
Membrane and Water Treatment, Vol. 10, No. 1 (2019) 001-011 

DOI: https://doi.org/10.12989/mwt.2019.10.1.001                                                                 1 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=mwt&subpage=7                                                            ISSN: 2005-8624 (Print), 2092-7037 (Online) 

 
1. Introduction 
 

The Intergovernmental Panel on Climate Change 

(IPCC) Fifth Assessment Report (AR5) predicted that the 

recent extreme hydrological events—increased water 

temperatures, floods and droughts—would affect water 

quality, which would eventually aggravate various forms of 

water pollution. Reasons may include river sediment 

discharge, nutrients, dissolved organic carbon, pathogens, 

pesticides, salt and others. Should this prediction come true, 

it can have negative effects on the ecosystem, human 

health, as well as reliability and operating costs of water-

related systems. 

Floods and droughts directly affect water quality in 

terms of the pollutant  di lut ion and dissolution 

(Prathumratana et al. 2008, van Vliet and Zwolsman 2008). 

As it could reduce the number of precipitation days and 

increase the frequency of heavy rainfall (Brunetti et al. 

2001, Bates et al. 2008), climate change could particularly 

have a negative impact on water quality (Rehana and 

Mujumdar 2012). More specifically, spatial changes in 

regional snowfall or summer precipitation due to climate 

change affect the interactions between surface water quality, 

biogeochemical process, land use change  and acid 
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deposition, thereby influencing water quality in river basins 

(Park et al. 2010). This means that time series variations of 

temperature and precipitation play a very important role in 

determining water quality criteria (Parmar and Bhardwaj 

2013a, b, Damodhar and Reddy 2013). Moreover, this has 

an impact on water resources that people generally use. It 

has been found that climate change alters pollutants and 

biological parameters, which causes the deterioration of 

drinking water quality and results in increased potential 

health risks (Delpla et al. 2009). Taking into consideration 

that climate change-induced water quality degradation 

adversely affects human life, it is thus important to predict 

water quality. 

Mainly, modeling is used to predict water quality. Kim 

et al. (2011) estimated long-term runoff using the 

Hydrologic Modeling System (HEC -HMS). In the 

aforementioned study, input data was established on the 

observed water level, weather, water temperature, total 

nitrogen and total phosphorus  and to apply the 

Environmental Fluid Dynamics Code (EFDC) model, water 

depth was divided into three layers to make a three-

dimensional grid of 5,634 lattices. Using that as the basis, 

changes in the water quality of the Unam Lake were 

spatiotemporally simulated. Kim et al. (2013) conducted a 

rainfall-runoff analysis using the Soil and Water Assessment 

Tool (SWAT) model to determine how climate change 

impacts the ecological habitat of Rhynchocypris 

kumgangensis in Pyungchang River. Main methods of water 

quali ty predict ion include s tat ist ical  evaluation 
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Abstract.  The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent 

extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in 

water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed 

and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested 

by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 

2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water 

quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial 

neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), 

chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality 

prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the 

end of the 21st century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the 

oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% 

and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon 

River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social 

scenarios and climate data are taken into consideration. 
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methodologies—multiple linear regression analysis 

(MLRA), structural equations, trend and time series 

analysis and others—and water quality modeling based on 

hydrochemical data (Attah and Bankole 2012, Chenini and 

Khemiri 2009, Huang et al. 2010, Su et al. 2011, Prasad et 

al. 2013, Seth et al. 2013). In particular, Parmar and 

Bhardwaj (2014) validated the model through a statistical 

evaluation approach and estimated future water quality 

parameters using the autoregressive integrated moving 

average (ARIMA) model. 

Several studies have also predicted the effects of climate 

change on hydrology and water quality using long-term 

runoff models. Varanou et al. (2002) developed nine climate 

change scenarios based on the three general circulation 

models (GCMs) data using a downscaling technique and 

subsequently analyzed water quality changes such as river 

runoff and sediment discharge. Bouraoui et al. (2002) 

developed six different climate change scenarios for the 

Ouse River watershed in Yorkshire, Northern England and 

applied them to the SWAT model, concluding that with 

climate change, total nitrogen (T-N) and total phosphorus 

(T-P) loadings could increase from 6% to 27% and from 5% 

to 34%, respectively. According to Bouraoui et al. (2004), 

the annual average nutrient load and winter runoff would 

increase while the snow-covered area would decrease with 

climate change. Nearing et al. (2005) estimated and 

compared the runoff and soil loss from the SWAT model 

and six other models. 

