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Abstract. In this paper one introduces a method of multiscale modelling called collection of dynamical
systems with dimensional reduction. The method is suggested to be an appropriate approach to theoretical
modelling of phenomena in mechanics of materials having in mind especially dynamics of processes.
Within this method one formalizes scale of averaging of processes during modelling. To this end a
collection of dynamical systems is distinguished within an elementary dynamical system. One introduces a
dimensional reduction procedure which is designed to be a method of transition between various scales. In
order to consider continuum models as obtained by means of the dimensional reduction one introduces
continuum with finite-dimensional fields. Owing to geometrical elements associated with the elementary
dynamical system we can formalize scale of averaging within continuum mechanics approach. In general
presented here approach is viewed as a continuation of the rational mechanics.

Keywords: mechanics of materials; multiscale modelling.

1. Introduction

In last years we observe a tendency in engineering towards decreasing of scale where design of

devices is carried out. The most outstanding example of this tendency is promotion of nan-

otechnology. Frequently, design of nanotechnological devices has to be based on experience of

scientists which realize experiments in corresponding field. This is so since quality of design de-

pends on quality of theory which describes behavior of designed objects. In particular experience of

scientific workers can be interpreted as a kind of theory.

Above discussion suggests that role of theory in small scale should increase with increasing of

activity of engineering sciences in small scale. Moreover, in order to obtain systematical design

methods in small scale we should have at our disposal theoretical models and possibility of

numerical simulations which are reliable and have well defined range of validity. 

In case of mechanics of materials which should be an area of activity for small scale engineering

we have many theoretical models. However, they have not usually well defined range of validity. In

such a case automatization of design process necessary for engineering is rather impossible. This
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induces a necessity of more advanced formalization of descriptions related to smaller scales in order

to enable cooperation of models corresponding to various ranges of validity.

First important property of theoretical models which should be formalized is scale of averaging of

physical properties applied in modelling. We observe in literature various models related also to

small scale. However, usually such a scale is not formalized or even precisely declared.

Consequently, one postulates to formalize scale of averaging in order to introduce by this more

precise physical interpretation of models.

Physical content of models is of key importance especially for small scale phenomena where

complexity of physical processes increases. Frequently, we would like to support our considerations

by interpretations related directly to atomic scale. In this area we apply usually molecular dynamics

method. At larger scale we use various kinds of continuum descriptions. Consequently, a unification

of such theoretical descriptions seems to be a natural need.

The last statement suggests that we should search a multiscale approach in order to discuss in a

consistent way various phenomena in materials. Decreasing of scale leads to increasing role of

dynamics within material. Consequently, we should introduce a description which is based on

dynamical systems with a possibility of transition between various scales.

In this paper we introduce a multiscale method of modelling called here the collection of

dynamical systems with dimensional reduction which try to take into account all discussed above

needs for theoretical modelling.

Various engineering applications have led to necessity of formalization of continuum mechanics in

the past. Let us mention the rational mechanics approach which provided clear system of

assumptions for continuum mechanics (Truesdell and Noll 1965, Gurtin and Williams 1967,

Truesdell 1972, Williams 1972, Noll 1973). This direction has been developed towards a theory of

constitutive equations. Then, necessity of considering smaller scale descriptions becomes important.

As a result methods of micromechanics representing a multiscale approach has been intensively

developed. Let us mention here (Mura 1982, Nemat-Nasser and Hori 1999, Chen and Mehraeen

2005, Zhang et al. 2006) for instance.

Discussed in this paper approach can be viewed as a continuation of formalization of mechanics

in general which was introduced by concepts of the rational mechanics. The aim of this continuation

is to integrate discrete, especially molecular dynamics simulations with various continuum models,

develop constitutive equations theory by better description of dynamical processes, and expand

ability for better determination of range of validity of equations. In the last case we tend towards

creation of situation when numerical simulations could be more stable in applications by ability to

transition between various descriptions. All these ends have relations to formalization of scale of

averaging of physical processes in modelling.

At this moment we should perhaps discuss whether this paper is a rigorous mathematical paper or

a paper which uses mathematics for attaining some engineering aims. Rigorous formulation is

characterized by ability to discuss theorems together with their proofs. They need a precise set of

assumptions. On the other hand we can model a reality with the aid of mathematics. Then, we

always apply an approximation of reality. Consequently, having in mind this approximation we do

not use so precise set of assumptions in order to have at our disposal a flexibility in doing the

approximation.

The aim of this paper is to indicate a method of approximation of realty associated with processes

in materials accentuating to more degree dynamics of such processes. It is expected that improving

of this approximation will rest on introducing gradually more precise assumptions which will be
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manifested by development of more rigorous mathematical description and more reliable numerical

simulations.

In the first section we distinguish the collection of dynamical systems within an elementary

dynamical system. Such a concept creates basis for determination of the dimensional reduction

procedure. In the next section one introduces continuum with finite dimensional fields. Then,

continuum models can be obtained by means of the dimensional reduction procedure. One discusses

premises for postulating forms of skeletal dynamical systems. Role of nanoscale models in

mechanics of materials is accentuated.

2. Collection of dynamical systems with dimensional reduction

2.1 Collection of dynamical systems

In order to do a step toward formalization of scale of averaging in modelling we introduce a

method of division of a dynamical system into subsystems. We have intention to model a real

physical system. Therefore our method is carried out in a way which allows us to consider the most

general physical laws such as the energy conservation law and the mass conservation law.

Let us introduce a dynamical system purposed to describe phenomena on the most elementary

level. Such a system called here the elementary dynamical system (EDS) is given in a general form

(1)

where  is the variable of this system,  is a space of admissible values of this variable,

 represents external interactions acting on this system and F stands for space of admissible

values of f .

Form of external interactions is not always expressed in relative simple form given by f.

Sometimes, they appear as interactions with other dynamical systems. Therefore, let us introduce

also an extended dynamical system

 (2)

where  and . In other words the dynamical system (1) is a

part of that one defined by (2) and can be viewed as a particular case of (2). As a result an external

dynamical system with variable  can be additionally distinguished as a model of external

interactions acting on EDS. This gives a possibility of discussing larger class of interactions of (1)

with an external world.

The dynamical system (1) describes more elementary processes and its form is, by assumption,

the most complex. We tend towards simplifications of this system. To this end we introduce a

partition of (1) onto a collection of P dynamical systems. This is carried out by partition of variable

, .

In order to use this partition for further simplifications we introduce also additional notations, sets

and mappings. Let  be Cartesian product of sets , where  stands for set of

admissible values of . Let us introduce  as a subset of the Cartesian product.

