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Abstract.  Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this 

work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this 

contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermo-

plasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is 

that of finite strains. Numerical results on single-crystalline metal showing the development of damage 

conclude the paper. 
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1. Introduction 
 

Modeling and simulation of material behavior have been an important part of engineering 

research during the last decades. One area of large research interest is the computational modeling 

of crystalline materials which properties and macroscopic behavior are determined by the 

underlying microstruc-ture. The development of innovative engineering materials (such as light 

construction materials) as well as the enhancement of classical materials (e.g., metals) requires 

deep knowledge on this issue. 

Experimental data for low cycle fatigue for austenitic stainless steel is documented by Heino 

and Karlsson (2001). It is shown how microcracks initiate and orient along the slip planes. The 

low cycle fatigue experiments on a polycrystalline nickel-base alloy of Dunne, Wilkinson and 

Allen (2007) underline the importance of studying damage in crystalline materials as crack 

nucleation and growth strongly depend on the material’s microstructure. The conclusion from 

experimental studies is that strain localization induces damage and crack nucleation. A further 

discussion about this can be found in Roters et al. (2010). The observations of Horstemeyer, 

Ramaswamy and Negrete (2003) clearly show the temperature dependence on void nucleation in 

aluminium. Moreover, Hou and Yue (2009) show that a temperature gradient results in a strain  
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gradient as well as a damage gradient by investigating creep behavior in a thin-walled cylindrical 

single crystal superalloy. 

Crystal plasticity, with slip system directions defined for each grain, is the standard choice of a 

constitutive model if modeling crystalline microstructures. The fact that standard crystal plasticity 

only accounts for the effect of the history of crystallographic slip, i.e., of statistically stored 

dislocations (SSDs), on the hardening behavior and, thus, is not able to capture size-dependent 

effects of Hall-Petch type, has motivated a number of workers to propose extensions to standard 

phenomenological plasticity and crystal plasticity. Prominent among these is the Mindlin-

continuum- or strain-gradient-based extension of phenomenological plasticity of Fleck and 

Hutchinson (1997), which has also been applied to crystal plasticity in order to obtain a size 

dependent response. 

There exists a wealth of literature with respect to gradient extended crystal plasticity, see, e.g., 

(Acharya and Beaudoin 2003, Bargmann and Ekh 2011, Borg 2007, Cermelli and Gurtin 2001, 

Ekh et al. 2007, Evers and Geers 2004a, Fleck et al. 1994, Kuroda and Tvergaard 2008, Gurtin 

2004, Levkovitch and Svendsen 2006, Ohno and Okumura 2007, Yefimov and Giessen 2005). 

Crystal plasticity coupled to heat conduction has been studied in Håkansson and Ristinmaa (2008) 

and in terms of a gradient extended theory coupled to the thermal problem in Bargmann and Ekh 

(2013), McBride and Reddy (2015). Ekh and Runesson (2004) present a model for anisotropic 

damage coupled to crystal viscoplasticity; finite elastoplasticity with damage is studied by Clayton 

and McDowell (2004). Peerlings and Geers (2012) as well as Dimitrijevic and Hackl (2011) 

introduce isotropic, small strain models based on gradient enhanced plasticity and isotropic 

damage. Aslan and Forest (2011) present a constitutive model for damaging in a viscoplastic 

single crystal in the framework of small strains. The work of Welschinger (2011) treats gradient-

type solids with intrinsic length scales within a variational framework, studying damage, fracture 

and plasticity. 

Increasing plastic deformations in the material leads to degradation and softening. The 

softening or damage behavior has motivated the introduction of the research field damage 

mechanics, see e.g., Lemaȋtre (1992). However, softening in the material leads to pathological 

localization and the finite element method will predict zero dissipation when refining the mesh, see 

e.g., Bazant and Lin (1988). Gradient extended formulations were applied resulting in a finite size 

of the localization zone. How to combine gradient extensions to capture both size-dependent 

hardening and finite size of localization zone is discussed in Peerlings and Geers (2012). In fact 

how to deal with the combination of these size-effects for crystal plasticity models of a crystal is 

the main issue of the current paper. Dissipative mechanisms such as plasticity and damage induce 

temperature changes in the material. The framework for thermo-mechanical coupling for gradient 

crystal plasticity described in Bargmann and Ekh (2013) is adopted. In the current contribution it is 

extended to also take into account the evolution of damage. 

The paper is structured as follows: In Section 2 we introduce the underlying governing 

equations. We study the mechanical as well as the thermal problem and combine these with a 

damage model. The damage is proposed to be governed by the accumulated equivalent inelastic 

strain. Section 3 briefly sketches the finite element implementation. In particular, a dual mixed 

finite element method is applied. Finally, in Section 4 we illustrate the range of behaviors 

predicted by the proposed model by means of representative numerical examples. 
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2. Mathematical model 
 

The governing equations of the model are set up in a thermodynamic framework. A detailed 

derivation for gradient extended crystal plasticity coupled to heat conduction is presented in 

Bargmann and Ekh (2013). The derivation with extension to damage is done in a straight forward 

fashion. In the following, only the main results are revisited and the enhancement to damage is 

discussed in order to avoid unnecessary repetitions.  