Aside from the modeling methodologies described 

above, statistical techniques have also been used recently to 

predict water quality. For example, Palani et al. (2008) 

estimated the quantitative characteristics of water bodies 

using the artificial neural network (ANNs) and predicted 

water quality using salinity, temperature, dissolved oxygen 

(DO) and chlorophyll as variables. Jiang et al. (2013) 

conducted a water quality risk assessment through ANNs. 

Altenburger et al. (2015) also estimated the future water 

quality for water resources management and showed the 

potential of ANNs in predicting water quality parameters. 

Due to industrialization and urbanization, river water 

quality has been continuously deteriorating. However, 

previous research studies tend to focus on predicting water  

 

Table 1 Comparison of RCP and SRES Scenarios 

Scenarios RCP Scenarios SRES Scenarios 

CO2 (ppm) 
2.6 4.5 6.0 8.5 B1 A1B A2 

420 540 670 940 550 720 830 

*Current CO2 concentration in Korea: About 440 ppm 

(2010). 
 

quality based on long-term runoff models and statistical 

techniques, rarely taking into consideration the effects of 

climate change. This study thus estimated future runoff 

using the reliable semi-distributed land use-based runoff 

processes (SLURP) model with climate change taken into 

account. To analyze changes in water quality that might 

occur in the future, the correlation between runoff and water 

quality was estimated using the MLRA and ANN models 

and predicted river water quality (e.g., biological oxygen 

demand (BOD), DO, T-N and T-P), which may be affected 

by changes in the flow rate. Fig. 1 shows the analysis 

procedure for this study. 
 

 

2. Climate change scenarios and the SLURP model 
 

Future rainfall that takes climate change into 

consideration is required for future runoff simulation, which 

can be used for future water quality analysis. Future rainfall 

can be obtained using climate change scenarios. Climate 

change scenarios and the SLURP model for runoff 

simulation are briefly described in the following sections. 
 

2.1 Climate change scenarios 
 

IPCC reported Representative Concentration Pathway 

(RCP) scenarios in their AR5, which was published in 2014. 

These scenarios consist of four possible future climates that 

depend on how much greenhouse gases would be emitted in 

the future. These were compared with the Special Report on 

Emissions Scenarios (SRES) reported in the Fourth 

Assessment Report (AR4) in 2010 (see Table 1). The 

comparison in Table 1 is based on CO2 concentration and 

the numbers of RCP scenarios represent the values of 

radiative forcing in 2100. AR5 demonstrated that an 

increase  in temperature  and the occurrence of 

 

Fig. 1 Study flow 
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Fig. 2 Schematic diagram of vertical water balance 

 

 

Fig. 3 A concept of ASA 

 
 

extreme events, such as flood and drought, will affect water 

quality. Future prospects also reveal that water quality 

would worsen. 

 

2.2 SLURP model 
 

SLURP is a semi-distributed physical model that can 

take into consideration the precipitation of rainfall and 

snow. The model simulates the runoff with a daily time step 

by dividing an entire watershed into small ones called 

aggregated simulation areas (ASAs). It then uses 

physiographic parameters (mean elevation of ASA, channel 

length, land cover characteristics and others), time series 

(temperature, precipitation and others) and physical factors 

(Manning’s roughness, infiltration and others) as the input 

data. Physiographic parameters are estimated through 

TOpographic PArametriZation (TOPAZ), a digital terrain 

analysis tool. The runoff is obtained at the outlet of the 

entire watershed through channel routing on each ASA after 

the vertical water balance analysis for the ASAs. The 

vertical water balance of the SLURP model consists of four 

layers and the main factors are the initial contents of slow 

storage, maximum infiltration, Manning’s roughness 

coefficient, retention constant of fast storage, retention 

constant of slow storage, maximum capacity of slow 

storage, precipitation factor, snow melting temperature and 

so on. Figs. 2 and 3 show the vertical water balance  

structure of the SLURP model and the concept of ASA 

(Kite 2008).  
 

 

3. Statistical methods for water quality prediction 
 

The purpose of this study is to predict water quality 

components, the response variables of the MLRA and ANN 

models that include hydrometeorological components as 

explanatory variables. 
 

3.1 MLRA model 
 

A simple linear regression model can be established by a 

single response variable or dependent variable and a single 

explanatory variable or independent variable. If the model 

has more than two independent variables, it is called MLRA 

(see Eq. 3.1). 

y1=βo+β1x1+…+βpXp+ε1 (3.1) 

yi is the ith value of dependent variables, p is the number 

of independent variables, β0, …, βp are the regression 

coefficients, xi is the ith value of independent variables and 

εi is the error term, which is a normal distribution with a 

mean zero and variance σ2. A correlation analysis and a 

multicollinearity analysis may be performed to investigate 

the correlations among independent variables. 
 

