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Abstract. This paper presents a meshfree procedure using a convex generalized meshfree (GMF)
approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic
level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the
continuity of displacement across the material interface in the rubber compounds. The convex approximation
also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size
and integration order effects. In this study, the convex approximation is generated in the GMF method by
choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary
condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic
boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by
the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding
phenomena in the rubber compound, the cohesive interface element method is employed in corporation with
meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of
the proposed numerical procedure in the large deformation analysis.

Keywords: meshfree; microscopic; periodic boundary condition; basis function; Kronecker-delta prop-
erty; unit cell

1. Introduction

Meshfree methods are the topic of recent research in many areas of computational science and

engineering. One of the early incentives to develop meshfree method was its ability to handle large

deformation problems (Chen et al. 1996). Other advantages of the meshfree methods can also be

found in many literatures (Belytschko et al. 1996, Li et al. 2002). In general, meshfree shape

functions can be categorized into two groups, the approximation methods and the interpolation

methods. There are two well-known approximation methods, the moving least-squares (MLS)

approximation (Lancaster and Salkauskas 1981, Belytschko et al. 1994) and the reproducing kernel
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(RK) approximation (Liu et al. 1995, Chen et al. 1996). The MLS approximation was achieved by

solving a linear constrained quadratic minimization problem and the RK approximation was

achieved by introducing a correction function to the smooth particle hydrodynamics (SPH)

approximation (Lucy 1977) to guarantee the reproducing condition. It was shown that MLS and RK

approximations are actually same methods but derived in a different way (Belytschko et al. 1996).

Meshfree approximation methods do not satisfy the Kronecker-delta property at the boundary, which

is an important property to impose the essential boundary conditions. In order to impose the

essential boundary conditions, there are several special treatments have been proposed, such as

Lagrange multiplier method (Belytschko et al. 1994), transformation method (Chen et al. 1996),

mixed transformation method and singular kernel method (Chen and Wang 2000), coupling with

finite element method (FEM) (Belytschko et al. 1995, Rabczuk et al. 2006), and so on. 

A well-known interpolation method is the radial basis functions (RBF), which are invariant under all

Euclidean transformations. The classic form of RBF is the multiquadrics (MQ) (Kansa 1992a, 1992b).

There are other forms of RBF, such as thin plate spline (TPS) (Duchon 1976) and Gaussian radial

function (Powell 1992). The major advantage of these methods is the satisfaction of the Kronecker-

delta condition. However, they are limited to small-scale problems because of their nonlocality. Some

expanded and combined methods were proposed to overcome the limitations, such as non-Sibsonian

interpolation (Belikov and Semenov 2000), point interpolation method (PIM) (Liu and Gu 2001),

moving kriging (MK) interpolation method (Gu 2003), weighted radial basis collocation method (Hu

et al. 2007), and more recently the combined RK and RBF approximation (Chen et al. 2008).

On the other hand, a novel approximation scheme was also introduced recently, the so-called

maximum entropy (ME) approximation (Sukumar et al. 2004, Arroyo and Ortiz 2006). The ME

approximation is developed based on the Shannon’s entropy concept (Shannon 1948) and ME

principle (Jaynes 1957), which is a convex approximation and satisfies Kronecker-delta property at

the boundary. Also, this approximation guarantees the unique solution inside a convex hull with a

minimum distributed data set. More recently Wu et al. (2009) further extended the ME

approximation to a generalized approximation and called it a “generalized meshfree (GMF)

approximation”. The method can be used to construct various convex and non-convex meshfree

approximations with the ease of essential boundary condition treatments.

Applications of meshfree method in multi-scale constitutive modeling of heterogeneous materials are

still somewhat rare. An interface-enriched reproducing kernel approximation was introduced by Wang et

al. (2003) for the homogenization of magnetostrictive particle-filled elastomers. Terada et al. (2003)

proposed a finite cover method which is an Eulerian type of meshfree method for the large deformation

analysis of composite materials. Chen et al. presented two multi-scale wavelet methods on the analysis

of heterogeneous materials with fixed and evolving microstructures (Chen and Mehraeen 2004, 2005).