Then,  consists of  which are possible solutions of the Eq. (1) or (2). We consider

also a general projection  of various objects of the whole dynamical system into h-th subsystem.
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Let us distinguish also a collection of dynamical systems for the extended system and a set of

indexes IR related to them. Then, , where IP is related to (1) and IE = IR

− IP is connected with the external system. Furthermore we distinguish a group of dynamical

subsystems  by selection of corresponding indexes. Then, IO = IR − IG represents indexes

defining external with respect to IG dynamical subsystems within (2).

New simplified equations have to be based on balance of mass and energy equations as the most

fundamental physical laws for mechanics of materials. In order to create such equations for the

collection of dynamical systems we should have at our disposal a set of additional notions making

possible to formulate them. Therefore we introduce the following assumptions which represent

general properties of the collection of dynamical systems distinguished within the elementary

dynamical system:

1. Subsystems are distinguished by determination of groups of variables s, where

 is a finite set related to separate h-th subsystem and .

2. There exists a function  which assigns a set of masses for h-th

subsystem. The total mass of the system is . We have also that , where

N is the total number of masses. Then, the functions :  with property

 and m :  determine the total mass related to

each subsystem and the total mass related to (1) respectively.

3. There exists a function  :  which assigns a value of energy to

each of subsystems and E :  determines the total energy related to (1).

4. There exists a family of mappings Jij :  called flux of mass

from j-th subsystem to i-th subsystem and Jij + Jji = 0, Jii = 0.

5. There exists a family of mappings Wij :  called flux of

energy from j-th subsystem to i-th subsystem and Wij + Wji = 0, Wii = 0.

6. Source of mass is determined by the function c : . Then, ci =

 can be considered for each subsystem of the whole system and stands for source

of mass in i-th subsystem.

7. Source of energy is determined by the function R : . Then, Ri =

 can be considered for each subsystem of the whole system and stands for source

of energy in i-th subsystem.

8. Geometrical objects can be assigned to each subsystem. This is carried out with the help of

mappings Gx : , GL : , GS : , GV : ,

where Ee is the Euclidean space. The map Gx assigns some distinguished points to subsystems,

GL introduces one-dimensional, GS two-dimensional, GV three-dimensional geometrical objects

considered as subsets of Ee and accompanied by distinguished subsystems.

All discussed above assumptions and functions can also be introduced for the extended dynamical

system (2).

With the help of above assumptions we are able to carry out analysis of interchange of mass

between subsystems as well as to consider possible sources of mass which appear within

subsystems. Then, we are able also to express the balance of mass equation for collection of

dynamical systems in the following form

 (3)

IR IP IE∪ IP IE∩, ∅= =

IG IP⊂

ϕh ϕhα{ }=

α IAh IAh,∈ h IP⊂
mh ϕh( ) mh1 … mhβh

, ,{ }=
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m̃ MΠ R
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πh°m̃ ϕh{ }( ) mh= MΠ R→ m ϕh{ }( ), Σmh=

Ẽ MΠ R
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i IG j, IO∈ ∈

∑ Jij
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i IO∈

∑+ + + + 0=
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where quantities mi, ci and Jij are mass, production of mass, and efflux of mass introduced in

accordance with previously discussed assumptions related to subsystems.

Sum of masses interchanged between subsystems within IG without any interchange with an

external subsystems is equal to zero. Thus, we have . As a result we can express the

balance of mass equation connected with group of subsystems represented by IG with the help of

formula

(4)

The terms Jij describing interchange of mass with external system IO appear in the Eq. (4). Then,

the Eq. (4) is not entirely determined. Therefore we should introduce additional conditions

(5)

Form of  should be postulated by a kind of constitutive equations.

The balance of energy equation has similar structure as the balance of mass equation and is given by

(6)

The balance of energy equation for group of subsystems IG interacting with groups of subsystems

IO, is given by

(7)

with additional conditions

(8)

Let us note that Ei and Wij depend, in general, on state of the whole system in accordance with

assumptions 3 and 5.

Eqs. (4), (5) and (7), (8) represent a general form of balance of mass and energy equations related

to arbitrary distinguished group of subsystems within the collection of dynamical systems.

2.2 Dimensional reduction procedure

Transition from elementary dynamical system to the more simple one and describing more

averaged physical properties, is realized by means of the dimensional reduction procedure.

Consequently, it is assumed that the dimensional reduction is carried out in order to describe a

chosen physical characteristics of a physical system and neglect some other ones which are viewed

to be less important.

The first step of the dimensional reduction consists in option of new variables. Let d = {dh},

 be a set of new variables which allows to describe, approximately, physical states

represented by miscellaneous . Let  stands for space of admissible values of d. Then, dh as

component of d describes behaviour of h-th subsystem in a simplified form. Thereby, we have

assumed that dim  is considerably smaller than dim .
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Let VT = {ϕ(t) : t ∈ T}, VTr = {ϕ r(t) : t ∈ T} and = {d(t) : t ∈ T}. The first element of the

dimensional reduction procedure is based on introduction of a mapping πT : VTr →  which

assigns dimensionally reduced process d(t) toϕ r(t) on the time interval T.

We introduce also FT = {f (t), t ∈ T} and = { (t), t ∈ T} with mapping πf T : FT →  which

transform forces between elementary and reduced dynamical system.

We can discriminate parts d p(t) and de(t) related to EDS and external dynamical system within the

process d(t). Similar partition is possible for f (t) and (t) since they are considered here for

extended system. Thus, we carry out the dimensional reduction for the extended dynamical system

(2). However, our interest is related mainly to EDS given by (1). We will use ϕ instead of ϕ r and f

instead of f r in what follows if it does not lead to mistake.

Let us introduce an operator L : Mϕ r → FT constructed with the help of Eq. (2) as L(ϕ) = (ϕ,

) where  is obtained from equivalent to (2) equation in the form (ϕ, ) = f r.

Then, the operator acting on processes LT : VTr →  is induced directly by means of L for each

t ∈ T. Let us consider a diagram

(9)

Accordingly, the initially introduced equation T (ϕ (t)) = f(t) induces, owing to assumed

mappings πT and π f T, a dimensionally reduced equation

(10)

where . The operator  can be determined with the help of solutions of Eq. (2)

and postulated mappings  for each value of d(t).

Let us note that we are not able to discuss structure of the operator  in more details yet since

too small number of assumptions is done at this moment.

In order to obtain more information on the operator , especially in case of its interactions with

the external dynamical system we distinguish groups of subsystems.