3.2 ANN method 
 

The structure of an ANN consists of an input layer, the 

receiver of external input; a hidden layer, located between 

the input layer and the output layer and not visible from the 

outside; and an output layer, which displays the processed 

result. A processing element accepts input from a number of 

other processing elements, calculates a net input value using 

a connection weight and determines an output value through 

an activation function. 

This study adopted the backpropagation algorithm based 

on the steepest descent method, which is used to estimate 

the connection strength between layers in a way that 

minimizes errors. The difference between the measured 

value and the result value is processed in reverse. 
 

3.3 Methods for selecting optimal prediction 
techniques 

 

Typical outlier detection methods include the scatter 

plot, box plot, Dixon test, Grubb’s test, Barnett and Lewis 

test and others. In this study, the box plot was used. 

The method for evaluating the accuracy of the outlier 

detection result is presented in Table 2. Ways to examine 

reliability and validity include the mean absolute error 

(MAE), root mean square error (RMSE), relative root mean 

square error (RRMSE), model efficiency (EF) and others. 
 
 

4. Water quality forecasting model using 
hydrometeorological data 

 

4.1 Selection of the study basin 
 
The Anseongcheon River basin is located in the mid- 
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Table 2 Type of accuracy assessment technique 

Accuracy assessment technique 

Mean Absolute 

Error (MAE) MAE =  
∑ |𝑂𝑖 − 𝑆𝑖|𝑛

1

𝑛
 

Root Mean 

Square Error 

(RMSE) 
RMSE =  √

∑ (𝑂𝑖 − 𝑆𝑖)2𝑛
1

𝑛
 

Relative Root 

Mean Square 

Error (RRMSE) 
RRMSE =  

100

�̅�
× √

∑ (𝑂𝑖 − 𝑆𝑖)2𝑛
1

𝑛
 

Model Efficiency 

(EF) 
EF = 1 − 

∑ (𝑂𝑖 − 𝑆𝑖)2𝑛
1

∑ (𝑂𝑖 − �̅�)2𝑛
1

 

 

 

western part of the Korean Peninsula. The area of the basin 

is 1,658.66 km2 and the length of the river is 70 km. There 

are three meteorological stations (Suwon, Cheonan and 

Icheon) and seven water level stations (Songsan, Hoeryong, 

Donyeongyo, Pyeongtaek, Yangpyeong, Gongdo and 

Anseong) in the Anseongcheon River basin (Figs. 4 and 5). 

Taking into consideration that urbanized and/or dry 

areas around the river basin are rapidly increasing due to 

large-scale development projects since the 1980s and 

climate change, which has been causing water quality 

problems, it is necessary to analyze the water quality 

changes in this region for water quality management. 
 

4.2 Daily runoff estimation using the SLURP model 
 

In this study, daily runoff was estimated by applying 

hydrometeorological data (rainfall, temperature, relative 

humidity, daylight hours and average wind speed measured 

in the weather stations in Suwon, Cheonan and Icheon from 

1989 to 2015) to the SLURP model. 

For the initial content of slow storage (mm), there was 

no significant change in the minimum value, but the 

baseline flow rate was found to be low at the maximum 

value. It was also observed that the baseline flow decreases 

as the maximum infiltration rate (mm/day) increases. 

Moreover, the retention constants of fast storage (day) did 

not show significant changes in their maximum and 

minimum values, but infiltration, evapotranspiration and 

runoff tended to occur more often as the values decreased.  

For the maximum capacity of fast storage (mm), it was 

found that runoff was quite substantial at the minimum 

value and only occurred at the maximum value occasionally 

when the rainfall reached a certain level. 