In this study, we first investigate the Kronecker-delta property in GMF approximations for the

microscopic analysis of rubber compounds. The choose of positive and monotonic increasing basis

function in GMF approximation leads to a convex meshfree approximation that guarantees the

continuity of approximation across the material interface in the rubber compounds. In order to

impose the periodic boundary condition in the unit cell, a singular kernel is introduced in

corporation with the GMF basis function to acquire the “strong” Kronecker-delta property on the

periodic boundary. To solve the periodic boundary condition numerically, a transformation method

based on the multiple constraints concept is employed. The computational formulation is formed in

the framework of Galerkin meshfree method based on a GMF approximation. The final discrete

equations are condensed and solved for the retained nodes. The dependent nodes are obtained from
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the constraint equations. Both implicit and explicit formulations are presented. In order to consider

the de-bonding phenomena in the microscopic analysis of rubber compound, the cohesive interface

element formation is derived in conjunction with explicit meshfree formulation. Using the proposed

approach, we analyzed three large deformation problems on microscopic level including the de-

bonding of material interface. 

This paper is organized as follows: The GMF approximation is reviewed and the Kronecker-delta

property of GMF approximation is discussed in section 2. In section 3, the transformation method is

employed to solve the periodic boundary condition in meshfree method. Section 4 presents the

implicit and explicit meshfree formulations for the periodic boundary value problem. In addition,

the cohesive interface element formulation is derived for the be-bonding analysis. Several numerical

examples are presented in section 5 to demonstrate the effectiveness of the approach, followed by

conclusions and discussions in section 6.

2. Review of Generalized meshfree (GMF) approximation

In the Maximum Entropy approximation, the basis function considers the exponential distribution

of the probability. Therefore it implies that the approximation is convex since the exponential

function is non-negative. It is noted that other members in the exponential family of probability

density function also can be chosen as a basis function and different entropy measure also can be

used to obtain the convex approximation. Motivated by the ME theory, the choice of different basis

function can now be considered as the choice of different “weighted” distribution which may not

necessarily be a convex function and members of the exponential family. Moreover, it is possible

that the basis function also can be translated and blended with other functions to generate a

particular approximation locally or globally while still keeping the smoothness and reproducing

conditions. The construction of generalized meshfree approximation can be viewed as a root-finding

scheme of linear reproducing functions that enforces the basis functions to be corrected and the

linear reproducing conditions to be satisfied within a set of nodes.

2.1. GMF approximation

The GMF approximation (Wu et al. 2009) in one dimension is introduced in following form:

    for fixed x (1)

subject to  (linear constraints) (2)

where  (3)

 (4)

  (5)
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φa x; Xi( )



132 C. T. Wu and M. Koishi

 is the basis function,

x is the coordinate of interior point (fixed point), 

xi is the coordinate of node i,

n is the number of nodes with their support cover x,

is the constraint parameter which has to be decided,

 is the blending function and  is internal functions or variables. 

In the GMF approximation, the property of the partition of unity is automatically imposed by Eq.

(1). The completion of the GMF approximation is achieved by finding  to satisfy Eq. (2). To

determine , a root-finding algorithm such as Newton’s method is required.

It was shown by Wu et al. (2009) that GMF approximation could be degenerated to several well-

known meshfree approximations if an appropriate basis function is chosen in Eq. (3). For example,

when the basis function is chosen to be the exponential function, the GMF approximation is

degenerated to the ME approximation. MLS and RK approximations can also be restored if

polynomial function is adopted as the basis function in GMF approximation. The smoothness of the

basis function controls the smoothness of the resulting GMF approximation. It was shown that the

convex approximation is obtained if a positive basis function such as exponential function is used in

the construction of GMF approximation. The positive approximation ensures the positive mass in

the discrete system. It is also recognized that the positivity of the approximation minimizes the

effects of support size and integration order in meshfree method (Wu et al. 2009). 

The weighting function in Eq. (1) plays similar role as in the MLS and RK approximations which

introduces the local approximation as well as contributes to the smoothness of the GMF

approximation. The weighting function is a translation and scaling of a compactly supported kernel

function. In this paper, we choose the cubic spline function as the kernel function. 

The blending function in Eq. (1) is introduced to modify the basis function for the generation of a

particular GMF approximation with special purpose. For example, it was shown (Wu et al. 2009)

that by incorporating a positive blending function with any non-positive basis function on the

boundary, the weak Kronecker-delta property for the non-convex approximation such as MLS could

be achieved. Other applications of the blending function include the imposition of second-order

approximation and the translation of basis function to control the convex and non-convex properties

of the approximation.