 

2.1 Kinematics 
 

We study the material behavior of a body B0 that in general can consist of several grains. Its 

deformation is governed by the deformation gradient  t,X:F 0 , where X is a particle’s 

position in the undeformed configuration B0 and x denotes its spatial counterpart in the 

deformed (spatial) configuration Bt at time t. The deformation gradient is assumed to be 

multiplicatively split into an elastic Fe (reversible) and a plastic (irreversible) part Fp 

pe
FFF                                                  (1) 

see, e.g., Kröner (1960). The Jacobian of the deformation gradient is denoted J=det F. Relevant 

deformation measures are the right Cauchy-Green tensors 

FFC  t :  and   et ee
FFC :                                            (2) 

Moreover, we make use of the rate of deformation tensor d  which is defined as the symmetric 

part of the velocity gradient 1:  FFl  , i.e. 

 tsym

2

1
: llld                                                         (3) 

From Eq. (1), the rate of deformation tensor d  is additively decomposed as 
pe

ddd 

with  
sym

eee






 
1

FFd  and     sym
eppep 11 

 FFFFd  . A result that we need later is the 

time derivative of the elastic Cauchy-Green deformation e
C which can be written as 

    eetee
FdFC 2                                                       (4) 

On the crystal level,  
slipn ,.......,: 1  represent the plastic slips. The slip-system geometry is 

described by two unit vectors, i.e., the slip direction s  and slip-plane normal n  in the current 

configuration. On the intermediate configuration, s  and n  are defined from the push-forward 

operations 

 sFs  e  ,    
   nFn 

t

e                                          (5) 

We adopt the isoclinic assumption that slip directions on the intermediate and the reference 

configuration coincide.  
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2.2 Free energy function 
 

Isotropic damage d∈[0,1] is included in the model by adopting the concept of strain 

equivalence, see, e.g., Lemaȋtre (1992). The damage is chosen to only affect the elastic part of 

the free energy, see, e.g., Lämmer and Tsakmakis (2000) for a discussion about alternatives. We 

introduce a free energy function which is additively decomposed into an elastic, a local 

inelastic, a non-local inelastic and a temperature contribution 

tempnlle  ˆˆˆˆ:ˆ
00000                                        (6) 

With 

JJd e

e lnln
2

:][
2

]1[ˆ 2

0 


 







 IIC

 




 
,

0
2

1
ˆ H

l
l

 





  0

,

00
2

1
ˆ   H

g
nl ll

 

J

J
ctemp

ln
]][3/2[3lnˆ

0

0

0000 



 








  

(7) 

The elastic terms in e ˆ
0  represent the classical free energy function of Neo-Hookean type 

characterized by the two Lamé constants   and  . The local contribution l ˆ
0  is governed by the 

symmetric hardening modulus H
l
  (which includes both self and latent hardening). The non-local 

term nl ˆ
0  accounts for gradient latent-hardening effects via the symmetric H

g
  gradient 

hardening modulus 

IssH HrHr ggg
  ]1[ .                                              (8) 

The gradient hardening modulus contains an anisotropic and isotropic contribution. The latter 

gives a lower limit of the width of the localization zone orthogonal to the slip directions. This 

means that for a vanishing isotopic contribution (i.e., if the degree of isotropy in gradient hardening 

0r ), the width orthogonal to s of the shear localization zone depends on the finite element 

mesh. Note that HH
gl
  , i.e., the gradient hardening matrix is not related to the usual 

interaction matrix for the classical hardening. H
g
  are coefficients where the diagonal terms (

  ) are related to the gradient self-hardening of the slip system  , whereas the off-diagonal 

elements (   ) induce gradient latent hardening between the slip systems  and  . For now 

and the remaining of the paper, we assume that all material parameters are temperature 

independent1. l  and l  denote the internal length scales. 

The first term in the temp̂  accounts for the purely thermal behavior in terms of the specific heat 
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capacity 0c . The last term introduces a thermo-mechanical coupling in terms of the thermal 

expansion coefficient  weighting the product of the bulk modulus ]3/2[    and the difference 

between the current temperature   and the reference temperature 0 . 