In addition, the initial runoff increased significantly at 

the minimum value for the retention constant of slow 

storage (day), which is a parameter related to evaporation, 

intermediate runoff and groundwater. Lastly, for the 

maximum capacity of slow storage (mm), the baseline 

runoff was high at the maximum value. 
The parameters of the model were calibrated and tested 

based on their sensitivity described above. After the 
calibration, the Nash-Sutcliffe model efficiency coefficient 
increased from 0.32 to 0.61. The test result was 0.60, thus 

 

Fig. 4 Meteorological stations in Anseongcheon river 

basin 

 

 

Fig. 5 Water level stations in Anseongcheon river basin 

 

 

Table 3 Result of calibration and validation of SLURP 

model 

Period of calibration 

and verification 

2006-2007 2010 

Before 

calibration 

After 

calibration 
Validation 

Daily average 

simulated runoff 

(m3/sec) 

9.06 13.04 15.05 

Daily average 

observed runoff 

(m3/sec) 

11.06 11.06 13.05 

Nash-Sutcliffe 

Efficiency 
0.32 0.61 0.60 

 

confirming the reliability of the model; the runoff from 

1989 to 2015 was simulated using the calibrated model 

(Table 3). 
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Table 4 Obtained prediction models for each water quality 

components by MLRA 

Prediction 

model 
Gongdo station Dongyeongyo station 

DO 

DO = 11.265 –0.028 

× precipitation – 0.131 

× temperature + 0.017 

× discharge 

DO = 8.172 – 0.193 

× precipitation –1.669 

× discharge 

BOD 
BOD = 7.334 – 0.0089 

× discharge 

BOD = 12.524 – 5.311 

× discharge 

COD 

COD = 7.227 × 0.053 

× temperature 

– 0.046 × discharge 

COD = 14.782 – 4.930  

× discharge 

SS 

SS = 9.374 + 0.466 

× temperature 

+ 0.078 × discharge 

SS = 18.404 + 0.847 

× precipitation + 0.387  

× temperature – 9.039  

× temperature + discharge 

T-N 
T-N = 9.534 + 0.518 

× temperature 

T-N = 12.196 – 0.096 

× precipitation – 0.184 

× temperature – 0.360 

× discharge 

T-P 

T-P = 0.0280 – 0.003 

× discharge 

–0.001 × temperature 

T-P = 0.722 – 0.010 

× precipitation – 0.010 

× temperature 

 

 
4.3 Establishment of a water quality prediction model 

 

Taking into consideration that a decrease in the river 

flow rate will significantly impact water quality in the 

future, this study aims to predict water quality by 

determining the relationship between water quality and 

meteorological factors—rainfall, runoff, temperature and 

others—and using the MLRA and ANN models. 

In the Anseongcheon River basin, water quality 

monitoring began from January 1989 at the Dongyeongyo 

and from March 1992 at Gongdo stations. The water quality 

data used in the analysis include DO, BOD, chemical 

oxygen demand (COD), suspended solids (SS), T-N and T-

P. 

 

4.3.1 MLRA-based prediction model 
The analysis was conducted using the enter, stepwise, 

remove, backward and forward models of the MLRA 
method. The comparison between the regression models 
was carried out using the MSE of the residuals of the 
validation period, which was estimated in the training 
period (Table 4). 

The MLRA results for Gongdo showed the following: 

DO (using the enter model) has a negative correlation with 

rainfall and temperature and a positive correlation with 

runoff; BOD (remove) has a negative correlation with 

runoff; COD (stepwise) has a positive correlation with 

temperature and a negative correlation with runoff; SS 

(stepwise) has a positive correlation with temperature and 

runoff; T-N (remove) has a negative correlation with 

temperature; and T-P (enter) has a positive correlation with 

temperature and a negative correlation with temperature and 

runoff. 

Table 5 Layer and components of ANN-based prediction 

model 

Layer Layer component 

Input layer 

Monthly average precipitation, 

monthly average temperature, 

monthly runoff 

Hidden layer 10 

Output layer DO, BOD, COD, SS, T-N, T-P 

 

 

The results for Dongyeongyo indicated the following: 

DO (stepwise) has a negative correlation with rainfall and a 

positive correlation with runoff; BOD (remove) and COD 

(backward) have a negative correlation with runoff; SS 

(enter) has a positive correlation with rainfall and 

temperature and a negative correlation with runoff; T-N 

(enter) has a negative correlation with rainfall, temperature 

and runoff; and T-P (stepwise) has a negative correlation 

with rainfall and temperature. 

 
4.3.2 ANN-based prediction model 
The analysis used daily rainfall, daily mean temperature 

and daily runoff (see Table 5). The interlayer processing 

elements of ANN is generally calculated as 2d or 2d+1 

when the number of input layer processing elements is d. 

Here, the numbers of the interlayer and the output layer 

were 10 and 1, respectively. Observation data from January 

1992 to December 2015 and from January 1989 to 

December 2015 were used for the Gongdo and 

Dongyeongyo, respectively, to build an optimal ANN 

model. The parameters between the input and hidden layers 

and between the hidden and output layers were estimated by 

applying data from the beginning of the observation period 

until the end of 2012 as the training period. Model 

applicability was validated based on the data from the 

validation period of the recent three years (2013-2015) 

using the connection strength estimated during the analysis. 