2.2. Kronecker-delta property of GMF approximation

This section investigates the Kronecker-delta property of GMF approximation in order to impose

the periodic boundary conditions as well as to guarantee the continuity of approximation across the

interface in the meshfree analysis of rubber compounds on the microscopic level. In GMF

approximation, shape functions constructed using non-positive basis functions such as polynomial

functions do not pose the Kronecker-delta property at the boundary unless a blending function or

special boundary condition treatments are introduced (Wu et al. 2009). In contrast, a weak

Kronecker-delta property is automatic satisfied in a convex GMF approximation when a positive

basis function is adopted, i.e. 

 (6)

Γi Xi λ1,( )

λ1 x( )
B Xi λ1 Θ, ,( ) Θ

λ1 x( )
λ1 x( )

conv C( ) Ψi xi

i 1=

nb

∑ xi C Ψi,∈ 0 Ψi

i 1=

nb

∑,≥ 1=
⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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where nb is the number of boundary nodes. In general, the boundary nodes in the convex

approximation still satisfy the Kronecker-delta property  even in the multi-

dimensional case. But for the nodes that are collinear in two-dimension or coplanar in three-

dimension on the boundary of the domain, the Kronecker-delta property does not hold. However,

the shape functions of interior nodes in the convex approximation still do not contribute to the

boundary nodes as in the Kronecker-delta property case and the partition of unity property of the

boundary nodes still pose. 

Fig. 1(a) shows the one-dimension GMF shape functions using the polynomial basis function

which do not have the weak Kronecker-delta property on the boundary. In contrast, Fig. 1(b) shows

the one-dimension GMF shape functions using the exponential basis function possess the weak

Kronecker-delta property on the boundary. Noted that the shape functions inside the domain do not

have Kronecker-delta property. Convex GMF approximation can also be generated by other positive

basis functions which are given by

(i) Hyperbolic tangent function: tanh (x) + 1

(ii) Inverse tangent function: 

(iii) Hyperbolic secant function: 

(iv) Radial basis function (RBF):  (c: shape parameter)

(v) Combination of the above functions or other positive functions

To impose the Kronecker-delta property for any interior node, one can incorporate a singular

kernel in the blending function Eq. (3) as introduced in the conventional meshfree methods (Chen

and Wang 2000). Fig. 2 shows the singularity is introduced in the one-dimension GMF shape
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Fig. 1 Shape functions of GMF approximation function: (a) non-convex approximation (b) convex approximation
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function that is convex and satisfies the Kronecker-delta property. The singular kernel in Fig. 2 is

defined as a blending function in Eq. (3) by

 (7)

If singularity is applied to all the boundary nodes in multi-dimensional case for the GMF convex

approximation, then Eq. (6) becomes 

 (8)

In this paper, we refer the GMF approximation that satisfies Eq. (8) to have a “strong” Kronecker-

delta property. The strong Kronecker-delta property is a necessary property for GMF convex

approximation to impose the periodic boundary condition in the microscopic analysis of rubber

compounds. Other techniques such as the transformation method, Lagrange multiplier and coupling

with FEM can be also employed to obtain the strong Kronecker-delta property on the boundary. 

2.3. Multi-dimensional GMF approximation 

The GMF approximation in multi-dimension is expressed as

  for fixed x  (9)

subject to     (linear constraints)  (10)

where  (11)

 (12)
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Fig. 2 Convex GMF shape functions with singular kernels
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 is the basis function of the GMF approximation,

x is the coordinate of interior point (fixed point), 

xi is the coordinate of node i,

n is the number of nodes within the support size a (x) at fixed x,

 are constraint parameters which have to be decided,

m is the number of constraints (m = 1 in 1D, m = 2 in 2D, and m = 3 in 3D),

 is the blending function and  is internal functions or variables. The  can be

obtained by solving

 (14)

The spatial derivative of the GMF approximation ( ) is given by

  (15)

where  (16)

 (17)

 (18)

 (19)

 (20)

   ( : Kronecker-delta).  (21)

By switching the exponential basis function to other functions, the Jacobian matrix (J) is not

symmetric in general case. 