Let us discuss a similar diagram as above for a group of subsystems . Then, we carry out

the following decomposition VTr = VTG × VTO = {ϕ (t) = ϕg(t), {ϕl(t)}, g ∈ IG, l ∈ IO}. The symbol “×”

does not stand for Cartesian product operation but means a kind of relation in which ϕg, ϕl together

create a solution of (2). We introduce also decomposition FT = FTG × FTO in similar way.

Owing to above decompositions of domain and range, the operator LT can be expressed as LT =

LT(ϕ l)({ϕg (t)}) × LT(ϕ g)({ϕ l (t)}).

The operator LT(ϕ l) : VTG → FTG depends on ϕ l. Usually, not all ϕ l ∈ VTO are necessary for

determination LT(ϕ l).

Let IGO stands for a set of indexes which indicate variables necessary for determination of the

operator LTG := LT(ϕ l). Then, the operator LT can be expressed in simplified form as LTG× TC, where

TC = TC (ϕg, ϕc), c ∈ IGO . With the help of TC we are able to introduce additional equations

necessary for determination of ϕc defining form of LTG within LT. The space VTr is reduced to VTG ×
VTC in this case.

V T

V T

F T f F T

f

L̃

ϕ· L̃ L̃ ϕ·

F T

L

LT d t( )( ) f=

LT π f  T°LT°πT

1–
= LT

πT π f T,
LT

LT

IG IP⊂
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The modified diagram (9) can be expressed now in the following form

(11)

Accordingly, the dimensionally reduced equation describing evolution of group of subsystems is

given by

(12)

(13)

Diagram (11) allows to solve Eqs. (12), (13) by means of solutions of Eq. (2) and postulated form

of .

The first conclusion on form of the reduced dimensionally operator LT is related to its part

corresponding to external interactions. We can assume simplifications to TC having by this a kind of

boundary conditions.

Let us discuss other possibilities for determination of form of the operator LT. We can

approximate this operator by predicting its general form. We can do this by means of postulating of

the skeletal dynamical system SDS(C) which depends on family of constants C.

The role of SDS is to represent a larger class of systems which encompass approximately Eqs.

(12), (13). Accordingly, the general form of SDS in case of (12), (13) can be expressed as

(C)(dg, dc) = . Then, with the help of an identification method, we determine C =

 and as a result a reduced dynamical system RDS = SDS( ). Finally, RDS represents an

approximation of Eqs. (12) and (13).

General structure of SDS should take into account fundamental laws in the first stage of

formulation. In case of mechanics of materials such laws are expressed by balance of energy and

balance of mass equations. They have been previously formulated for collection of dynamical

systems.

We should devote some attention to discussion of kind of variables of the skeletal dynamical

system. They need sometimes quite new ways of their application in order to approximate correctly

processes at the elementary level.

Let Hdh = {dj : j ∈ } be a set of values of the variable dj determined on a set of subsystems

indexed by elements of a set .  represents all subsystems which interact with the h-th one.

Let us introduce a function ah : Hdh → Vah, where Vah is a linear space. Accordingly, the function

ah assigns an element of the linear space connected with h-th subsystem to a set of values of

variables dj related to interacting subsystems.

It is assumed furthermore that the function ah can apply geometrical elements obtained by

functions Gx, GL, GS and GV assigned to subsystems. Therefore the function ah can be called the

function of kinematical dependence between subsystems.

We introduce also an additional concept of taking into account interactions between subsystems

with the aid of geometrical elements. Let us consider a discrete set of variables {gh} related to

LTG d
c

( ) dg t( ){ }( ) fg{ }=

TCc dg t( ) dc t( ),( ) Bc{ }=

πT πfT πfTc, ,

LTG TC,{ } f B,{ }
C C

Ih

a

Ih

a
Ih

a
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dimensionally reduced system. In order to describe interactions between different systems, a value

of gh type in a given point X can be useful. Consequently, we admit possibility of introducing this

kind of quantity.

We assume that it is possible to introduce a transmission function Tx ({gh}) = gx which assigns a

value of gx in the point X to the set of values {gh}. We assume also that by means of the

transmission function no additional degrees of freedom is produced. Sometimes such a

transformation allows to model interactions in more convenient way. This will be discussed also in

next sections.

Masses related to dynamical system also undergo dimensional reduction. This is introduced by

πM({mhi}) = {Mhp}. Thus, Mhp are inertia coefficients related to h-th subsystem and can be present in

the form of SDS.

Summing up these considerations we have obtained some general tools which can be applied in

determination of the skeletal dynamical system. We have discussed possibility of application of

geometrical elements assigned to subsystems in order to obtain better approximation of the

elementary dynamical system and corresponding interactions. However, further premises, especially

related to physical laws, should follow from more detailed specification also of the mappings πT and

π f T. This will be discussed in the next section.

Let us discuss now a concept of an identification method of constants defining RDS from SDS(C).

Let C = {ψ (t) : ψ ∈ , t ∈ T} be a space of continuous time processes in  with a metric ρ : C

× C → R+ {0}. We can construct two kinds of processes. The first one is based on solution ϕ (ϕ0,

f)(t) of Eq. (2) and have the form πT (ϕ (ϕ0, f )(t)). The second one is created by the skeletal

dynamical system with assumed constants C. Thus, we have a solution of equations of SDS as d(C,

π (ϕ0), ))(t), where (t) = π f T (f (t)). Let us consider the function

 (14)

where CE is an admissible set of constants for which energy of the system is well approximated. It

means that for each C ∈ CE, E(ϕ)(t)  E(d)(t).

Let  stands for constants for which the function h attains a minimum. Then, a satisfactory

approximation should have the property that  exhibits a weak dependence on d0 and f. This, in

turn, is connected with assumed functions πT and SDS which reflect correctness of averaged

modelling. Finally, we have to choose a constant  from the set of  by an averaging method.

Then

 (15)

where Av means the averaging operation. Obtained constants  determine a dimensionally reduced

dynamical system RDS( ). By means of formulas (14), (15) an approximation and identification

procedure denoted generally by app is established.

Summing up these considerations let us notice that the following general procedure is established:

{EDS; DR} → RDS( ). It means that the dimensional reduction procedure DR = {πT, π f T, SDS,

app} acting on an elementary dynamical system (2) leads to obtaining the reduced dynamical

system RDS. Consequently, RDS is considered as describing approximately, evolution of our

initially introduced physical system.