 

2.3 Stress measures 
 

The second Piola-Kirchhoff stress on the intermediate configuration 
e

S is obtained (via 

thermo-dynamical arguments) from 

e

e

C
S






02 .                                                               (9) 

The first Piola-Kirchhoff P and Kirchhoff stress τ  are obtained from the current configuration 

via  

tpee  ][FSFP  and 
teeeτ ][FSF  .                               (10) 

Further, we introduce the Schmid stress  which is defined as the projection of the Kirchhoff 

stress τ on the crystal system 

 ns  τ                                                           (11) 

and the effective Schmid stress (following the effective stress concept of Lemaȋtre 1992) 

d


1

~ 



 .                                                             (12) 

Last but not least, on thermodynamical arguments (see Ekh et al. 2007), we define the 

microstresses  
slipn ,.....,1  and  

slipn,1, ,.....,     as follows 


































0

00 Div   in grain,0 ,  








0

0
,




 N   on the grain boundary grain,0    (13) 

where slipn,....,2,1 and N is the outward normal to the grain boundary grain,0 . The obtained 

relations for the stress measures given by the specific choice of free energy in Eq. (6) are stated in 

the Appendix, see Eq. (25). 
 

2.4 Governing equation 
 

The mechanical problem is governed by the equilibrium equations (assuming quasistatic 

conditions) 

0Div 0  bP                                                       (14) 

with b being the volume force. In order to derive the heat equation, we start with the well-

established fact that the balance of energy can be written as 
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shr00 :Div   FPQ                                              (15) 

where  is the mass specific internal energy density,  shr is the external heat supply per unit mass 

and Q is the material heat flux vector. The material heat flux vector is assumed to be determined 

by the temperature gradient 0  according to the isotropic Fourier’s law 0:  kQ  where k is 

the thermal conductivity. Inserting the definition of the Helmholtz free energy 

    :,,,, 0deC  and the thermodynamic relation2 








  into the balance of 

internal energy (15) leads to 

d
d

dArc

t

e

e

tp

sh
































2

00

2

000 ::Div C
C

dQ     (16) 

where we define the damage energy-conjugated variable A as 
d

A





0 . See Bargmann and 

Ekh (2013) for a detailed derivation in the context of gradient extended crystal thermoplasticity. As 

a consequence, damage leads to an additional increase in temperature because 0A . The term 

involving the thermal gradient of the stress power e

e
C

C

:
2

2



 
 gives rise to the well known Gough-

Joule effect (that is structural thermoelastic heating) which couples temperature evolution and 

elastic deformation. 

 

2.5 Evolution equation 
 

The relation for the damage variable d is proposed as 

  .)exp(1 0

m

effSd                                                (17) 

Thus, the damage evolution is directly coupled to the effective plastic slip 

2
: 

  eff . S  denotes the damage coefficient, γ0 is the damage strain and m is the 

damage exponent. Due to relation (17), the damage variable d is approaching 1 asymptotically 

from below3 when increasing γeff. We adopt the standard crystal plasticity yield function on each 

slip system α as 

  Y ~:
                                                     (18) 

which motivates the following relation for the (visco-)plastic slip rate of Norton type 

nn

C

Y

tCt 0*0*

~11 






                                         (19) 

with 0)0(   (i.e., no initial slip) and *t  being the relaxation time, n  the Norton exponent and 

0C  denoting the drag stress. The current slip resistance on each slip system is  Y , where Y  

is the initial yield stress. The accumulated plastic slip is coupled to damage via Eq. (17) as local 

stresses may increase due to accumulation of dislocations and cause damage (see, e.g., Parisot et 
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al. 2004). Following Rice (1971), the evolution equation for the plastic part of the velocity gradient 

is chosen to be of associative type 

 















 nsL 







 



slipslip nn

p
d11 1


 .                                      (20) 

Further, we introduce the slip gradients 

 0g .                                                        (21) 

The slip gradients g  are used as nodal degrees of freedom in the chosen finite element algorithm 

which is of dual mixed type. The slip gradient g  can be interpreted as edge dislocation densities. 

 
 
3. Finite element implementation 

 

In this Section, we shortly describe the chosen discretization method for the initial boundary 

value problem arising from the mathematical model. The solution method is based on finite 

elements for the spatial problem and finite differences for the temporal problem. For those readers 

who are interested in a detailed description, we refer to Bargmann et al. (2010), Ekh et al. (2007) 

where we explain the procedure in detail. In the following, only the basic steps are reiterated. 

We apply a dual mixed finite element method: the geometrically necessary dislocation density 

gα is modeled as a primary variable and the slip-system slip as a dependent constitutive quantity. 

Such a procedure is applied by, e.g., Bayley, Brekelmans and Geers (2006), Ekh, Lillbacka and 

Runesson (2004), Evers, Brekelmanns and Geers (2004), Kuroda and Tvergaard (2006, 2008a), 

Vrech and Etse (2007) and Yefimov, Groma and Giessen (2004). A fully implicit backward Euler 

scheme is used for the temporal discretization. 

A two-level Newton-Raphson iteration scheme is applied to the spatial discretization. 

