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Abstract. The result of damage detection from on-site measurements is commonly polluted by
unavoidable measurement noises. It is widely recognized that this side influence could be reduced to some
extent if the sensor placement was properly designed. Although many methods have been proposed to
find the optimal number and location of mono-type sensors, the optimal layout of multi-type sensors need
further investigation, because a network of heterogeneous sensors is commonly used in engineering. In
this paper, a new criterion of the optimal placement for different types of sensors is proposed. A
corresponding heuristic is developed to search for good results. In addition, Monte Carlo simulation is
suggested to design a robust damage detection system which contains certain redundancies. The validity
of these methods is illustrated by two bridge examples.
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1. Introduction 

During the past years, much attention has been drawn on damage detection techniques which play

an important role in Structural Health Monitoring Systems (Sohn et al. 2003). Because damage

detection is a kind of inverse problem, it is usually ill-posed. That means small measurement noises

could lead to severe detection errors if the measuring system and damage detection algorithms were

not properly designed. To improve the well-posedness of damage detection procedure, at least two

approaches have been tried: one is using a priori information to regularize the procedure (Yusuke et

al. 1994, Zhou et al. 2007); another is carefully designing the layout of sensors (Kammer 1991,

Heo et al. 1997, Haftka and Scott 1998, Padula and Kincaid 1999, Li et al. 2000, Worden and

Burrows 2001, Xiang et al. 2003). This paper discusses the second approach.
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So far, many methods have been proposed to find the optimal sensor placement (Kammer 1991,

Heo et al. 1997, Haftka and Scott 1998, Padula and Kincaid 1999, Li et al. 2000, Worden and

Burrows 2001, Xiang et al. 2003). These methods usually consist of a criterion of the optimality

and a combinatorial optimization algorithm. Most popular criteria are more or less related with

certain properties of Fisher Information Matrix (FIM) J TJ, where J, called Jacobian matrix, is the

derivation of measurements over damage parameters. Based on these criteria, simple heuristics

(Kammer 1991, Heo et al. 1997, Xiang et al. 2003) as well as modern meta-heuristics, e.g., Genetic

Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS) (Li et al. 2000, Worden and

Burrows 2001) etc., have been adopted to find the ‘optimal’ sensor placement. 

Although many researches have been conducted in this field, most of them discuss only the

optimal number and location of mono-type sensors. But in engineering, a network of heterogeneous

sensors is commonly used to measure different kinds of variables. For example, displacements and

strains can be easily measured, and consequently, it is natural to conduct damage detection based on

these two kinds of measurements (Sanayei and Onipede 1991, Banan and Hjelmstad 1994, Banan

and Hjelmstad 1994, Liu and Chian 1997, Cui et al. 2000). Therefore, it is important to study the

optimal sensor placement under this circumstance.

By tracing the propagation of measurement errors, this paper proposes a new criterion of the

optimal placement for different types of sensors. A new heuristic incorporated in Monte Carlo

simulation is also developed to design a robust damage detection system which contains certain

redundancies. The validity of these methods is illustrated by two bridge examples.

2. The damage detection method

Since damage can be regarded as the reduction of structural stiffness, the damage detection is

actually a kind of stiffness parameter identification problem based on measured structural responses.

It can conventionally take the Young’s modulus as the stiffness parameter, which can be identified

by measured displacements and strains through the following nonlinear optimization formulation

with least-squares objective:

Minmize:     f (p) = RTR

Subjected to: K(p)u = F

             p ∈ Dp  (1)

where K is the stiffness matrix, which can be easily formulated in the Finite Element (FE) method;

u is the vector of general displacements and strains; F is the load vector; p is the parameter vector

of Young’s modulus to be identified; Dp is the admissible set of p; and R is the residual vector,

which is defined as:

 (2)

where  are measured displacements and strains; S is a Boolean matrix which specifies the

number and location of measurements.

Eq. (1) can be efficiently solved by using Gauss-Newton iteration method. According to Xiang et

al. (2003), the iteration procedure is:
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      (3)

where n is the iteration step; G is the mapping function; J is the Jacobian matrix; and J TJ is the

FIM.

It is noticed that above formulations are the same as those of parameter identification with mono-

type sensors (Xiang et al. 2003). 

3. The optimal placement of multi-type sensors

The design of optimal sensor placement is a combinatorial optimization problem, where the

criterion of optimality and the corresponding optimization algorithm are two critical factors.