M M

∪

f f

h ϕ0 f,( ) inf
C C

E
∈

ρ d C( π ϕ0( ) f, ,( ) t( ) πT ϕ ϕ0 f,( ) t( )( ) ),=

≈
C∗

C∗

C C∗

C Av C∗:C∗ d0 f,( ) d0 M∈ f F )∈, ,{ }=

C

C

C
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3. Dimensional reduction of SQ-type

3.1 Decomposition of variables of SQ-type

Considerable number of physical systems can be characterized by variables of two types. The first

one is related to slowly varying and the second one to quickly varying processes. The most known

example is a system with deformation and temperature.

Consequently, further premises for more precise method of determination of the skeletal

dynamical system consists in specification of the mapping πT taking into account mentioned above

property. Consequently, let us introduce a special case of πT = {πST, πQT} in which two parts related

to slowly and quickly varying variables are discriminated. As a result d(t) = πT (ϕ (t)) can be

expressed as d = {dS, dQ} = {πST (ϕ), πQT (ϕ)}.

Let us assume also that the elementary dynamical system describes evolution of classical point-

like particles by the equations

(16)

(17)

where i ∈ IN = {1, 2, …, N}, V is a potential energy and fi is a force acting on i-th material point.

Let q = {qi}, v = {vi}.

Let us take a set of time instants t0 < t1 < … < tK which belong to the time interval T = [t0, t0 + T],

tK = t0 + T. By means of these instants we divide the time interval into the sum T = k Tk, Tk = [tk − 1,

tK], k = 1, …, K. Then, for each k we can calculate the value of  as

(18)

A value = q(t0) is assigned to k = 0. With the aid of sequence of values { }, k ∈ IK we can

generate a function (t) = Iq({ }), where Iq is an approximation procedure. Now, we are able to

decompose the variable q(t) into two summands

q(t) = (t) + δq(t) (19)

Thus, (t) represents the slowly varying part of q(t) and δq(t) its rapidly varying part.

The decomposition expressed by (19) and carried out with the aid of finite elements

approximation corresponding to variable (t) is given in the paper (Kaczmarek 2002).

Similar SQ-decomposition as above can be carried out for forces f. To this end we calculate the

following time averaged quantities

 (20)

Then, we have = If ( ) with the help of an approximation procedure If. Finally, we obtain the

decomposition

f(t) = (t) + δ f (t) (21)

dqi

dt
------- vi=

mi

dvi

dt
-------

∂V

dqi

------- fi+–=

∪
q̃k

q̃k
1

Tk

----- q t( ) td
Tk

 

∫=

q̃0 q̃k

q̃ q̃k

q̃

q̃

q̃

f̃k
1

Tk

----- f t( ) td
Tk

 

∫=

f t( ) f̃k

f̃
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Let us consider the balance of energy equation for our EDS given by (16), (17) for further

discussion of premises on form of the skeletal dynamical system. We postulate this equation in the

following form

(22)

Let us apply the decomposition (19) to the Eq. (22). We carry out summation with the aid of sets

of indexes Id and If. They are indexes of variables ϕ and f which are transformed into d and 

correspondingly. Then, the balance of energy (22) can be rewritten as follows

 (23)

We would like to obtain some premises on a general form of the balance of energy equation for

SQ decomposition. To this end let us consider some parts of the Eq. (23) in detail in order to

separate segments corresponding to SQ-decomposition. Terms related to external interactions

suggest distinguishing the following parts

(24)

where RS is equal to the first term on the left side of (24) and RQ is equal to the second term on the

left side of this equation. Let us note that such simple decomposition on RS and RQ suggests

necessity of plotting these quantities with all variables subsequently considered since both are

dependent on  and .

The terms dependent on  can be expressed as

 (25)

Then, WGO represents interactions between G and O systems. WSGO and WQGO are related to slowly

and quickly varying processes respectively.

Summing up concisely above discussion we notice that the first four terms in the Eq. (23) can be

interpreted as time derivative of energy = S + Q and could be also decomposed on S and Q

parts. Furthermore, we have R = RS + RQ and WGO = WSGO + WQGO.

E
·

HT mg

d
2
qg

dt
2

----------q· g
∂V

∂qg

-------- qG qC,( )q· g+
∂V

∂qc

--------q· c

c
∑+

g
∑≡

PTG fG( ) PTC fC( )+ PT≡=

f

mg

d
2

q̃g δqg+( )

dt
2

-------------------------------q̃
·

g

⎩
⎨
⎧

g Id∈

∑
∂V

∂q̃g

-------- qG qC,( )q̃· g+
d

∑

 mg

d
2

q̃g δqg+( )

dt
2

-------------------------------δq· g
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c
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-----------δq· c+
⎩ ⎭
⎨ ⎬
⎧ ⎫
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∑–

f̃g δfg+( )q̃· g f̃g δfg+( )δq· g

g If∈

∑
f
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g If∈

∑
f
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∂V

∂q̃c
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c
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These considerations allow to postulate the general form of the balance of energy equation for

group of dynamical subsystems (7) related to SQ decomposition in a modified form as

 (26)

having also premises for postulating  from (23).

At this moment we have at our disposal the general form of balance of energy represented by (26)

as an approximation of (22).

With the aid of previous discussion of variables for the reduced system we can assume their

general form d = {dS, dQ} = {dSC, dSξ, dSV, dQC, dQθ, dQV}, where dSC and dQC have configurational

character, dSV and dQV are related to generalized velocities and the remaining ones are rather viewed

as a kind of internal state variables. We introduce furthermore additional notations dSC = α, dSξ = ξ,

dSV = β, dQC = γ, dQθ = θ, dQV = δ in what follows.

We introduce a convention in using of indexes. Thus, g, h are related to a considered subsystem

and do not undergo summation convention, i, j, k, m, n are applied usually for subsystems

interacting with g, h ones, p, q, r are connected with components of α, β, … variables.

Let us introduce the following general form of energy of the h-th subsystem Eh = Mheh + Th. We

introduce furthermore the property = 0 or equivalently = 0. It means that ch = 0 and Jhm = 0

are also assumed. Consequently, owing to this assumption = + + = +

undergoes simplification.

Let us discuss eh in the following form

eh = VSh + VQh (27)

where

VSh = CShµ ΦShµ (αh, ah) (28)

VQh = CQhν ΦQhν (γh, bh) (29)

Furthermore

Th = Th (βh, h) (30)

where ΦShµ (0 0) = 0, ΦQhν (0 0) = 0, Th(0 0) = 0. These assumptions bring about energy equal to

zero for such values of variables. Th represents a kinetic energy term. CShµ and CQhν are considered

to be constants at this moment. In the next stage of considerations they will depend on introduced

variables.