Global FE-solutions of the equilibrium Eq. (14), the field equation for the geometrically 

necessary dislocation (21) and the heat Eq. (16) yield the displacement field )(Xu , the gradient 
)(Xg and the temperature )(X  in the global nodes at time ntt  . In a first loop, updated 

values of displacements u , gradients g  and the temperature   within each grain are computed. 

The fully discretized equations are coupled and the system is solved monolithically. 
On the element level, an inner iteration loop is carried out. The purpose of this “local iteration 

loop” is to find updated values for the slip rates  , the damage d  as well as the stresses in each 

Gauss point, for given values of u , g and  . 

1.: Assume given values for the nodal displacement vector 
n

u , the nodal vector of the gradients 
n

g , the 

temperature 
n  and (converged) values 

n

 at time nt  

2.: Solve the governing equations for the nodal displacement vector 
1n

u , the gradients 
1n

g  and the 

temperature 
1n  in each grain via monolithic Newton–Raphson iterations. 

• “Local iteration loop”:  For given )( 1n
uF , 

1n
g , solve the flow rule (Eq. (19)) for 

1n  and 

equation (Eq. (17))  for  
1nd in each element via monolithic Newton-Raphson iterations. 

3.: If convergence, then set 1 nn and go to 1. 
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The flow rule is highly nonlinear and, thus, many iterations are needed. The application of a 

dual mixed finite element method allows to solve for the flow rule in the Gauß points on the 

element level which is more computationally efficient than to solve it in the nodes. If the flow rule 

instead would have been solved in the nodes, the deformation gradient and the stresses (which are 

computed in the Gauß points) would have to be averaged in order to obtain their values in the 

nodes.  
 

 

4. Numerical examples 
 

Finally, we turn to the elaboration of the proposed model by means of some selected 

representative examples. A single crystal with side length L=10 µm and two active slip systems 

(45°, 105°) is investigated. Both the local and the gradient hardening are assumed to be purely 

self-hardening, i.e.,  ll HH   and  gg
HH   as well as ll    . The gradient 

hardening is default a combination of slip hardening and isotropic hardening with r=0.5 but this 

value will be varied in the numerical examples in Subsection 4.5. The adopted material parameters 

are listed in Table 1. Plane strain is assumed. In order to trigger a non-homogeneous result the 

initial yield stress is slightly lower in the middle of the specimen. A simple tension test is 

performed with a maximum macroscopic strain macro =0.025 with loading rate macro =0.0125 s−1. 

The temperature field is homogeneously initiated with θ0=293 K everywhere. The influence of 

boundary conditions, grain size, slip directions, the isotropy degree r and the coupled 

thermomechanical problem are investigated in Subsections 4.2-4.6. 
 

 

Table 1 Material parameter values adopted for the gradient crystal plasticity model 

Parameter Symbol Value 

Young’s modulus E  200 [GPa] 

Poisson’s ratio   0.3  

Local hardening modulus lH  1000 [MPa] 

Gradient hardening modulus gH  4·107 [MPa] 

Damage coefficient S 1  

Internal length scale l  10-2 [μm] 

Initial yield stress Y  1000 [MPa] 

Rate sensitivity parameter n  1  

Damage exponent m  2  

Damage strain γ0 4·10-2  

Drag stress C0 1 [MPa] 

Relaxation time t* 103 [s] 

Heat source rsh 0 [J/kg s] 

Material density 0 7800 kg/m3 

Heat capacity c  450 [J/kg K] 

Thermal conductivity k 60 [W/m K] 

Thermal expansion coefficient α 1·10-5 [K-1] 
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Fig. 1 The applied mechanical boundary conditions: The vertical boundaries X1=0, L are assumed to be 

traction free. At the upper boundary X2=L, the displacement is controlled upwards and the traction is 

assumed to be free horizontally. On the lower boundary X2=0, the lower left node is fixed horizontally and 

vertically. At the other nodes on the lower boundary, the displacement is fixed in vertical direction and the 

traction is assumed to vanish horizontally 

 

 

4.1 Boundary conditions 
 

Before proceeding to the results we define the geometry and the boundary conditions of the 

numerical example. The mechanical boundary conditions are illustrated in Fig. 1. The vertical 

displacement 2u  is zero on the lower boundary and controlled to 0u  on the upper boundary. The 

node in the lower left corner is fixed. The remaining boundary displacements are free. 