3. Microscopic analysis of rubber compounds by meshfree method

Multi-scale computational homogenization has received considerable attentions these years due to

its ability to provide the macroscopic response of heterogeneous materials with arbitrary

microscopic geometry and material behaviors. A first step towards the multi-scale modeling of

heterogeneous materials is the modeling of microscopic structure. The microscopic system is

modeled by a meshfree method using the unit-cell method based on the concept of a representative

volume element (RVE) originally proposed by Hill (1963). The RVE in this study is considered to

consist of a soft matrix and reinforced particles as illustrated in Fig. 3. The reinforced particles can

be aggregated and randomly distributed in RVE. The RVE should be large enough to contain

sufficient information about the microstructure in order to be representative, at the same time it
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should be small enough to represent the microstructure. In addition, all statistical information about

the material is supposed to be available in one single realization of representative volume, which is

known as the ergodicity assumption (Van der Sluis et al. 2001). The RVE is regarded as a

heterogeneous material with spatially varying, but known constitutive properties (Nemat-Nasser and

Hori 1993). The micro-macro relationship of the rubber compound is then determined by estimating

the relevant stress-strain constitutive from the RVE to the associated macroscopic point (Gauss

point) using various multi-scale computational homogenization methods. 

3.1. Microscopic boundary conditions

Different types of boundary conditions can be applied to the unit cell. In this paper, we consider

the periodic boundary conditions. This choice has been justified by many authors (Terada et al.

2000, Van der Sluis et al. 2001) to show that periodicity conditions render a more reasonable

estimation of the stress-strain constitutive than uniform displacement and uniform traction boundary

conditions. The periodic boundary condition in a two-dimensional plane strain unit cell is given by

(Smit et al. 1998)

 (22)

 (23)

where  is the edge of unit cell subject to periodic condition in Fig. 3 and Ci is the vertices in the

unit cell.  denotes the position vector of vertices Ci with respect to some fixed reference

system.

The periodic boundary conditions imply that the deformation of each boundary pair is equal and

the stress vector are opposite in sign on each pair. In order to prevent the rigid body rotation in the

unit cell, an extra constraint is added as follows:
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Fig. 3 Two-dimensional unit cell
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 (24)

It is recognized that the weak Kronecker-delta property from Eq. (6) is readily applied to the interfaces

 between matrix and inclusions if both matrix and inclusions are modeled by convex

GMF approximations. The weak Kronecker-delta property on the interface guarantees the continuity

of displacement across the interface. In contrast, a “strong” Kronecker-delta property is required for

each node along the interface if inclusion is not modeled by the convex GMF approximation such

as FEM approximation or non-convex GMF approximation. The strong Kronecker-delta property is

also required on the periodic boundary  or on the interface if the de-

bonding is considered in the analysis. The strong Kronecker-delta property is gained by the

introduction of singularity for all the boundary nodes along periodic boundary  and de-bonding

interface with Eq. (7).

3.2. Periodic boundary conditions via multiple constrains

Eqs. (22-24) can be considered as the dependent multiple constraint equations. In order to solve

the multiple constraint equations using the convex GMF approximation for arbitrary loading

conditions, we have adopted the transformation method (Cook et al. 1998). Alternatives such as the

Lagrange multipliers and penalty method can also be considered. Eqs. (22-24) can be rearranged

and written in matrix form as

 or  (25) 

where [C] is the matrix contains the coefficients of the constraint equations and {Up} is the

corresponding periodic d.o.f.s.. Gaussian elimination can be applied to the [C] matrix on the left of

Eq. (25) such that Eq. (25) can be further partitioned as

 (26)

where {Uc} is the displacement vector with a collection of independent nodes and {Ue} is the

displacement vector contains the nodes that need to be eliminated.  is the corresponding

coefficient matrix, where matrix [Ce] is square and non-singular. We can express {Ue} using Eq.

(26) in the following form 

  (27)

where

 (28)

Matrix [L] describes the relationship of dependent nodes {Ue} and independent nodes {Uc}.

Consequently, the constraint equations associated with the periodic boundary conditions can be

written as

 (29)
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 (30)

and I denotes the unit tensor.

The global displacements now becomes 

 (31)

with

 (32)

and

 (33)

where {Ur} is the retained nodes that includes the independent nodes {Uc} in the constraint

equations and the rest of nodes {Ui} in the unit cell that do not involve the constraint equations.

 is the global transformation matrix that contains the local transformation matrix in Eq. (30) and

an unit tensor. The global transformation matrix carries the information of retained nodes and

eliminated nodes that can be used to condense the structural equations for the solving of periodic

boundary value problem. This is described in the following section. 