Let us calculate . To this end we assume that ,  using

Taylor expansion of Th. Then we have

 (31)

Let us postulate particular forms of RSh = Shq  and Shm = − Shmq . Then, the balance of

energy (26) can be expressed as

E
·

h RSh– RQh– WShm WQhm+( )
m IO∈

∑+⎝ ⎠
⎛ ⎞

h IG∈

∑ 0=

E
·

h

m· h M
·

h

E
·

h M
·

heh Mhe·h T
·

h Mhe·h T
·

h

a·

T
·

h
∂Th

∂βhp

----------
∂2
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∂βhp∂βhq

---------------------- 0( )βhq≈
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∂a· h

--------
∂2
Th

∂a· h

2
---------- 0( )a· h≈

T
·

h
∂2
Th

∂βhp∂βhq
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·

hp
∂2
Th

∂a· h

---------- 0( )
∂a· h

∂α· jp

----------
∂a··h

∂α·· kq

-----------α· jpα
··

kq+  =

Mhpqβhqβ
·

hp Ihjqkrα
·

jqα
··

kr+= Mhpqβ
·

hq( )α· hp Ihjqkrα
··

kr( )α· jq+=

f α· hq W f α· mq
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 (32)

and

(33)

We admit dependence of  on all variables dS, dQ considered in what follows.

Therefore, we also modify the Eq. (32). We assume that terms  and .

We take into account these terms in the balance of energy equation. Consequently, next transformed

version of (32) is given by

(34)

Let us assume that time processes are independent. Then we obtain the equations describing slowly

varying processes

 (35)

with the additional condition

 (36)

We introduce also the equation which expresses previously introduced notations in the form

(37)

The second time derivative of αkr is present in the last term in (35). In particular indexes k can be

found in IO. This induces necessity of determination of evolution of such variables. As a result we

consider also the following condition

(38)

Eqs. (35) and (34) leads to the equation describing averaged evolution of quickly varying

processes

Mh CShµ

∂ΦShµ

∂αhq

--------------α· hq CShµ

∂ΦShµ

∂ah
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∂ah
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⎩
⎨
⎧

h IG∈

∑

 Mhpqβ
·
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··

kr( )α· js f Shqα· hq RQh WShm WQhm+( ) }
m IO∈

∑+––+ + 0=
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·
QhνΦQhν 0≠

Mh C( Shµ
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(39)

with the additional condition

 (40)

motivated by considerations related to (8).

Let Hh = {αh, ah, γh, bh}. Above introduced equations have an excessive number of variables.

Therefore, additional constitutive equations must be introduced. They are assumed in the following

form

VSh = CShµ (CShµ, Hh, ξh, θh) ΦShµ (αh, ah) (41)

VQh = CQhν (CQhν, Hh, ξh, θh) ΦQhν (γh, bh)  (42)

WQhm = (CWh, Hh, ξh, θh) (43)

= Aξ (Cξh, Hh, ξh, θh) (44)

= Aθ (Cθh, Hh, ξh, θh)  (45)

where the last two equations are evolution equations for internal state variables.

We have obtained a form of the skeletal dynamical system corresponding to SQ-decomposition

with the help of Eqs. (35)-(45). In this system we have introduced a set of constants C = {CShµ,

CQhν, CWh, Cξh, Cθh}, C ∈ CE. This kind of the elementary dynamical system can be considered

when we apply molecular dynamics method for instance.

Averaged descriptions obtained by considered here SDS can be related to models directly based on

molecular dynamics and having a kind of temperature as variable. Consequently, we can introduce

on this way nanoscale continuum models of mechanics of materials when we add to this kind of

modelling quantities representing continuum.

However, discussed above SDS need not to be considered as a kind of continuum. It can describe,

for instance, behavior of a large molecule divided into subsystems, where a deformation and

averaged fluctuations related to vibration are taken into account. Then, the deformation corresponds

rather to conformational changes of the molecule. Such models can open possibility of simplified

modelling of large molecular systems in biology for instance (Kaczmarek 2002).

4. Continuum mechanics as a special case of the dimensional reduction

4.1 Continuum with finite-dimensional fields

Multiscale modelling in mechanics of materials leads to possibility of considering physical

foundations of processes in materials. Atomic models represents the best physical description.

However, they have very large number of degree of freedom and therefore should be simplified. We

have postulated here that dimensional reduction is appropriate method for such a simplification.

 C
·

ShµΦShµ C
·

QhνΦQhν ) RQh WQhm

m IO∈

∑+–+ + 0=

WQhm WQhm h IG∈ m IO∈, ,=

WQhm

ξ
·

h

θ
·

h
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On the other hand continuum description is the most frequently applied in mechanics of materials.

It is natural to expect that such models could be considered as skeletal dynamical systems in order

to be obtained as a result of dimensional reduction procedures.

Number of degree of freedom for atomic systems described by molecular dynamics is finite.

Consequently, simpler systems obtained by means of the dimensional reduction should have less

number of degree of freedom. However, fields on continuum create infinite-dimensional spaces.

This follows that continuum theories considered here as simpler systems should have finite-

dimensional fields. In this section we formulate continuum theory having such a property.

The continuum mechanics is widely applied in material sciences for many years. This is a general

theory which has well established mathematical foundations, see for instance (Truesdell and Noll

1965, Gurtin and Williams 1967, Truesdell 1972, Williams 1972, Noll 1973, Kosi ski 1985). In this

section we modify assumptions of the continuum mechanics in order to obtain continuum with

finite-dimensional fields.

The idea of introducing finite dimensional fields consists in assumption on validity of balance

equations not for all subbodies of the body B but only for their determined family K. It is in fact a

generalization of classical formulation since all subbodies create a particular case of K.

The notions of the classical continuum should be modified with respect to a finite family of

subbodies K in order to obtain spaces of finite dimensional fields. We would like also to connect

notions related to continuum with an elementary dynamical system. To this end mappings defining

geometrical objects related to dynamical subsystems will be used. They have been introduced in

general assumptions characterizing collection of dynamical systems.

Consequently, we can consider mappings Gx, GL, GS, GV which assign zero, one, two and three

dimensional geometrical objects to each subsystem correspondingly.

Let us apply the special case of the map GV :MΠ → (2Ee)P as GV = GK. Let MK = {K} be a set of

possible families of K = {Kh}, where Kh Ee and intKg intKh = , g, h ∈ IP. Then, GK :MΠ

→ MK, GK ({ϕh}) = K. We introduce also the mapping GKh(ϕh) = Kh.

Consequently, the mapping GK introduces three-dimensional disjoint subsets of Ee which will be

further interpreted as partition of the body B on the set of subbodies Kh and U Kh.