The gradient hardening boundary conditions must be defined for the grain boundaries. In order 

to allow the damage to grow to the grain boundaries (inspired by the fact that low cycle fatigue 

often starts on free surfaces, see, e.g., Dunne and Allen (2007)) we mainly assume microfree 

conditions 

0,    on grain,0 .                                                     (22) 

In other words, it is assumed that the microstress   vanishes on these boundaries. For 

comparison, we also apply microhard conditions 

0  on grain,0 .                                                      (23) 

For more sophisticated gradient hardening boundary conditions, see e.g., Ekh, Bargmann and 

Grymer (2011). Furthermore, for the thermal problem we assume zero-flux on the grain’s 

boundary grain,0  (used in Subsection 4.6) 

0NQ  on grain,0                                                     (24) 

which reflects on the average an adiabatic situation but with thermal conductivity inside the grain. 
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4.2 Influence of micro boundary conditions 
 

First, we study the influence of the micro boundary condition on the plastic slip for a purely 

mechanical problem. The boundary conditions that we compare are microfree κΓ,α=0 and 

microhard conditions γα=0. The resulting stress-strain responses are shown in Fig. 2. The volume 

average of the first Piola-Kirchhoff stress component P11 is shown as a function of Lumacro 0: . 

In the elastic region, both conditions predict the same material behavior. After yielding, microhard 

conditions map a stiffer response than microfree conditions until damage grows. With microhard 

conditions the material softens faster than with microfree conditions. The effective plastic slip eff  

is depicted in Fig. 3. In both cases a slip band develops in the 45° slip direction. In case of 

microhard conditions, the slip vanishes at the all boundaries and accumulates in the center of the 

crystal. A second slip band in the 105° slip direction is clearly visible. The latter is absent in case 

of microfree conditions. Also, the slip distribution significantly differs as the slip accumulates in 

the lower left and upper right corners of the crystal. As damage is initiated by plastic slip, it 

evolves similar to the corresponding slip field, see Fig. 4. As clearly seen, the choice of the micro 

boundary condition is essential and should be chosen carefully depending the problem at hand. 

 

 

 
Fig. 2 Influence of microfree (solid line) and microhard (dashed line) boundary conditions on the homogeni-

zed stress-strain response. Crystal length L=10 μm. Slip directions 45°, 105°. Degree of isotropy r = 0.5 

 

 
Fig. 3 Distribution of the accumulated plastic slip field for microfree (left) and microhard (right) boundary 

conditions. Crystal length L=10 μm. Slip directions 45°, 105°. Degree of isotropy r =0.5 
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Fig. 4 Damage distribution for microfree (left) and microhard (right) boundary conditions. Crystal length 

L=10 μm. Slip directions 45°, 105°. Degree of isotropy r =0.5 

 
 

4.3 Influence of grain size 
 

Gradient extended crystal plasticity models have been developed in order to capture size 

effects. We have shown that our model predicts size-dependent hardening for the case of plasticity 

(Ekh et al. 2007, Bargmann and Ekh 2010, Bargmann and Ekh 2011, Husser and Bargmann 2014) 

as well as plasticity coupled to the thermal problem (Bargmann and Ekh 2013). Now, we 

investigate the influence of the grain size to plasticity coupled to damage. Microfree boundary 

conditions are assumed and the crystal’s side length L is varied. As shown in Fig. 5, the larger the 

specimen is, the more pronounced is its softening behavior. Due to the microfree boundary 

conditions and a single crystal specimen, the size effect is only seen in the softening behavior. For 

microhard conditions, the size effect also appears in the hardening region. Moreover, the width of 

the slip band is close to constant whereby the relative width (with respect to L) increases with 

decreasing grain size, see Fig. 6. The corresponding damage distributions are depicted in Fig. 7. 

 

 

 
Fig. 5 Influence of grain size on the homogenized stress-strain response: exemplarily, it is shown for L=5 

μm, L=10 μm, and L=15 μm (right). The larger the grain, the stronger the influence of damage resp. the 

softening. Microfree boundary conditions. Slip directions 45°, 105°. r =0.5 
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Fig. 6 Distribution of the accumulated plastic slip field for L=15 μm (left), L=10 μm (middle), and L=5 μm 

(right). With decreasing grain size, the relative width of the slip band increases. Microfree boundary 

conditions. Slip directions 45°, 105°. r =0.5 

 

 
Fig. 7 Damage distribution for L=15 μm (left), L=10 μm (middle), and L=5 μm (right). With decreasing 

grain size, the relative width of the slip band increases. Microfree boundary conditions. Slip directions 45°, 

105°. r =0.5 

 
 

4.4 Influence of slip orientation 
 

We now keep the specimen’s side length fixed at L=10 μm and assume microfree boundary 

conditions. The slip directions are varied: 45°, 105° resp. 10°, 70° resp. −30°, 30°. The influence is 

clearly visible in the stress-strain response (Fig. 8) as well as the distribution of the accumulated 

plastic slip (Fig. 9) and damage (Fig. 10). Some grains are better orientated for (resp. against) 

damage generated by plasticity than others, as the damage evolution inside the grain depends on 

the slip directions. As one consequence, some grains behave much stiffer than others, see Fig. 8. 

 

 

 
Fig. 8 A strong influence of slip directions on the homogenized stress-strain response is visible. 