4. Meshfree Galerkin formulations with periodic boundary conditions

4.1. Nonlinear meshfree formulation with convex GMF approximation 

The weak form for the momentum equation of a non-linear elasticity problem is expressed by

 (34)

where  is the virtual kinetic work from inertia,  is the virtual internal work and 

is the virtual external work. In total Lagrangian format, it is defined in the initial configuration by 
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is the Green-Lagrangian strain. In quasi-static analysis, the acceleration in Eq. (35) is dropped. The

linearization of Eq. (35) leads to the iterative equation in quasi-static analysis given by

 (36)

where  and . Using the discrete GMF approximation, the discrete iterative

equation of Eq. (36) is obtained as

(37)

where tangent stiffness matrix  contains the material and geometric stiffness

matrices that evaluated at the vth iteration during the (n+1) time incremental step.  is the

residual nodal force vector. 

By taking the variation of Eq. (31) and substituting into Eq. (37), one can obtain the reduced

discrete equations by

 (38)

which is used to solve the periodic boundary value problem in quasi-static analysis and to obtain the

displacement vector {Ur} of the retained nodes. 

Finally, the displacements of dependent nodes {Ue} are obtained using Eq. (27). 

For explicit time integration, we perform a row-sum method to construct a lump mass in Eq. (35)

(Chen et al. 1996). The corresponding discrete equation in explicit analysis is 

 (39)

with
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where  is the mass matrix of retained nodes in diagonal form which is obtained form the

transformed row-sum mass matrix  using the global transformation matrix. Eq. (40)
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explicit analysis becomes

 (41)

Consequently, the accelerations, velocities and displacements of the eliminated nodes can be

obtained using Eq. (27). 
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the interfaces between the rubber matrix and reinforced particles. Apparently, this requires a strong

Kronecker-delta property of GMF approximation for the boundary nodes along the material

interface. For this purpose, the singular kernel method is adopted in the construction of convex

GMF approximation for the meshfree de-bonging analysis. 

Fig. 4 shows an interface element in deformed configuration with the normal vector of interface

points into the S+ side of interface. Subsequently, the tangent vector can be defined as follows:

 (42)

The natural coordinates ( , ) define a local coordinate system in the deformed configuration

of the element. At time =0.0, Points 1 and 4 coincide with point A and points 2 and 3 coincide with

point B. According, the position vector  in Fig. 4 represents the mid-plane of the element. After

de-bonding, the displacement vectors of points XA and XB can be expressed in terms of

displacements at point 1 to 4 by 

 (43)
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Fig. 4 Interface element in deformed configuration
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The relative displacements of interface element defined in the local coordinate system can be

obtained using the FEM shape functions as 

 (44)

The relative displacement vector in Eq. (44) is also called the “displacement jumps” or “opening

displacements” over the cohesive surface (Ortiz and Pandolfi 1999) in the cohesive zone model. 

By substituting Eq. (44) into Eq. (43), one can obtain the displacement jumps as

 (45)

where

 (46)

Obviously, the displacement jumps remain invariant upon superposed rigid translations of the

interface element. The cohesive tractions are obtained using a bi-linear cohesive law (Zavattieri and

Espinosa 2001) defined by the following expressions

 (47)

where Tn is the normal traction, Tt is the tangential traction and Tmax is the maximum normal

traction that the interface can bear before failure. Noted that the cohesive tractions are defined on an

un-deformed area per uint. The material constants involved in Eq. (47) include:  and  are

critical values at which de-bonding takes place in normal and tangential directions respectively, α is

the parameter coupling normal and shear tractions and  is the critical displacement jump. 

Accordingly, the nodal forces follow from the tractions are obtained by

 (48)

where
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Finally, the Eq. (49) is added into the right hand side of Eq. (41) for the microstructures de-

bonding analysis under periodic boundary condition.

5. Numerical examples

5.1 Shear test of regular rubber filler

In this example, a plane strain shear test is simulated on a unit cell with two regular fillers. Two

loading cases as shown in Fig. 5(a) and (b) are analyzed to study the shear response of anisotropic

rubber compounds under periodic boundary conditions. The rubber matrix is modeled by Yeoh’s

cubic strain energy density function in Eq. (50) with coefficients C10 = 0.333 MPa, C20 = 0.0 MPa,

C30 = 5.05E-04 MPa and bulk modulus k = 333.0 MPa. The density of rubber matrix is 0.945 g/

cm^3. The filler is modeled by a linear elastic material with high Young’s modulus E = 1.0E + 04

MPa, and Poisson’s ratio v = 0.3. The filler density is 10.08 g/cm^3. The dimension of unit cell is 5

cm × 5 cm and the radius of the filler is 1 cm such that the volume fraction is about 25.1%.