Let us note that GK ({ϕh}(t)) = {Kh}(t) describes evolution of B(t) = UhKh(t) in time. Kh(t) will be

also denoted by χt (Kh) in what follows, where Kh corresponds to a reference configuration.

Definition 1: The body associated with the dynamical system = L(ϕ, f) is defined with the help

of mapping GK as Bϕ = Uh ∈ IP
 Kh.

Let us apply also the function Gx = Gχ which assigns a point χh as a distinguished point of χ (Kh)

to each subsystem. Thereby, Gχ :MΠ → {{χh}}. We introduce also a mapping :MK → {{χh}}.

Consequently, Gχ = . In particular Gχ = GI defines Xh as a distinguished point of Kh in

reference configuration.

Let us consider the set Hχh = {χm, m ∈ }. Then, we introduce the function ah : Hχh → Vah, where

Vah is a linear space, and a : {{Hχh}} → {{ah ({χm})}} as a function of kinematical dependence

between subsystems defined here with the help of family K.

The function  assigns a set of discrete values of the field χh, h ∈ IP to the body B with the help

of the family K. Similarly, the function a assigns a set of discrete values of the field ah, h ∈ I to the

body. Indexes from the set  will be related usually to some neighboring sets Ki of Kh. Let =

{{ , a} : { , a} = {χh, ah}, h ∈ IP}. Let us define the space Vκ of deformation functions χκ of the

body B with respect to a given configuration κ as Vκ = {χκ : χκ = , λ, κ ∈ C}. In this case C is

the set of configurations considered within classical continuum mechanics formulation.

n

ê

⊂ ∩ ∅

ϕ·

χ

χ°GK

Ih

a

χ

Ih

a
VD

χ χ

λ°κ
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Let furthermore, αχ : → Vκ be a function and = αχ({χh, ah}),  (Xh) = χh.

Definition 2: The deformation function associated with the distinguished family of subbodies K is

a function  of the form = αχ ({χh ah}).

Definition 3: The motion of the body B associated with the family of sets K is a continuous map

χt : [0, T] → { }.

With the help of above definitions we have obtained deformation function and motion of the body

in relation to the elementary dynamical system.

Considering fields on continuum we need frequently also temperature field. Let us note that

assignation of the value of temperature Th to the point χh in χ (Kh) is not so simple as defining χh

which has direct geometrical interpretation. We do this here formally only. However, deeper

understanding of such a variable can be obtained when we consider SQ decomposition and

corresponding projection mappings.

Consequently let us introduce a function  on K, which represents temperature, as  : K → RP,

({Kh}) = {Th}. Let IP and HTh = {Tn, n ∈ }. Then, wy introduce function bh by analogy to

ah as bh : HTh → Vbh and b : {{HTh}} → {{bh (Tn)}}.

Let = {{ , b} : { , b} = {Th, bh}, h ∈ IP}, VTM = {T(x) : x ∈ χ(B)}. Let us consider a

function → VTM and TK = αT ({Th, bh}).

Definition 4: The temperature field TK associated with the distinguished family of subbodies K is

the field obtained with the help of the function αT as TK = αT ({Th, bh}).

The function αχ assigns a deformation function field  to the set of its discrete values. The aim

of this function is to introduce a continuous field χ on the body B. Similar role plays the function

αT for T. Thus, the spaces of such fields Imαχ Vκ and ImαT VTM are finitedimensional, where

Imφ means the image of a function φ.

4.2 Balance of mass and energy equations for continuum with finite-dimensional fields

Previously we have introduced assumptions related to collection of dynamical systems. They

admit existence of functions , Jϕ ij, cϕ, Eϕ, Wϕ ij, Rϕ which introduce masses mi, efflux of mass Jij,

source of mass ci, efflux of energy Wij and source of energy Ri accompanied by subsystems.

Consequently, mentioned functions indexed here by ϕ are referred directly to the elementary

dynamical system.

We use these functions to reformulation of general form of balance of mass and energy equations

defined for collection of dynamical system to the case of continuum.

Let  : MΠ → {{mh}} be mapping which determines a set of mass related to collection of

dynamical systems. Let MM = {{Mh}} and M : MK → MM be a function which determines masses

assigned to Kh. We have also that (K) = Mh, where Mh is the total mass related to Kh. Mh are

defined by means of the relation = , where i is a mapping which identify mass of h-th

subsystem with mass assigned to Kh. Consequently, a system of mass related to continuum is

introduced by means of mapping  defined on elementary dynamical system.

Let B = UhKh, h ∈ IB, where IB IP is a set of indexes defining an arbitrary subbody B of the

body also denoted by B. Then, M(B) = Mh. Using this definition we obtain mass related to

subbodies as a kind of measure defined on the body.

Energy accompanied by the elementary dynamical system is introduced by means of the function

Eϕ : MΠ → RP. Then, energy E : MK → {Eh}, Eh = E ({Kh}) assigned to each Kh, is defined by

means of the relation E = . As a result, we are able to define energy related to subbody as

VD χκ
K

χκ
K

χκ

K
χκ
K

χκ

K

T T

T Ih
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E(B) = Σh Eh. We assume further that E = E + T is sum of internal energy and kinetic energy.

Source of mass cϕ : MΠ → RP and source of energy Rϕ : MΠ → RP are defined now as C :

MK → RP, R : MK → RP by means of relations C GK = i °cϕ and R°GK = i°Rϕ. These quantities are

defined for subbodies by means of expressions C(B) = Σh Ch, R(B) = Σh Rh.

Efflux of mass Jϕ ij : MΠ → R and efflux of energy Wϕ ij : MΠ → R are defined as Jij : Ki × Kj →

R, where Jij is determined by means of Jij ° (GKi × GKj) = i ° Jϕ ij and Wij : Ki × Kj → R, where we

obtain Wij from Wij ° (GKi × GKj) = i ° Wϕ ij.

Let us consider the boundary of the body B = UhKh. Then, J( B) =  Jim and

W( B) =  Wim.

We consider also Bs B which is defined as Bs = Uh ∈ IS
 ( Kh B), Is IB. There exists

relation between Bs and set of Jim. We assume that pair of indexes {i, m} is associated with Bs if

Bs is a border between subsystems i and m. Then, J( Bs) =  Jim.