Microfree boundary conditions. L=10 μm. r =0.5 
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Fig. 9 Influence of slip directions on the distribution of the accumulated plastic slip field for 45°, 105° (left),  

10°, 70° (middle) and −30°, 30° (right). Microfree boundary conditions. L=10 μm. r =0.5 

 

 
Fig. 10 Influence of slip directions on the damage distribution for 45°, 105° (left), 10°, 70° (middle) and 

−30°, 30° (right). Microfree boundary conditions. L=10 μm. r=0.5 

 

 
4.5 Influence of slip resp. isotropic hardening 

 
Here, we investigate the influence of anisotropic slip-direction based hardening versus isotropic 

hardening. This is controlled via the isotropy degree r . The results are shown in Figs. 11-13. The 

assumed slip directions are 45° and 105°, grain size L=10 µm and microfree boundary conditions 

are assumed. For 0r , the numerical results are mesh-independent. However, without the 

isotropic contribution (i.e., 0r ), the results, in particular the width of the shear localization band, 

depend on the refinement of the finite element mesh. 

 

 

 
Fig. 11 Influence of isotropy degree r on the homogenized stress-strain response. Microfree 

boundary conditions. L=10 µm. Slip directions 45°, 105° 
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Fig. 12 Plastic slip field for r =1 (left), r =0.5 (middle) and r =0.05 (right). A larger isotropic contribution 

gives a broader width of the shear band. Microfree boundary conditions. L=10 μm. Slip directions 45°, 105° 

 

 
Fig. 13 Damage distribution for r =1 (left), r =0.5 (middle) and r =0.05 (right). A larger isotropic 

contribution gives a broader width of the shear band. Microfree boundary conditions. L=10 μm. Slip 

directions 45°, 105° 

 
 

4.6 The fully coupled problem: gradient crystal plasticity coupled to temperature and 
damage 
 

The experiments of Bodelot et al. (2011) show an instantaneous coupling between strain 

gradients and thermal dissipation in a polycrystalline metal. Further, Horstemeyer, Ramaswamy 

and Negrete (2003) prove the influence of temperature on the damage behavior of polycrystals. 

Consequently, as a next step, we take the temperature development inside the specimen into 

account in the following. The influence of loading rate, grain size and boundary conditions on the 

temperature field have been studied in Bargmann and Ekh (2013). Therefore, this is not repeated 

for the gradient crystal plasticity coupled to temperature and damage as the results will be 

accordingly. Thus, in the following, we only give one example of the fully coupled problem for the 

sake of completeness. The set-up of the example for damage coupled to gradient extended crystal 

plasticity assumes slow loading. Thus, the heat equilibrates faster than the damage and the plastic 

slip develop. 

We therefore change to a faster loading rate  14s1025 macro  and relaxation time ( 4

* 10  st ) 

for the example in this section. The stress-strain behavior is illustrated in Fig. 14. Heat is produced 

due to plastic yielding and it is strain rate dependent (Bargmann and Ekh 2013). We perform the 

simulations without accounting for thermal expansion as temperature change due to elastic effects 

is negligible once plastic flow is developed (McBride and Reddy 2015) and, by this, avoid further 

nonlinear coupling of the highly nonlinear and strongly coupled set of equations. The damage as 

well as the temperature evolution are driven and strongly influenced by the plastic strain, see Fig. 

15. The relation between the plastic slip and the temperature is nontrivial. The more plastic slip 

arises, the more heat is generated, i.e., in the area of the slip band (which coincides with the most 

damaged area), the specimen heats up most. 
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Fig. 14 Stress-strain response for the fully coupled problem of gradient crystal thermo-plasticity with 

damage. Microfree boundary conditions. L=10 μm. Slip directions 45°, 105°. r =0.5 

 

 
Fig. 15 Fully coupled problem: distribution of the accumulated plastic slip (left), damage (middle) and 

temperature increase (right). Microfree boundary conditions. L=10 μm. Slip directions 45°, 105°. r =0.5 

 
 
5. Conclusions 
 

As damage and temperature evolution play an important role in the material’s overall behavior 

(see, e.g., the experimental observations of Horstemeyer, Ramaswamy and Negrete (2003)), the 

mechanical problem is coupled to heat conduction and damage. We present a multi-physics model 

for size-dependent hardening in crystals accounting for temperature distribution and damage 

evolution. The typical hardening behavior of the gradient extended crystal plasticity model is 

strongly affected by the evolving damage. The damage inside the material is driven by the plastic 

strain and leads to softening. Moreover, changes in the temperature field influence the deformation 

field as well as the damage and vice versa, i.e., the coupling is manifold. The damage development 

inside the grain depends on the slip directions, i.e., some grains are better orientated for damage 

generated by plasticity than others. The model can reasonably predict plastic slip, damage and 

temperature evolution for single crystals. The extension to polycrystals is straightforward. 