Connection strength, a value that shows the state of each 

layer as a parameter, indicates the correlation between the 

input and output of each element and the degree of 

influence between the connected processing elements. 

The ANN-based prediction results for each water quality 

factor are described by the training and validation periods in 

Fig. 6 (Gongdo) and Fig. 7 (Dongyeongyo). 

For DO at Gongdo, there was no significant gap 

between the observation data and the data estimated through 

the ANN and the validation confirmed this result. However, 

for BOD, a spike of 75.2 was found on February 10, 1995, 

so the researchers looked up details surrounding the 

occurrence: Meteorological data of that day did not show 

any abnormality and the news reports did not also reveal 

anything noteworthy such as an external, point source 

pollution. Although the researchers could have excluded the 

value by judging that it was an outlier, it was retained in the 

analysis despite the higher error it would cause as it was a 

true value provided by the Water Information System. For 

COD, an abnormal value of 32.2 was observed on April 8, 

1994 and its cause was not also identified. This value was 

again included in the analysis for the same reason as the 

previous case. For SS, a sudden spike of 149.5 was found  
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on August 22, 2011. The meteorological data showed 

rainfall on the same day, which made it difficult to obtain an 

accurate water quality measurement because of the runoff 

and SS increase due to the rain. For T-N, abnormalities 

found on April 8, 1994, April 8, 1997 and February 2, 1999, 

are considered as due to external, nonpoint source pollution. 

For T-P, an abnormal value of 2.058 was recorded on April 

4, 1994—the same day that showed COD and T -N 

outliers—and nothing noteworthy was found in the  

 

 
 

meteorological data and news reports. Water quality data for 

Dongyeongyo and Gongdo were predicted through the 

ANN analysis. 
 
 

5. Water quality prediction in consideration of 
climate change 
 

5.1 Selection of the water quality prediction model 
through outlier detection and accuracy assessment 

 

Fig. 6 Water quality prediction using ANN (Gongdo station) 

 

Fig. 7 Water quality prediction using ANN (Dongyeongyo station) 
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Table 6 Outlier of Gongdo and Dongyeongyo stations 

Gongdo DO BOD COD SS T-N T-P 

Q1 8.200 3.325 5.300 6.825 3.770 0.0142 

Q3 12.600 7.600 8.800 19.000 6.928 0.267 

IQR 4.400 4.275 3.500 12.175 3.158 0.125 

Upper limit 19.200 14.013 14.050 37.263 11.664 0.454 

Lower limit 1.600 0.000 0.050 0.000 0.000 0.000 

Dongyeongyo DO BOD COD SS T-N T-P 

Q1 6.000 6.900 10.175 12.975 6.395 0.298 

Q3 9.700 14.025 15.600 28.575 12.371 0.780 

IQR 3.700 7.125 5.425 15.600 5.976 0.482 

Upper limit 115.250 24.713 23.738 51.975 21.335 1.503 

Lower limit 4.150 3.338 7.463 5.175 3.407 0.057 

 

   

(a) DO (b) BOD (c) COD 

   

(d) SS (e) T-N (f) T-P 

Fig. 8 Outlier detection using box plot (Gongdo Station) 
 

   

(a) DO (b) BOD (c) COD 

   

(d) SS (e) T-N (f) T-P 

Fig. 9 Outlier detection using box plot (Dongyeongyo 

Station) 
 

 

In section 4, water quality changes were simulated 

through ANN analysis and MLRA of meteorological data 

and water quality variables. To determine which model is 

more accurate for water quality prediction, outlier detection 

and accuracy assessment were conducted. 

ME, MAE, RMSE, RRMSE and EF were applied to 

evaluate the accuracy of water quality prediction of the 

MLRA and ANN models. The accuracy of the prediction 

models was evaluated through the predicted statistical error 

analysis of the water quality data (DO, BOD, COD, SS, T-

N and T-P) based on the rainfall, temperature and runoff  

Table 7 Selection of optimal model 

Model 
Gondo 

Index MAE RMSE RRMSE EF 

MLRA 

DO 2.188 3.083 30.839 0.173 

BOD 2.993 5.578 89.557 0.032 

COD 2.171 3.038 41.138 0.029 

SS 8.413 13.196 86.249 0.129 

T-N 1.433 1.927 35.135 0.286 

T-P 0.094 0.162 70.678 0.042 

ANN 

DO 2.038 2.966 29.671 0.234 

BOD 2.721 5.144 82.600 0.177 

COD 1.895 2.775 37.576 0.190 

SS 7.944 13.948 91.166 0.027 

T-N 1.356 1.917 34.956 0.294 

T-P 0.093 0.153 66.722 0.147 

  

