that exhibit a similar size 

(Pelekani and Snoeyink, 1999). A study using three GACs 

based on coconut shells, bituminous coal, and wood noted 

the importance of surface properties in the adsorption of 

MCs (Huang et al. 2007). Various studies that have been 

conducted on AC pore sizes and the percentage removal 

rates of MCs are summarized in Table 2.   

 

2.1.2 Effect of carbon surface chemistry  

The discovery of atoms other than carbon as building 

blocks of AC surfaces has necessitated study on the effects 

Table 2 Studies on the characteristics of activated carbon and percentage removal rates of MCs 

AC type 
Surface area  

m2/g 

Carbon pore volume Removal rate 

% 
References 

Mesoporous Microporous 

PAC/UF 1112 379a 733a 70-98 Campinas and Rosa (2010) 

(G1), (G2), (G3) 
950, 950, 

1050 

0.089b, 0.175b, 

0.760b 

0.812b, 0.689b, 

0.242b 
37-100 Huang et al. (2007) 

UF/PAC 1400 80c 20c 84 Şengül et al. (2018) 

MNS-based ACF 1,079.5 0.20b 0.30b - Albuquerque Júnior et al. (2008) 

CS-based ACF 1,090.0 0.21b 0.27b 99.27 Albuquerque Júnior et al. (2008) 

SCB-based ACF 1,174.3 0.39b 0.23b 98.73 Albuquerque Júnior et al. (2008) 

UCM-based ACF 1,269.6 0.12b 0.50b - Albuquerque Júnior et al. (2008) 

PWR-based ACF 1,550.1 1.06b 0.35b 62.31 Albuquerque Júnior et al. (2008) 

CALGON AC B 871.2 0.03b 0.32b 3.7 Albuquerque Júnior et al. (2008) 

Carboleste AC F 789.5 0.04b 0.30b 43 Albuquerque Júnior et al. (2008) 

NORIT GAC 956.0 0.17b 0.41b - Albuquerque Júnior et al. (2008) 

B1 (G3) - 0.40f 0.52f 189g Pendleton et al. (2001) 

F (G3) - 0.38f 0.46f 200g Pendleton et al. (2001) 

N (G3) - 0.26f 0.42f 161g Pendleton et al. (2001) 

A1 G1) - 0.05f 0.68f 2g Pendleton et al. (2001) 

P (G1)  0.07f 0.29f 7g Pendleton et al. (2001) 

Cecarbon PAC 200 863 0.39b 0.10b 70g Donati et al. (1994) 

Picatif PCO normal 991 0.42b 0.02b 40g Donati et al. (1994) 

Picazine 1197 0.60b 0.49b 280g Donati et al. (1994) 

Calgon-type WPL 1000 0.44b 0.05b 75g Donati et al. (1994) 

PHO ASTM M32 1067 0.45b 0.03b 20g Donati et al. (1994) 

Norit W20 863 0.23b 0.06b 20g Donati et al. (1994) 

Nuchar SA 1366 0.72b 0.27b 220g Donati et al. (1994) 

Prototype PAC 1329 0.66b 0.19b 116g Donati et al. (1994) 

Calgon Filtasorb 300 1057 0.14b 0.23b 99 Chennette (2017) 

Norit 0.8 GAC (1) 1035 301.7a 0.35b > 90 Julio (2011) 

Norit 0.8 GAC (2) 1083 346.4a 0.36b > 90 Julio (2011) 

PAC Norit SA-UF 1112 0.357b 0.343b 93-98 Campinas (2009) 

ACFs: Activated carbon fibers, (a) m2/g, (b) cm3/g, (c) %, (d) m-LR, (e) m-RR, (f) mL(liq)/g, (g) µg/mg, GAC: Granular 

activated carbon, (G1): Coconut shell, (G2): Bituminous coal, (G3): Wood-based, CS: Coconut Shell endocarp, MNS: 

Macadamia nut shell, PWR: Pine wood residues, PAC: Powdered activated carbon, PAC A & B: Coal-based, SCB: Sugar 

cane bagasse, UCM: Unripe coconut mesocarp, UF: Ultrafiltration  
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of the presence of these atoms as they define the chemical 

characteristics of the activated carbon’s surface. Oxygen is 

an important heteroatom found on the surface of AC 

occurring as carboxylic acid, phenolic hydroxyl, and 

quinone carbonyl groups (Boehm, 1994, Caly and Radovic, 

1994). The nature and number of these oxygen complexes, 

which largely depend on the treatment temperature and 

activation method (Snoeyink and Weber, 1967), have been 

reported to have a positive correlation with the density of 

hydrophilic sites (De Ridder et al. 2013). These 

heteroatoms are equally crucial in determining the 

acidity/basicity of the AC surfaces in an aqueous solution. 