 
 
Acknowledgements 
 

Part of this research was done while SB visited Chalmers University of Technology 

(Gothenburg, Sweden), whose hospitality is gratefully acknowledged. SB gratefully acknowledges 

financial support from the German Research Foundation (DFG) via SFB 986 “M3”, project B6. 

Furthermore, the simulations were performed on resources provided by the Swedish National 

185



 

 

 

 

 

 

Magnus Ekh and Swantje Bargmann 

Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science and 

Engineering (C3SE). 

 
 
References 

 
Acharya, A., Bassani, J.L. and Beaudoin, A. (2003), “Geometrically necessary dislocations, hardening, and a 

simple gradient theory of crystal plasticity”, Scripta Materialia, 48(2), 167-172. 

Aslan, O. and Forest, S. (2011), “The micromorphic versus phase field approach to gradient plasticity and 

damage with application to cracking in metal single crystals”, Multiscale Methods in Computational 

Mechanics, Springer, Netherlands. 

Bargmann, S., Ekh, M., Runesson, K. and Svendsen, B. (2010), “Modeling of polycrystals with gradient 

crystal plasticity: A comparison of strategies”, Philosoph. Magaz., 90(10), 1263-1288. 

Bargmann, S., Svendsen, B. and Ekh, M. (2011), “An extended crystal plasticity model for latent hardening 

in polycrystals”, Comput. Mech., 48(6), 631-645. 

Bargmann, S. and Ekh, M. (2013), “Microscopic temperature field prediction during adiabatic loading in a 

gradient extended crystal plasticity theory”, Int. J. Solid. Struct., 50(6), 899-906. 

Bayley, C., Brekelmans, W. and Geers, M. (2006), “A comparison of dislocation induced back stress 

formulations in strain gradient crystal plasticity”, Int. J. Solid. Struct., 43(24), 7268-7286. 

Bazant, Z. and Lin, F.-B. (1988), “Non-local yield limit degradation”, Int. J. Numer. Meth. Eng., 26(8), 

1805-1823. 

Bodelot, L., Charkaluk, E., Sabatier, L. and Dufrenoy, P. (2011), “Experimental study of heterogeneities in 

strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled 

full-field measurements by digital image correlation and infrared thermography”, Mech. Mater., 43(11), 

654-670. 

Borg, U. (2007), “A strain gradient crystal plasticity analysis of grain size effects in polycrystals”, Eur. J. 

Mech. Solid., 26(2), 313-324. 

Cermelli, P. and Gurtin, M.E. (2001), “On the characterization of the geometrically necessary dislocations in 

finite plasticity”, J. Mech. Phys. Solid., 49(7), 1539-1568. 

Clayton, J. and McDowell, D. (2004), “Homogenized finite elastoplasticity and damage: theory and 

computations”, Mech. Mater., 36(9), 799-824. 

Dimitrijevic, B.J. and Hackl, K. (2011), “A regularization framework for damage-plasticity models via 

gradient enhancement of the free energy”, Int. J. Numer. Meter. Biol. Eng., 27(8), 1199-1210. 

Dunne, F.P.E., Wilkinson, A.J. and Allen, R. (2007), “Experimental and computational studies of low cycle 

fatigue crack nucleation in a polycrystal”, Int. J. Plast., 23(2), 273-295. 

Ekh, M., Lillbacka, R. and Runesson, K. (2004), “A model framework for anisotropic damage coupled to 

crystal (visco)plasticity”, Int. J. Plast., 20(12), 2143-2159. 

Ekh, M., Grymer, M., Runesson, K. and Svedberg, T. (2007), “Gradient crystal plasticity as part of the 

computational modeling of polycrystals”, Int. J. Numer. Meter. Eng., 72(2), 197-220. 

Ekh, M., Bargmann, S. and Grymer, M. (2011), “Influence of grain boundary conditions on modeling of 

size-dependence in polycrystals”, Acta Mechanica, 218(1-2), 103-113. 

Evers, L.P., Brekelmanns, W.A.M. and Geers, M.G.D. (2004), “Non-local crystal plasticity model with 

intrinsic ssd and gnd effects”, J. Mech. Phys. Solid., 52(10), 2379-2401. 

Evers, L.P., Brekelmanns, W.A.M. and Geers, M.G.D. (2004a), “Scale dependent crystal plasticity 

framework with dislocation density and grain boundary effects”, Int. J. Solid. Struct., 41(18), 5209-5230. 

Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), “Strain gradient plasticity: theory and 

experiment”, Acta Metallurgica et Materialia, 42(2), 475-487. 

Fleck, N.A. and Hutchinson, J.W. (1997), “Strain gradient plasticity”, Adv. Appl. Mech., 33, 295-361. 

Gurtin, M.E. (2004), “A gradient theory of small-deformation isotropic plasticity that accounts for the 

Burgers vector and for dissipation due to plastic spin”, J. Mech. Phys. Solid., 52(11), 2545-2568. 