Model 
Dongyeongyo 

Index MAE RMSE RRMSE EF 

MLRA 

DO 1.995 2.593 33.005 0.068 

BOD 4.016 5.012 45.514 0.080 

COD 3.372 4.196 31.675 0.083 

SS 9.032 11.336 50.762 0.174 

T-N 3.288 4.172 42.771 0.216 

T-P 0.244 0.305 54.465 0.155 

ANN 

DO 1.693 2.281 29.035 0.278 

BOD 3.149 4.137 37.570 0.373 

COD 2.877 3.701 27.937 0.287 

SS 8.170 10.714 47.974 0.262 

T-N 3.152 4.001 41.014 0.279 

T-P 0.233 0.298 53.170 0.194 

 

 
data from 1989 to 2015 and the actual water quality 

measurements for the same period. 

First, outlier detection was carried out to enhance the 

reliability of the data predicted by either the MLRA or the 

ANN. Table 6 and Figs. 8 and 9 show the outliers of 

Gongdo and Dongyeongyo. 

The accuracy of the MLRA and ANN models was 

assessed for the two spots to determine which model is 

more appropriate for water quality prediction. As a result, 

the data produced by the ANN model were found to be 

more accurate (Table 7). 

Therefore, water quality was predicted using the rainfall 

and temperature data predicted based on the climate change 

scenario and the runoff data estimated by the SLURP 

model.  

 
5.2 Analysis of future changes in water quality 

 
This study used the runoff data obtained from the 

SLURP model, based on the RCP 8.5 climate change 

scenario, for long-term rainfall-runoff simulation. Outlier  
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Table 8 Criteria of river water quality  

Grade 
DO 

(mg/mL) 

BOD 

(mg/mL) 

COD 

(mg/mL) 

SS 

(mg/mL) 

T-P 

(mg/mL) 

Excellent >7.5 <1 <2 <25 <0.02 

Very good >5.0 <2 <4 <25 <0.04 

Good >5.0 <3 <5 <25 <0.1 

Quite good >5.0 <5 <7 <25 <0.2 

Not bad >2.0 <8 <9 <100 <0.3 

Not so 

good 
>2.0 <10 <11 

Waste or 

not present 
<0.5 

bad >2.0 >10 >11 - >0.5 

*Source: water.nier.go.kr 

 

 

detection was also conducted for the results of the MLRA 

and ANN models to determine the optimal model. Water 

quality (i.e., DO, BOD, COD, SS, T-N and T-P) was 

predicted by month for each target period (I: 2016-2040, 

II:2041-2070 and III: 2071-2099) using the selected model. 

Future water quality was analyzed according to the water 

quality criteria listed in Table 8. 

Fig. 10 illustrates the predicted water quality of the 

Gongdo and Dongyeongyo by month for each target period 

and Tables 9 and 10 show variations by period at each spot. 

It is predicted that, for most of the periods, DO will 

decrease but generally increase to 7.5 or higher, which is a 

criterion for clean water. However, water quality is 

expected to deteriorate in summer. BOD and COD are 

predicted to decrease in target periods I and II, but not 

lower than 1 (for BOD) or 2 (for COD)—the “very clean” 

level—which indicates that more efforts are needed to make 

water cleaner particularly in spring, fall and winter when 

runoff decreases. Although SS is predicted to show a 

gradually increasing trend with time, most of the values will 

lie below 25—the “very clean” state. This also means that 

actions need to be taken, particularly during summer when 

SS could temporarily drop due to heavy rain, to maintain 

the current water quality level. T-N and T-P are expected to 

rise in target period I. Measures should thus be put in place 

to reduce them to 0.02 or lower—the very clean level. 

 

 

6. Conclusions 
 

This study estimated the future runoff of the 

Anseongcheon River basin, with the objective to analyze 

potential changes in water quality due to climate change, 

through the application of the RCP 8.5 scenario to the 

SLURP model, taking into consideration the climate change 

policy. Runoff characteristics for the reference period 

(1989-2015) and the three target periods (I: 2016-2040; II: 

2041-2070; and III: 2071-2099) were analyzed and 

compared to predict changes in runoff due to climate 

change. The water quality data (DO, BOD, COD, SS, T-N 

and T-P) by month for each target period were predicted by 

applying rainfall, runoff and temperature scenarios to the 

MLRA and ANN models. 