Expontional basis function is chosen as the basis function in GMF approximation. Normalized

support size = 1.5 is used together with 2 × 2 × 2 Gaussian quadrature in the meshfree computation. 

 (50)

The loading case I is first analyzed using both implicit (quasi-static) and explicit analysis. The

comparison of shear load history with implicit and explicit analysis is presented in Fig. 6(a) and

with the zoom-in plot in Fig. 6(b). The predicted shear load using explicit analysis is almost

identical to the solution predicted by the implicit analysis except small oscillation is observed in the

explicit analysis. The oscillation is only observed in the early loading stage and does not appear in

the large deformation range. The oscillation is probably due to the nature of explicit analysis in the

W I1( ) C10 I1 3–( ) C20 I1 3–( )2
C30 I1 3–( )3

+ +=

Fig. 5. Two loading cases in shear test
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rubber-like material when loading speed is high. Fig. 7 shows the comparison of final deformation

at 200% shear strain using implicit and explicit methods in loading case I. The final deformation in

explicit and implicit analysis agrees well with each other. A comparison of normalized CPU time

using implicit and explicit methods is listed in Table 1. 

In the loading case II, only the implicit analysis is conducted. To study the influence of rubber

filler in the shear response of the rubber compounds, a shear test is also simulated on the unit cell

without the consideration of rubber filler. The comparison of resulting stress-strain curves in loading

case I, II and the case without rubber filler is given in Fig. 8. Apparently, rubber filler plays a role

in the stiffing of rubber compounds. For case I and II, the orientation of rubber filler determines the

anisotropy of shear responses. Fig. 9 compares the final deformation of case I and case II measured

at 200% shear strain. 

Fig. 6. Comparison of shear load history curves with explicit and implicit analysis 

Table 1. CPU time comparison of explict and implict analysis in shear test

Explicit Implicit

Norm. CPU 117.0 1.0

Fig. 7 Comparison of final deformation at 200% shear strain
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5.2 Tensile test of irregular rubber filler

This example studies the influence of morphology of fillers in the micro-mechanical behavior of

rubber compounds. Two filler morphologies in the unit cell shown in Fig. 10 are tested in this

example. The plane strain unit cell is subjected to a macroscopic tensile loading with same material

parameters and same unit cell size used in example 5.1. The volume fraction of filler is about 46%

in two models. The quasi-static analysis is adopted in this example. Same numerical parameters

such as normalized support and integration order are also the same as these used in example 5.1.

Fig. 11 shows the nominal stress-strain curves resulted from the model A and model B. It is

Fig. 8 Comparison of shear stress-strain curves in three cases

Fig. 9 Comparison of final deformation in loading case I and II
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observed the aggregated filler of model B exhibits a stiffer response than the averaged random filer

of model A in the large deformation range. This is confirmed by their deformed plots at 100%

macroscopic strain shown in Fig. 12. In Fig. 12, the aggregated filler of model B displays a highly

localized deformation than the averaged random filer of model A. Those high deformation results in

a stiff material response in model B. It can thus be concluded that, as the fillers become more

aggregated and irregularly distributed in the matrix, the overall mechanical response of rubber

compounds behaves more stiff. 

5.3 De-bonding analysis of rubber compounds

This example focuses on the analysis of interfaces de-bonding between the matrix and the

inclusion under periodic boundary condition. A unit cell consisted of stiff inclusions in an elastic

matrix material is subjected to a bi-axial loading as shown in Fig. 13. The dimension of the unit cell

is 3 cm × 3 cm and the loading speed is 0.1 cm/s in x-direction and 0.04 cm/s in y-direction. The

Fig. 10 Two irregular rubber filler models in the tensile test

Fig. 11 Comparison of nominal stress-strain curves by two models
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analysis is conducted by the explicit time integration method. The degrading interface between the

matrix and the inclusion is modeled by means of a bi-linear cohesive model defined in Equation

(47). The cohesive parameters used in the cohesive model are: Tmax = 50 MPa, = = 0.1 cm,

α = 0.5 and λcr = 1.0. 