Upon exposure to oxygen at 473-973 K or to oxidants, such 

as air, water vapor, hydrogen peroxide, and some acids 

(nitric and sulfuric), AC can develop acidic characteristics, 

and develop basic characteristics upon high-temperature 

treatment (> 973 K) (Campinas, 2009). Considine et al. 

(2001) also asserted that the MC adsorption capacities of 

AC can be largely determined by the hydrophilicity of the 

carbon, as indexed by its oxygen content. The electrostatic 

interactions between the carbon’s surface and the adsorbate 

molecules play an important role in the adsorption process. 

Therefore, a positive surface will attract a negatively 

charged molecule, while a negatively charged surface will 

repel a negatively charged molecule (Newcombe et al. 

1997). Huang et al. (2007) studied the effect of surface 

chemistry on MC adsorption by AC and observed a 

connection between the surface oxygen groups and 

adsorption in the aqueous phase. Specifically, a higher 

number of carboxylic groups on the carbon’s surface results 

in an increase in MC adsorption. Julio (2011) also 

demonstrated that, although the structure and surface 

chemistry are two crucial properties to consider when 

selecting a form of AC, surface chemistry had a greater 

impact on the amount of MC adsorbed. He asserted that 

modifying the carbon (making it more basic and/or more 

porous) is a quick, cheap, and efficient method of 

improving the m-LR adsorption rate of the AC. By carefully 

modifying the surface chemistry of the AC, the author 

concluded that surface chemistry an extremely important 

property to consider for m-LR adsorption. However, Donati 

et al. (1994) and Pendleton et al. (2001) reported no 

significant effect of carbon surface chemistry on MC 

adsorption.  
 

2.2 Influencing water parameters in MCs 
adsorption  

 
2.2.1 Effect of natural organic matter  

Some studies on the effect of natural organic matter 

(NOM) on the adsorption of MCs onto AC are presented 

below in Table 3. The effect of the presence of NOM on the 

m-LR removal efficiency by PAC has been reported in 

many studies (Campinas et al. 2013, Cook and Newcombe, 

2008, Pendleton et al. 2001). The micro contaminant 

removal efficiency of PAC is largely affected by 

competitive adsorption with NOM, and pore blockage and 

direct site competition are the most likely modes of 

competition (Campinas, 2009). Competing NOM may 

sometimes not access the same sites as the target molecules 

due to pore size exclusion, but it can constrict or block  

Table 3 Effect of natural organic matter (NOM) on 

adsorption of MCs 

MCs: microcystins, SRFA: Suwannee River Fulvic Acid 

 

 

pores and obstruct the transportation of the target molecule 

to the final adsorption sites, causing a reduction in the 

adsorption rate (Pelekani and Snoeyink, 1999). Several 

authors confirmed that widening the PAC pore size 

distribution could reduce or even prevent pore blockage by 

NOM (Donati et al. 1994, Li et al. 2002, 2003, Newcombe 

et al. 1997, Pelekani & Snoeyink, 1999, Quinlivan et al. 

2005). Studies have demonstrated that low-molecular-

weight NOM compounds exert a higher competitive effect 

on micropollutants, which is due to direct site competition 

(Campinas, 2009). However, other studies have found that 

smaller NOM compounds may also cause pore 

constriction/blockage (Li et al. 2002, 2003, Newcombe et 

al. 2002, Pelekani & Snoeyink, 1999). The presence of 

NOM may affect the capacity of AC to adsorb MC and 

attenuate its rate of adsorption, thereby reducing its 

efficacy. 
 