186



 

 

 

 

 

 

A framework for geometrically non-linear gradient extended crystal plasticity coupled… 

Håkansson, P., Wallin, M. and Ristinmaa, M. (2008), “Prediction of stored energy in polycrystalline 

materials during cyclic loading”, Int. J. Solid. Struct., 45(6), 1570-1586. 

Heino, S. and Karlsson, B. (2001), “Cyclic deformation and fatigue behavior of 7Mo-0.5N superaustenitic 

stainless steel characteristics and development of the dislocation structures”, Acta Materialia, 49(2), 353-

363. 

Horstemeyer, M., Ramaswamy, S. and Negrete, M. (2003), “Using a micromechanical finite element 

parametric study to motivate a phenomenological macroscale model for void/crack nucleation in 

aluminum with a hard second phase”, Mech. Mater., 35(7), 675-687. 

Hou, N., Wen, Z. and Yue, Z. (2009), “Creep behavior of single crystal superalloy specimen under 

temperature gradient condition”, Mater. Sci. Eng., A510, 42-45. 

Husser, E., Lilleodden, E. and Bargmann, S. (2014), “Computational modeling of intrinsically induced strain 

gradients during compression of c-axis oriented magnesium single crystal”, Acta Materialia, 71, 206-219. 

Kröner, E. (1960), “Allgemeine kontinuumstheorie der versetzungen und eigenspannungen”, Archiv. Ration. 

Mech. Anal., 4(1), 273-334. 

Kuroda, M. and Tvergaard, V. (2006), “Studies of scale dependent crystal viscoplasticity models”, J. Mech. 

Phys. Solid., 54(9), 1789-1810. 

Kuroda, M. and Tvergaard, V. (2008), “On the formulations of higher-order strain gradient crystal plasticity 

models”, J. Mech. Phys. Solid., 56(4), 1591-1608. 

Kuroda, M. and Tvergaard, V. (2008a), “A finite deformation theory of higher-order gradient crystal 

plasticity”, J. Mech. Phys. Solid., 56(8), 2573-2584. 

Lämmer, H. and Tsakmakis, C. (2000), “Discussion of coupled elastoplasticity and damage constitutive 

equations for small and finite deformations”, Int. J. Plast., 16(5), 495-523. 

Lemaȋtre, J. (1992), A Course on Damage Mechanics. 

Levkovitch, V. and Svendsen, B. (2006), “On the large-deformation- and continuum-based formulation of 

models for extended crystal plasticity”, Int. J. Solid. Struct., 43(24), 7246-7267. 

McBride, A., Bargmann, S. and Reddy, D. (2015), “A computational investigation of a model of single-

crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing”, 

Compos. Mech., 55(4), 755-769. 

Ohno, N. and Okumura, D. (2007), “Higher-order stress and grain size effects due to self-energy of 

geometrically necessary dislocations”, J. Mech. Phys. Solid., 55(9), 1879-1898. 

Parisot, R., Forest, S., Pineau, A., Grillon, F., Demonet, X. and Mataigne, J.-M. (2004), “Deformation and 

damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes”, Metal. 

Mater. Trans. A, 35(3), 813-823. 

Peerlings, R., Poh, L. and Geers, M. (2012), “An implicit gradient plasticity-damage theory for predicting 

size effects in hardening and softening”, Eng. Fract. Mech., 95, 2-12. 

Rice, J. (1971), “Inelastic constitutive relations for solids: an internal-variable theory and its application to 

metal plasticity”, J. Mech. Phys. Solid., 19(6), 433-455. 

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T. and Raabe, D. (2010), “Overview of 

constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element 

modeling: Theory, experiments, applications”, Acta Materialia, 58(4), 1152-1211. 

Vrech, S.M. and Etse, G. (2007), “FE approach for thermodynamically consistent gradient-dependent 

plasticity”, Latt. Am. Appl. Res., 37(2), 127-132. 

Welschinger, F. (2011), “A variational framework for gradient-extended dissipative continua. Application to 

damage mechanics, fracture, and plasticity”, Ph.D. thesis, University of Stuttgart, Germany. 

Yefimov, S., Groma, I. and Giessen, E. van der (2004), “A comparison of a statistical-mechanics based 

plasticity model with discrete dislocation plasticity calculations”, J. Mech. Phys. Solid., 52(2), 279-300. 

Yefimov, S. and Giessen, E. van der (2005), “Multiple slip in a strain-gradient plasticity model motivated by 

a statistical-mechanics description of dislocations”, Int. J. Solid. Struct., 42(11), 3375-3394. 

 

 

DC 

187



 

 

 

 

 

 

Magnus Ekh and Swantje Bargmann 

Appendix 
 
The choice of Helmholtz’ free energy in Eq. (6) results in following relations 

       
J

JJd e I
IIb )ln(1

3

2
3)ln(1 0 








  , 

   



  gsgs Div10 llHrllHrH ggl  , 

      


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