δn δt

Fig. 12 Deformation at 100% macroscopic strain

Fig. 13 A de-cohesive rubber compound subjected to a bi-axial tensile loading



A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds 147

Two elastic matrix materials are considered in this example. The first rubber matrix is modeled by

Mooney-Rivlin model. The strain energy density function of Mooney-Rivlin model is described in

Eq. (51) with material constants C10 = 6.0 MPa, C01 = 1.0 MPa, and bulk modulus k = 1395.0 MPa

in this example. The density in first rubber matrix is 1.15 g/cm^3. The second matrix material is

modeled by a linear elastic material with Young’s modulus E = 2.1E + 02 MPa and Poisson’s ratio v =

0.3. The density of second rubber is 1.52 g/cm^3. The filler is modeled by a linear elastic material

with a relatively high Young’s modulus E = 2.1E + 03 MPa, Poisson’s ratio v = 0.3 and density

equals to 10.00 g/cm^3. Same numerical parameters in meshfree method such as normalized support

and integration order are the same as these used in example 5.1.

  (51)

The force comparison of de-bonding and non-de-bonding models with elastic matrix is presented

in Fig. 14(a) and with Mooney-Rivlin matrix presented in Fig. 14(b) respectively. Different initial

slopes of force curves are observed in the de-bonding and non-de-bonding models indicate the use

of initially-elastic cohesive model in the de-bonding analysis. The use of the initially-elastic

cohesive model in the interfaces can be considered as the insertion of an elastic bonding material

between matrix and inclusions. Both elastic matrix and Mooney-Rivlin rubber matrix materials

show a sudden drop of force curve representing the onset of the failure in the bonding interfaces. It

is remarked that, because of the usage of same cohesive parameters in the de-bonding analysis, the

predicated peak force in elastic matrix is almost the same as that in Mooney-Rivlin rubber matrix. It

is also observed that the force magnitude in the post-failure range is gradually picking up as the

deformation increases. The force magnitude in the post-failure range is determined by the strength

of matrix material. This can be confirmed by the progressive deformation of elastic and Mooney-

Rivlin rubber models shown in Fig. 15 (a) and (b). Finally, Fig. 16 shows the arrangement of unit

cell in large deformation with respect to its neighboring RVEs to demonstrate a good agreement of

periodic boundary condition. 

It is noted that the conventional first-order computational homogenization methods may not be

applied to this problem, since thy leads to an ill-posed problem on the macroscale level. To

W I1 I2,( ) C10 I1 3–( ) C01 I2 1–( )+=

Fig. 14 The de-bonding analysis in two matrix materials
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Fig. 15 Progress deformation in two matrix materials

Fig. 16. Check of periodicity
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overcome this difficulty, a second-order computational homogenization methods or multi-scale

aggregating discontinuities method (Belytschko et al. 2008) can be considered. 

6. Conclusions

In this paper, we present a meshfree procedure using a convex generalized meshfree (GMF)

approximation for the large deformation analysis of particle-reinforced rubber compounds on

microscopic level. The convex GMF approximation is generated by choosing the positive and

monotonic increasing basis function. The convex GMF approximation poses the weak Kronecker-

delta property on the boundary such that the continuity of displacement across the material interface

in the rubber compounds is guaranteed. In order to impose the periodic boundary condition in the

unit cell method for the microscopic analysis, a singular kernel is incorporated with the GMF basis

function on the periodic boundary nodes to acquire the desired strong Kronecker-delta property on

the periodic boundary. As a result, the imposition of boundary conditions in the meshfree analysis is

simplified and the smoothness of the meshfree approximation is kept. 

To solve the periodic boundary condition numerically, a transformation method based on the

multiple constraints concept is employed. The computational formulation is formed in the

framework of Galerkin meshfree method based on a generalized meshfree approximation. The final

discrete equations are condensed and solved for the retained nodes. The dependent nodes are

obtained from the constraint equations. Both implicit and explicit formations are presented. In order

to consider the de-bonding phenomena in the microscopic analysis of rubber compound, the

cohesive interface element formation is also derived in conjunction with explicit meshfree

formulation. 

The presented meshfree procedure provides an effective way to perform the microscopic analysis

of rubber compounds involving large deformation and interface de-bonding. Several benchmarks

have been investigated to demonstrate the effectiveness of this approach. They include the study of

shear loading effect, the influence of filler morphology and the de-bonding in different rubber

matrices. This enables the straightforward application of the method to the micro-macro modeling

of heterogeneous materials in large deformation using various homogenization methods and will be

presented in our other papers in the near future. 
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