For Gongdo, DO is expected to decrease for most of 

target periods I and II, except in winter. However, the 

values would stay above 5, which is considered good. 

However, as this parameter could decrease below the “clean 

water” level of 5 in target period III due to temperature 

increase due to climate change, preventive measures need to 

be taken. BOD is predicted to rise in target period I by up to 

36.2% from the current level, particularly in spring and 

winter. In fact, there is a need for additional efforts when it 

comes to BOD as it is predicted to be above 2—the upper 

limit for clean water—for all target periods. COD shows a 

trend similar to BOD—it could increase by up to 24.3%, or 

above 9, indicating a slightly poor water quality, in spring 

and fall for target period I. This also calls for proactive 

actions. SS is predicted to be generally high for most of the 

target periods compared to the current level and particularly 

higher in summer. However, given that the upper limit of 

SS for the “very clean water” criteria is 25, the predicted 

values are considered desirable. Although T-N is not 

included in the river water quality parameters, values that 

exceed 1.5 are considered very poor according to the water 

quality criteria for lakes. Both the current level and 

protections of T-N for Gongdo are considered very poor, 

which is why continuous and proactive measures are 

required. The T-P range will become wider from 0.30-0.15 

to 0.35-0.10 in the future and the value is expected to 

particularly increase by up to 26.7% in spring, autumn and 

winter, which falls into the “poor water quality” level. 

For Dongyeongyo, DO is predicted to decrease in spring 

and fall and increase in summer and winter. With most of 

the predicted values lying above 5, this parameter will be in 

the “good water quality” level. BOD is predicted to 

decrease for most of the target periods, except autumn but 

will still be over the upper limit of 2, indicating that extra 

measures are needed. COD also shows a trend similar to 

BOD, increasing up to 11, which is considered “very poor,” 

in spring and fall for target period I. SS is generally 

predicted to be low in summer and high in spring, fall and 

winter, with higher values than the current level for most of 

the target periods. The value could drop to below 100, the 

limit for the “slightly poor” level, in summer but is 

expected to stay in “good” condition generally. Although T-

N is not included in the river water quality parameters, 

values over 1.5 are considered very poor according to the 

water quality criteria for lakes. Both the current level and 

protections of T-N for Dongyeongyo are considered very 

poor, which is why continuous and proactive measures are 

required. In the future, the range of T-P will become wider 

from 0.80-0.32 to 0.85-0.21. 

In this study, only six parameters (DO, BOD, COD, SS, 

T-N and T-P) were considered due to the short observation 

period. To enhance study reliability in the future, it is 

suggested that more diverse parameters of water quality 

should be applied. It is also important to expand the water 

quality networks at a national level, as well as provide data 

on a regular and consistent basis for statistical analysis. 

Moreover, an analysis of additional environmental factors 

using different climate change scenarios—including RCP 

2.6, 4.5 and 6.0—will increase study reliability. This study 

is expected to be used in the future as basic data for 

establishing water quality measures against climate change 

and urbanization. 
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Fig. 10 Monthly water quality change in the future 
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Table 9 Rate of water quality change in the future (Gongdo Station) 

Month 
DO BOD COD 

Target I Target II Target III Target I Target II Target III Target I Target II Target III 

1 -2.830 2.179 1.726 2.770 0.533 22.505 2.289 0.788 -0.292 

2 -3.050 1.069 3.109 18.756 1.624 7.996 2.329 -0.329 -3.719 

3 -2.802 -1.262 0.351 14.917 -6.682 -6.733 1.918 0.180 -2.803 

4 4.770 -1.297 -13.328 -8.073 -13.911 -3.419 -10.169 -8.853 -7.735 

5 -11.746 -11.901 -9.831 2.626 -5.312 -2.417 -10.813 -8.086 -7.048 

6 -12.281 -12.627 -17.664 8.853 -9.958 -20.593 -5.454 -7.848 -25.276 

7 -5.944 -21.528 -31.654 -10.751 -26.991 -32.350 -4.233 -9.974 -3.933 

8 2.451 -13.956 -35.540 17.375 -46.698 -85.955 1.836 -9.542 -42.956 

9 -5.388 -2.939 -14.338 36.243 24.306 23.895 5.844 1.951 -17.040 

10 1.010 -2.446 -5.833 28.372 12.679 14.737 11.386 7.315 20.136 

11 -0.172 5.323 -1.868 25.720 -22.986 10.386 1.916 -4.940 -0.468 

12 0.488 2.602 0.945 9.732 -0.154 15.392 -0.220 -1.622 -3.395 

Month 
DO BOD COD 

Target I Target II Target III Target I Target II Target III Target I Target II Target III 