With the help of introduced functions, the balance of mass Eq. (4) interpreted in terms of

continuum is given by

(B) + J( B) − C(B) = 0 (46)

with the additional condition satisfied for arbitrary Bs B

J( Bs) = ( Bs) (47)

The balance of energy Eq. (7) expressed in terms of continuum is assumed in the following form

(B) + (B) + W( B) − R(B) = 0  (48)

with the additional condition satisfied for arbitrary Bs B

W( Bs) =  ( Bs) (49)

Neglecting at the moment detailed representations of introduced below quantities, we formulate

also the second law of thermodynamics as a supplementary postulate. This is given with the help of

the balance entropy expressed as

P(B) = (B) + H( B) − N(B) ≥ 0 (50)

where S is entropy, H is efflux of entropy and N stands for source of entropy. P represents

production of this quantity.

We accept SQ decomposition in this version of continuum theory. Therefore, the skeletal

dynamical system for continuum description can be expressed in similar form as Eqs. (35)-(45). In

order to do it we should interpret in details particular representations of quantities which occur in

balance of energy and mass equations as well as entropy balance Eqs. (46)-(50).

Having such representations we can compare them with corresponding quantities in (35)-(45). We

can introduce and interpret in these equations geometrical structure of objects Kh assigned to

subsystems and also other geometrical properties. In particular we can introduce gradient of

deformation by means of functions ah and bh, Div operation interpreting summation with respect to

distribution of Kh and corresponding boundary conditions.

4.3 A comparison with the finite elements method

Discussed in this paper approach to continuum by finite subsets suggests connections with finite

°

∂ ∂ ∂ Σi IB m IP IB–∈,∈
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elements. Indeed we consider a finite family of subsets Kh. We have at our disposal mappings Gx.

Consequently, such mappings can indicate vertexes of simplexes {xhp} for each Kh.

Let us introduce assumption that xhp = xh'q for every coinciding vertexes of adjacent Kh and Kh'.

We can construct various functions ahm which could determine derivatives of arbitrary rank for each

vertex of Kh. Then, we can introduce the deformation function χK = αχ ({xhp}, {ahm}) interpreted as

a finite-element representation of the deformation function (Oden and Reddy 1976).

Let us notice that we do not consider any discretization when we postulate continuum equations.

Introduced equations are directly finite-dimensional. However, variational approach can be useful

for postulating forms of skeletal dynamical systems.

Summarizing, finite elements can be interpreted as subsystems which can generate continuum

with finite-dimensional fields. However, subsystems are not finite-elements in general since

continuum fields can be introduced on various ways.

5. Continuum with a discontinuity surface

Discontinuity surface occurs frequently when we apply a small scale for averaging of material

properties. In particular discriminating of separate slip surfaces needs nanoscale approach for

instance. Similarly strong discontinuity appears when we consider separate cracks. Thereby, the

discontinuity surface can be associated with important mechanisms responsible for inelastic

deformation.

Above remarks suggest necessity of discussion on premisses for constructing of the skeletal

dynamical system also in the case when the discontinuity surface appears. We discuss here the

situation where the discontinuity surface is related to the deformation function χ introduced for

the body B. Then, the body undergoes separation into parts. In case of multiscale description

presented in this work, appearing of such a discontinuity surface induces change of the dimensional

reduction during evolution.

Let us introduce a surface S in the body B. Then, many of Kh ∈K is intersected by this surface.

As a result we have to consider a new family KS of subsets of B which consists of Kh ∈ K and

additionally Kh'l instead of Kh', h' h, l = 1, 2, where Kh' = Kh'1 Kh'2 and Kh'1 Kh'2 = S

Kh'. We assume also that IS = {h'}. Consequently, the surface S intersects some Kh' and divide them

into two parts. Let us introduce a common index for all sets from KS. Let a ∈ {h, h'1 h'2}, h h'.

Then, KS = {Ka}.

The surface S is not introduced consistently with the above discussed theory of continuum with

finite-dimensional fields. In case of the material surface, for instance, we have that S = χ (S0). It

means that S is an image of the deformation function χ. On the other hand χ is introduced with the

help of {χh} and α(χh, ah). The last remark suggests that the surfaces, S should be introduced by

means of discrete set of values.

Let Sh1 = S χ−(Kh1) and Sh2 = S χ+(Kh2), h ∈ IS. We assign values of deformation functions

  and  to distinguished points on Sh1 and Sh2 respectively. These points can be applied to

generation of continuous surface S.

Interaction through the surface should be introduced at the same point of the surface of both B−

and B+ systems. However,  and  do not coincide in general during evolution. Therefore,

we will use transmission functions discussed previously in Subsection 2.2, for quantities depending

on χ, which express interactions at the same point of both sides of the surface.

≠ ∪ ∂ ∩ ∂ ∩

≠

∩ ∩
χSh1

 –
χSh2

+

χSh1

 –
χSh2
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Let us distinguish B− = Uh ∈ IBI− Kh Uh ∈ IS
 Kh1 and B+ = Um ∈ IBI+

 Km Um ∈ IS
 Km2. Then, IB− = IBI−

{h1}, IB+ = IBI+ {h2} are sets of indexes related to parts of the body on both sides of the

surface.

Let Phn stands for quantity defined for continuum description and analogous to the left side of the

Eq. (35). Furthermore let Qh stands for quantity defined for continuum description and analogous to

the left side of Eq. (39).

Using the balance of energy Eq. (34) we postulate the balance of energy equation for continuum

with the discontinuity surface S in the following form

(51)

where indexes h1 and m2 corresponds to indexes h' of subsystems divided by the discontinuity

surface. In case when h h' then sumation over indexes g2 and p1 is not active.

Role of indexes g2 and p1 can be explained by means of particular representation of the quantity

WS (h1)(g2)(S) which can be defined as follows

 (52)

We have to do here with variables  having indexes g2 which do not belong to IB−. Thereby

equations describing evolution of part B− of the body B have an axcessive number of variables. We

should determine them by some boundary conditions. Similar situation happens in case of excessive

variables for part of B+ and related to the term WS (m2)(p1)(S).

Dependence of Vh1 on variables which do not belong to B− is associated with dependence of Vh1

on the function of ah(χ) type. With the aid of such a function various forms of gradients of

deformation can be introduced. The function Vh can be identified with the free energy.

When the parts B− and B+ are joined then  can be assigned to subsystem represented by Kg2.

However, in case when we discuss separately B− we can consider  as a surface quantity.

The balance of energy Eq. (51) should be prepared to derivation of balance of momentum

equation for corresponding parts of the body and on the discontinuity surface. In case when we

consider the two parts of the body in a contact then we should have at our disposal possibility of

efective comparison of quantities on the surface. Thereby let us consider the following transmission

functions

(53)

which assign values on the left side of the relation (53) having form corresponding to the body B−.