3.1 The criterion of optimality

The criterion of optimality can be deduced by tracing the propagation of measurement errors

during the parameter identification procedure. It is supposed that the initial parameter p0 contains a

bias δp with respect to the true parameter p* :

p0 = p* + δp  (4)

It is also supposed that the measurements contain absolute errors ε: 

 (5)

The difference of  to p* at iteration step n can be evaluated as:

                                            (6)

From Eqs. (2) through (6), it reads:

 (7)

where , and

 (8)

 (9)

Define:

 (10)

 (11)

From Eqs. (7), (10) and (11), the following relation is valid:
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 (12)

If , then

 (13)

The iteration procedure converges to a solution with bias:

 (14)

This is coincident with the requirement of well-posedness presented in Xiang et al. (2003).

The above analysis reveals that if , the parameter identification procedure will converge to

a unique solution with bias B. Since  and  contain S, the sensor placement should be

optimized so that  and B reaches a minimum value. This criterion of optimal sensor

placement is similar to the one proposed in Xiang et al. (2003), however, multi-type sensors are

involved here and absolute measurement errors are considered instead of relative measurement errors.

In Eq. (8), Ω can be evaluated by applying the Taylor expansion with respect to p* and ε: 

 (15)

Denoting

 (16)

 (17)

and observing

 (18)

it obtains:

 (19)

Therefore,

 (20)

Similarly, 

 (21)

 (22)

 (23)
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3.2 The optimization algorithm

The design of optimal sensor placement is a combinatorial optimization problem, which is very

time consuming if the number of variables is large. Therefore, certain heuristics are commonly used

to get near optimal solutions for practical problems. The heuristics could be very simple, such as the

Effective Independence Method (EIM) proposed by Kammer (1991), but the result is not so

satisfactory. Better results could be obtained if meta-heuristics are adopted, such as the GA, SA and

TS (Worden and Burrows 2001). However, there are some empirical parameters need to be tuned in

meta-heuristics, which are usually case sensitive. Another shortcoming of meta-heuristics is the lack

of stopping criterion, therefore, the number of iterations is also empirically specified.

In this paper, a new heuristic is proposed by adding more local searches in the EIM to get better

results while keeping the efficiency of the algorithm. This heuristic contains a hierarchy of local

searches organized as follows:

(1) Put all candidate measurements into set S1. Calculate the corresponding bias B(S1) and . If

, keep S1 as the best measurement set S;

(2) Try to remove one measurement from S1. If B(S1) is reduced, put this measurement into set S2.

This process continues until every measurement in S1 has been tested. Update the best

measurement set S, if the  of S1 is less than one and B(S1) is the minimum;

(3) Try to remove consecutive two measurements from S1. If B(S1) is reduced, put these two

measurements into set S2. This process continues until every consecutive two measurements in

S1 have been tested. Update the best measurement set S, if the  of S1 is less than one and

B(S1) is the minimum;

(4) Exchange each pair of measurements between S1 and S2. Update the best measurement set S,

if the  of S1 is less than one and B(S1) is the minimum. If the best measurement set S has

been successfully updated once, go to step (2), otherwise stop the heuristic.

From the above heuristic, the number and location of each type of sensor can be automatically

determined. However, it is very difficult to estimate the bias δp in Eq. (4), because p* is unknown in

the design phase. Therefore, Monte Carlo simulation is adopted to obtain the candidate good

measurements. For each sample of simulation, let δp = 0, and p0 (assumed as p*) is randomly

generated following the Gauss distribution. The ε takes the tolerance of the sensors with randomly

assigned sign. The final sensor placement is the union of the subset of resulted S of each sample

from the above heuristic. This subset contains the measurements whose Occurrence Probability (OP)

over all samples exceeds a specified value. In this way, a reasonable sensor placement can be

constructed and the redundancy is also naturally considered.

The sensor placement obtained through the above algorithm is a super set of S over all samples.

There is no quarantine that it is the best placement for the true problem. However, what can be

ensured is that the best placement is a subset of this super set if the OP is relatively low and the

heuristic can find the optimal result. Therefore, during the damage detection procedure the best

sensor placement should be re-optimized from this super set according to an initial parameter p0,

using the same heuristic. To remove the side effect of empirically specifying p0, an algorithm similar

to what suggested in Ref. (Li et al. (DOI: 10.1002/cnm.1052)) is proposed here. In this algorithm, the

sensor placement design and the parameter identification are alternatively conducted as follows:

(a) Empirically specify p0. Set n = 1 and Sn−1 as an empty set;

(b) Based on pn−1, use the heuristic to find a good sensor placement Sn;

(c) If Sn = Sn−1, stop. Otherwise, go to next step;

LΩ
LΩ 1<

LΩ

LΩ

LΩ
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(d) Based on Sn, identify the parameter pn;

(e) Set n = n + 1, go to (b).