1 20.227 7.722 9.482 0.148 -0.515 -3.203 7.902 -11.510 -10.022 

2 18.754 27.682 42.062 2.636 -1.638 -4.267 -3.781 -8.486 -13.562 

3 28.849 23.959 42.380 1.699 -4.828 -8.971 6.371 -0.481 -0.244 

4 18.840 29.235 37.733 3.620 -5.705 -20.299 12.332 4.726 2.462 

5 0.170 0.913 -15.315 -1.876 -3.197 -8.595 11.128 -1.644 -1.992 

6 0.283 6.381 5.851 -6.672 0.028 -18.796 -1.608 -6.920 -25.130 

7 5.098 17.852 41.021 -4.603 -15.905 -23.580 -10.436 -25.832 -38.157 

8 -53.024 -15.303 16.241 -17.403 -17.388 -23.699 3.339 -12.277 -28.747 

9 15.422 -15.767 -51.243 -2.715 0.387 -19.824 26.656 5.474 -27.442 

10 5.699 11.643 35.070 -1.125 -8.868 -26.097 -2.208 2.598 7.480 

11 -2.079 17.405 24.224 4.680 -7.367 -7.511 3.886 1.186 1.693 

12 32.684 17.865 22.810 1.628 0.905 -2.739 -9.776 -5.513 -6.388 

Table 10 Rate of water quality change in the future (Dongyeongyo Station) 

Month 
DO BOD COD 

Target I Target II Target III Target I Target II Target III Target I Target II Target III 

1 -2.537 11.353 13.461 1.230 -16.952 -17.414 4.025 -7.372 -6.706 

2 -5.756 7.063 9.985 4.775 -12.535 -14.693 4.534 -6.239 -8.626 

3 -3.566 -4.410 -0.712 1.381 -6.272 -11.624 0.034 -8.263 -14.380 

4 -0.150 -3.066 -12.237 -5.670 -6.721 -2.594 -13.529 -17.466 -14.840 

5 -0.682 0.193 -4.579 -10.552 -15.100 -21.340 -4.380 -13.838 -22.138 

6 -1.735 5.255 -0.784 -2.994 -13.872 -32.537 -3.210 -13.171 -21.251 

7 6.682 4.575 9.627 -23.361 -34.083 -50.224 -7.408 -16.460 -27.587 

8 4.344 1.982 1.236 -0.831 -44.333 -64.642 4.334 -16.409 -49.348 

9 -1.344 0.761 -3.571 9.557 -0.773 -21.813 -1.604 -12.021 -10.797 

10 -5.973 -11.160 -17.115 22.198 14.441 29.904 12.339 1.460 6.510 

11 -2.274 -3.038 4.597 11.316 -8.661 -5.128 10.745 -10.969 -2.581 

12 -5.137 4.877 4.795 5.025 -6.872 -6.383 3.270 -7.909 -3.212 

Month 
DO BOD COD 

Target I Target II Target III Target I Target II Target III Target I Target II Target III 

1 1.171 -8.115 4.000 -1.889 10.443 7.168 6.016 -0.645 3.676 

2 3.278 -1.093 11.965 -1.228 5.295 2.286 2.908 -1.775 -8.508 

3 5.945 -1.257 6.536 0.155 5.817 3.803 1.214 -0.936 -0.338 

4 4.428 0.056 2.167 1.993 -3.177 -14.696 -10.608 -16.057 -21.545 

5 1.943 -4.617 -4.856 -1.751 -9.415 -15.263 -8.250 -17.604 -26.938 

6 1.857 -4.359 2.586 0.253 -11.015 -2.110 7.153 -4.541 2.623 

7 1.989 -11.342 -13.601 5.709 -0.343 16.940 1.723 -4.549 7.837 

8 -4.045 -5.926 -5.777 5.899 -0.368 -2.107 7.947 -9.613 -33.966 

9 3.644 -5.177 9.404 0.609 -8.863 -13.512 2.736 -8.756 -15.164 

10 15.229 2.881 14.676 3.464 -6.410 -15.088 1.970 -5.881 -19.460 

11 6.689 -1.261 13.613 3.411 0.055 -2.225 3.152 -6.625 1.788 

12 12.111 -1.974 16.950 -5.731 1.476 -3.488 -10.444 -1.734 -9.954 
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