2.2.2 Effect of pH 
Many authors have discussed the effect of pH on the 

adsorption of MC by activated carbons as the ionizable 

functional groups on the carbon’s surface may respond to  

Targeted 

MCs 

Nature of 

NOM 

NOM 

concentration 

(mg/L) 

Effect on 

adsorption 

capacity 

References 

m-LR 

Tannic + 

humic 

acids 

5 

Reduction in 

removal from 

98% to 67% 

Campinas 

and Rosa 

(2010) 

m-LR - - 

Decrease in 

removal from 

65% to 12% 

Huang et al. 

(2007) 

m-LR 
- 

 
25 

Decreased in 

removal of 15% 

with 25 mg/L of 

NOM 

Zhang et al. 

(2011) 

m-LR SRFA 5 

Reduction in m-

LR removal of 

11.3% 

Lee and 

Walker 

(2006) 

m-LR 
Natural 

organics 
- 

Decrease in 

Picazine 

removal of MC 

of 11% 

Donati et al. 

(1994) 

m-LR 
Natural 

organics 
- 

Decrease in 

Nuchar SA 

removal of MC 

of 23% 

Donati et al. 

(1994) 

m-LR 
Natural 

organics 
- 

Decrease in 

PAC removal of 

MC of 46% 

Donati et al. 

(1994) 

m-LR SRFA 5 

Decrease in 

removal from 

97.3% to 86% 

Lee et al. 

(2009) 

m-LR Tannic acid  

Decrease in m-

LR removal 

from 98% to 

48% 

Julio (2011) 

m-LR 

Tannic + 

humic 

acids 

1.5-2.7 

Decrease in m-

LR removal of 

30% 

Campinas 

(2009) 
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Table 4 Effect of pH on adsorption of MCs 

Targeted 

MC 

pH 

range 
Trend of effect Reference 

m-LR 8.0 -3.0 
MC adsorption increases at a 

low pH 

Huang et al. 

(2007) 

m-LR 9.0 - 3.0 
MC adsorption increases with 

a decrease in pH 

Mashile et al. 

(2018) 

m-LR 6.5-2.5 Increase in m-LR removal 
Pendleton et al. 

(2001) 

m-LR, m-

RR 
- 

Adsorption capacity for MCs 

decreased with an increase in 

pH 

Zhu et al. 

(2016) 

m-LR 9.0 - 3.0 
16 % increase in MC removal 

with a decrease in pH 

Zhang et al. 

(2011) 

 

 

changes in pH (Pendleton et al. 2001). Studies on the 

effects of pH on m-LR adsorption by activated carbon 

revealed that adsorption increases with decreasing pH (from 

8 to 2.5) (Huang et al. 2007, Pendleton et al. 2001). Zhu et 

al. (2016) observed that at high pH values and the 

electrostatic repulsion between negatively charged MCs 

molecules and AC were responsible for the low PAC 

adsorption capacity. However, at low pH levels, 

electrostatic repulsion disappeared and the MC molecules 

became electrically neutral, which then enhanced its 

adsorption by PAC. For most ACs, the surface charge is 

negative at a high pH due to the increase in hydroxyl groups 

and anions. Moreover, MCs are also negatively charged 

under basic conditions, which results in repulsion between 

PAC and MCs. Thus, a high pH is unfavorable for the 

adsorption of MCs by AC. Under acidic conditions, the 

weak acid functional groups in MCs become more 

conducive to adsorption by AC (Huang et al. 2007). 

Furthermore, at a low pH, the MC molecules begin to 

cluster and the molecular size decreases, which increases 

the surface area available for adsorption by activated 

carbon. Moreover, AC contains more acidic functional 

groups under acidic conditions. The formation of hydrogen 

bonds between MC molecules and the surface of activated 

carbon enhances the adsorption capacity of AC (Lanaras et 

al. 1991). Some studies that have discussed the influence of 

pH on MC adsorption by AC are presented in Table 4. 