In this way, the sensor placement is dynamically updated.

4. Examples

As Fig. 1 shows, the model of a three-span continuous beam bridge is taken as an example to

illustrate the validity of the algorithms proposed in this paper. Because it is a box beam (see Fig. 2),

four-node shell FE is used to model this structure (see Fig. 3).

Fig. 1 A three-span continuous beam bridge

Fig. 2 The cross-section of the box beam and the distribution of truck load (unit is in cm)

Fig. 3 The FE model
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A simulated truck loading is applied to calculate displacements and strains, which are taken as

‘measurements’. As Figs. 1 and 4 show, two rows of truck loads are applied symmetrically about

the center line of middle span. Each row has three truck loads aligned unsymmetrically along the

width of the bridge deck (see Fig. 2). As Fig. 4 illustrates, the weight of each front wheel is 30 KN,

and the weight of each rear wheel set is 240KN. These loads are averaged over the element they

occupy, i.e., effective pressures are applied on the bridge deck. 

As Fig. 5 shows, there are 38 deflections taken as candidate displacement ‘measurements’. These

‘measurements’ are distributed on 19 cross-sections and each section has two ‘measurements’. Fig. 6

depicts the distribution of strain ‘measurements’. It assumed that strain gauges are installed on five

cross-sections, each cross-section measures four strains in the length direction of the bridge.

It is assumed that only the Young’s modulus is reduced in the damaged state, while the geometry

keeps unchanged. Therefore, Young’s moduli of eight segments (see Fig. 1) are identified as the

damage parameters. In following examples, suppose the Young’s modulus of all sections is 35GPa

in the intact state.

4.1 The benefit from using displacements together with strains

In this example, the true values of Young’s modulus are used to design the sensor placement. The

true displacements and strains of the intact state are taken from FE results, from which two sets of

‘measurements’ are generated according to sensor tolerances: 0.01 mm for displacements and 1 µ

for strains. In Set 1, all measurements are polluted with positive noises and in Set 2, only the signs

of noises are randomly determined. For each measurement set, three cases are tested: only pure

displacements are considered in Case 1; only pure strains are considered in Case 2; and both

displacements and strains are considered in Case 3. 

Fig. 4 The detail of truck load in Fig. 1

Fig. 5 The candidate displacement measurements (unit in cm)

Fig. 6 The candidate strain measurements (unit in cm)
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Based on the true parameters, the optimal sensor placements are obtained by using the proposed

heuristic. These results are listed in Table 1, where the sensor position is represented by the cross-

section number and the position (I, II, III and IV) on that cross-section. It is noticed that if both

displacements and strains are considered (Case 3), the optimized sensor placement will have these

two kinds of measurements. If only strains are considered, the program fails to find any good sensor

placement (  is always greater than one for these strain measurements). And the total number of

measurements in Case 1 is less than that in Case 3.

Then parameter identifications are carried out based on the optimized sensor placements.

Although the sensor placement design is carried out alternatively with the parameter identification,

the finally converged sensor placements are the same as the initial ones for these cases, even if the

initial parameters are far away from the true parameters. This implies parameter identification

results are not sensitive to the initial parameters and for these cases, the initial sensor placements

are nearly optimal, since the true parameters are used in the design phase.

The identified parameters are compared in Table 2 and Table 3. It is observed that calculated

LΩ

Table 1 Optimal sensor placement of three cases

Measurement Set 1 Set 2

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Displacement I 5, 7, 9, 11, 13, 
15