Negative sign appears as a result of taking into account orientation of the surface.

Let us note that the transmission function T can be introduced with the aid of the mapping αS
which assigns continuous form of the surface S for a discrete set of position vectors defining the

surface. All discrete fields should be distributed on the surface by densities of such fields. Then,
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transition to various points of the surface is possible.

With the aid of expressions (52) and (53) we can rewrite the balance energy Eq. (51) in the form

(54)

where we have added the term Eh1(S) + fS (h1)(g2)r = 0. The force fS (h1)(g2)r is responsible for

dissipation of energy on the surface. We do not discuss of this aspect in details at this moment.

Consequently, taking into account independence of time processes  we obtain from (54) and

(53) among others the following equation

(55)

corresponding to local form of balance of momentum on the surface S.

We can obtain also other equations related to the surface starting from the balance of energy Eq.

(54). The aim of this discussion is to show how discontinuities can appear in the skeletal dynamical

system describing material having strong discontinuities. We see that the equation of type (55)

should be a part of such a skeletal dynamical system together with all necessary constants

associated with this equation.

Propagation of the discontinuity surface changes incessantly dimensional reduction procedure due

to varying number of variables associated with interction of new subsystems. Conditions for

initiation of particular discontinuity surfaces needs more detailed models, taking for instance

particular forms of the free energy represented here by the functions Vh.

Skeletal dynamical systems with discontinuity surface can be applied in cooperation with smaller

scale models. Let us mention for instance molecular dynamics which could support models of crack

propagation.

On the other hand, we can apply an elementary dynamical system with the disontinuity surface

describing crack propagation for instance to determine more averaged models. Then, more averaged

models have to average effects following from particular cracks and introduce to this end new

variables. Let us mention for instance damage tensor as representing such variables. Discussion of

this kind of description is done in (Kaczmarek and Ostachowicz 2005).

6. Conclusions

Application of multiscale descriptions and corresponding numerical simulations of phenomena in

materials are more widespread in last years. Development of computational methods in mechanics

has considerable influence on methods applied in this area. We can consider large systems and
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apply various grids for simulation and modelling at various scales. However, it seems that

complexity of phenomena in materials in relation to small scales needs also development of a set of

theoretical notions which allow to describe such phenomena.

In general, it seems that dynamics of processes in smaller scales is not sufficiently modelled yet.

Therefore, in this paper an approach based on dynamical systems is suggested. Furthermore, we

should distinguish between multiscale discretization and multiscale modelling. In the first case we

have to do rather with known models. In the second case we should construct such models.

In the present multiscale approach models related to various scales are clearly separated. Thereby,

we carry out modelling of physical processes for each scale separately. This is done by assuming

form of the skeletal dynamical system. During option of scales for modelling we should be aware

which levels are appropriate for distinguishing mechanisms responsible for modelled processes.

Let us note that within the concept of multiscale modelling presented in this paper we accentuate

role of molecular dynamics corresponding to atomic scale, nanoscale continuum models and more

averaged continuum models.

Role of nanoscale models seems to be very important. Let us note that nanoscale models are

rather not developed. This is so since they are too complex for direct engineering applications and

by this their status is not well justified. On the other hand various mechanisms responsible for

inelastic deformation happen just in relation to nanoscale. Let us mention slip plasticity where we

would like to distinguish separate slip surfaces. Such a model has been discussed in (Kaczmarek

2003). Another example is related to martensitic transformation where moving interfaces appear.

Then, dynamics of such a system needs more careful investigations by distinguishing separate

interfaces. Models of this kind has been discussed in (Kaczmarek 1994, Kaczmarek 1998,

Kaczmarek 2001). Phenomena at the tip of the crack are also associated with various types of

inelastic deformation and have complex dynamics. Therefore nanoscale approach to fracture

mechanics (Kaczmarek and Ostachowicz 2005) is also justified.

Let us note that small elementary volume for nanoscale models makes more easy cooperation of

such models with molecular dynamics. In such a case we have smaller number of atoms in the

elementary volume. Then, by means of the dimensional reduction procedure, we could create

nanoscale models from molecular dynamics simulations. This is also a proposition for application of

molecular dynamics. We could remember complex calculations of molecular dynamics in form of

nanoscale models.

As it was mentioned above modelling for each scale applied is manifested by postulated form of

the skeletal dynamical system. Introduction of the skeletal dynamical system can be direct and

arbitrary in fact. However, then approximation of phenomena can be not correct. On the other hand

we can try to obtain some premises on form of such a dynamical system by analysis of form of the

elementary dynamical system as it was discussed in Section 3 for instance. We can support our

knowledge by experimental observations corresponding to the chosen scale. We can also try to

maximize our efforts towards theoretical derivation of form of SDS from EDS.

Form of the free energy seems to be important in relation to modelling of various phenomena and

using it for determination of the skeletal dynamical system. Having such a motivation complex

forms of the free energy is applied in the martensitic transformation model (Kaczmarek 1994,

Kaczmarek 1998) and slip plasticity (Kaczmarek 2003). In both cases form of the free energy and

their variables correspond to phenomena at the nanoscale. Furthermore such a function is

convenient for unification in modelling of various phenomena. In particular the slip plasticity and

martensitic transformation can be unified on this way (Kaczmarek 2001).
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Nanoscale models can have independent status as phenomenological theories. However, large

number of constants, appearing in the free energy for instance, needs determination. At the

nanoscale it is difficult to carry out experiments related to separate phenomena. Then, cooperation

with molecular dynamics seems to be inevitable in a longer perspective. This is possible just within

presented here multiscale approach.

Determination of range of validity of particular elaborated models is important. We see that many

phenomena and corresponding to them processes have to be described by application of a varying

number of variables. This is especially frequent when the scale is smaller. Let us mention the slip

plasticity. When we exceed a critical condition and the slip appears a set of new variables is

activated. Then, we apply also a new dimensional reduction procedure. Thereby, cooperation of

models having different sets of variables has to be permanent. Range of validity of models has to be

determined by a set of critical conditions corresponding to each model.

Summarizing, by above discussion we accentuate role of nanoscale models in order to give them

a separate status in mechanics of materials. They are convenient for joining atomic simulations with

more averaged continuum models which are more applicable in engineering. Furthermore,

development of nanotechnology can give them additionally a separate status as models which have

direct engineering applications.

Discussed in this paper multiscale method of modelling is aimed at giving a theoretical context

and justification for development of nanoscale models. Furthermore, it is accentuated that

unification of theoretical approach to molecular dynamics and continuum description for solids is

very important with respect to physical aspects of mechanics of materials.
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