 

2.2.3 Effect of ionic strength  
Another important factor that affects electrostatic 

interactions between MCs and AC is the ionic strength. The 

carbon-adsorbate interactions are mainly hydrophobic or 

electrostatic. The ionic matrix of water plays a crucial role 

in the electrostatic interactions. The ionic strength may 

enhance or reduce MC adsorption by AC (Campinas and 

Rosa, 2006). When attractive electrostatic interactions occur 

between the carbon’s surface and the adsorbate and the 

concentration of the adsorbate on the carbon’s surface is 

low (surface concentration), an increase in ionic strength 

will hinder adsorption (Newcombe and Drikas, 1997). 

However, if electrostatic interactions are repulsive or the 

concentration of the adsorbate is high (leading to lateral 

repulsion between the adsorbed molecules), non-

electrostatic forces govern adsorption and an increase in 

ionic strength will enhance adsorption (Campinas and 

Table 5 Effect of ions on adsorption of MCs 

Targeted 

MCs 
Ions 

Ionic 

strength 

(mM) 

Trend of effect Reference 

m-LR Ca2 + 2-100 
Increase in the rate of 

m-LR adsorption 

Campinas 

and Rosa 

(2006) 

m-LY, m-

LW, m-LF 

K+, 

Ca2 + 
2-100 

Enhanced adsorption 

rate 

Campinas 

and Rosa 

(2006) 

m-LR 
KCl + 

CaCl2 
2.5-10 

Enhanced m-LR 

adsorption 

Campinas 

and Rosa 

(2006) 

m-LR, 

Cl−, 

NO3
-, 

SO4
2-, 

CO3
2- 

- 

Increases in m-LR 

adsorption of 16, 18, 

24, and 16%, 

respectively 

Zhu et al. 

(2016) 

m-RR 

Cl−, 

NO3
-, 

SO4
2-, 

CO3
2- 

- 

Increases in m-RR 

adsorption of 16, 15, 

19, and 16%, 

respectively 

Zhu et al. 

(2016) 

m-LR Ca2 + 2-100 

Increase in the m-LR 

adsorption capacity 

with increases in the 

calcium concentration 

Campinas 

(2009) 

 

 

Rosa, 2006, Newcombe and Drikas, 1997) as it induces a 

shielding effect. Such effects of ionic strength on MCs may 

be attributed to the prevailing type of adsorbate-adsorbent 

interactions, which depend on the net charges and 

hydrophobicity of the carbon and adsorbent, the cation 

charge (mono or divalent), and the adsorbate’s surface 

concentration and molecular size (Campinas and Rosa, 

2006). When explaining the relationship between ionic 

strength and the molecular size of the adsorbate, Randtke 

and Snoeyink (1983) reported that the adsorptive capacity 

of GAC for organic anions (particularly those with a high 

molecular weight) increases significantly as the 

concentrations of salts increase. However, recent studies 

indicate that the effect of ionic strength depends on two 

adsorbate variables, i.e., the surface concentration 

(Bjelopavlic et al. 1999, Newcombe and Drikas, 1997) and 

molecular size (Kilduff et al. 1996, Li et al. 2002). Some 

studies that have reported the effect of ions on MC 

adsorption are presented in table 5. 

 

 

3. Conclusions 

AC has been used extensively in the adsorption/removal 

of MC since its discovery as a strong and reliable adsorbent. 

The superior adsorption capacity of AC compared to other 

adsorbents is mainly attributed to its high performance 

relative to its cost, non-toxicity, provision of a large external 

surface area that can be easily accessed by biological 

contaminants, and presence of well-developed meso and 

micropores. The adsorption capacity of AC is versatile and 

can be utilized in the removal of a diverse range of 

biological contaminants, including cyanobacterial toxins 

from aquatic systems, particularly microcystin. Several 

factors have been found significantly influence MC 

adsorption onto AC, including the carbon particle size, 
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carbon surface chemistry, presence of organic matter, pH 

value of the liquid, and the presence of ions. The amount of 

available literature for the application of AC for microcystin 

treatment is increasing at a tremendous pace, with several 

enhancement of biosorption capacity through modification 

of biosorbent, assessment of biosorbents under 

multicomponent pollutants, mechanistic modelling to fully 

grasp the sorption mechanisms, and regeneration studies. 

Overall, AC offers an efficient, cheap, non-toxic and 

biocompatible adsorbent for MC removal.  
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