/ 5, 7, 9, 11, 13, 15 3, 4, 9, 10, 12, 
15, 16

/ 3, 4, 6, 8, 9, 10, 
12, 15, 16

II 3, 9, 11, 17 / 3, 9, 11, 17 3, 4, 5, 6, 8, 10, 
11, 17, 18

/ 3, 4, 6, 10, 11, 
17, 18

Strain I / / 1, 2, 3, 4, 5 / / 2, 4

II / / 2, 4 / / 2, 4

III / / / / / /

IV / / / / / 4

The number 
of measurements

10 0 17 16 0 21

Table 2 Comparison of the identified Young’s modulus (GPa) from Set 1

Section Case 1 Case3

Identified Bias Identified Bias

① 34.15 -0.85 34.15 -0.85

② 34.43 -0.57 34.51 -0.49

③ 35.75  0.75 35.71  0.71

④ 34.74 -0.26 34.75 -0.25

⑤ 34.74 -0.26 34.75 -0.25

⑥ 35.75  0.75 35.71  0.71

⑦ 34.43 -0.58 34.51 -0.49

⑧ 34.15 -0.85 34.14 -0.86

Estimated absolute bias (B) 1.01 1.01

Average absolute bias 0.61 0.58

Maximum absolute bias 0.85 0.86
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maximum absolute biases are always less than and close to the estimated ones. This means Eq. (14)

gives a good estimate of the upper bound of identification biases. More over, the maximum relative

identification error is only about 2.5%, which implies that identification procedures are stable.

Comparing the maximum absolute bias, Case 3 is a little bit worse than Case 1 in Set 1; while Case

3 is a little bit better than Case 1 in Set 2. That is to say, in some cases using the multi-type sensors

may improve the identification quality, and in other cases, this may not give any help. Mind that,

the proposed heuristic can find only near optimal sensor placements. If this heuristic can be further

improved, the results of Case 1 in Set 1 may be automatically found even if using the candidate

measurements as those in Case 3. Therefore, it is beneficial to using multi-type sensors in practice.

4.2 The benefit from Monte Carlo simulation

Since true parameters are unknown in practice, Monte Carlo simulation is carried out to find a

reasonable super set of measurements in this example. Let the mean value of Young’s modulus is

35GPa, and the standard deviation is 3.5GPa, 50 samples are obtained from the simulation, where

the candidate measurements are taken from Case 3 of Set 2 generated in previous example. Two

OPs are tried to construct the super measurement set: one is 2% that results in the union of the

optimal placements over all samples; another is 35% that results in a smaller super set. These two

super sets are denoted as Case 4 and Case 5, respectively.

Table 4 compares the obtained sensor placements for these three cases. It observes that the initial

measurements of Case 3 are included in the initial set of case 4, but are not included in the initial

set of Case 5. Because the true parameters are not used in the Monte Carlo simulation, in Case 4

and Case 5, the initial sets are not the same as the final sets obtained in the parameter identification

procedures. It is further noticed that these final sets are not sensitive to the initial parameters used in

the parameter identification procedures.

Table 5 compares the identified parameters among these three cases. It is noticed that these three

cases give very good identification results, because the maximum absolute biases are very small.

This implies good sensor placement can be estimated by using Monte Carlo simulations, even if

Table 3 Comparison of the identified Young’s modulus (GPa) from Set 2

Section Case 1 Case3

Identified Bias Identified Bias

① 35.20  0.20 35.18  0.18

② 35.06  0.05 35.02  0.02

③ 35.20  0.20 35.20  0.20

④ 34.99 -0.01 35.01  0.01

⑤ 34.98 -0.02 34.98 -0.02

⑥ 34.79 -0.21 34.80 -0.20

⑦ 35.04  0.04 35.03  0.02

⑧ 34.84 -0.16 34.84 -0.16

Estimated absolute bias (B) 0.23 0.23

Average absolute bias 0.11 0.10

Maximum absolute bias 0.21 0.20
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true parameters are unknown. Moreover, because the parameter identification and the sensor

designing are carried out alternatively, the identified parameters are not sensitive to the initial

parameters and the redundancy of sensor placement can be naturally considered.

However, it further observes that the worse result comes from Case 4, although whose initial set

covers the initial sets of other two cases; the best result comes from Case 5, although the number of

measurements of Case 5 is the smallest among these three cases. These unusual observations

indicate that only near optimal solution can be found by the proposed heuristic and further

improvement is needed in the future.

Table 4 The comparison of optimal sensor placements

Measurement Case 3 (Previous example) Case 4 (OP = 2%) Case 5 (OP = 35%)

Initial set Final set Initial set Final set Initial set Final set

Displacement I 3, 4, 6, 8, 9, 
10, 12, 15, 16

3, 4, 6, 8, 9, 
10, 12, 15, 16

2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 
12, 13, 15, 
16, 17, 18

3, 4, 7, 9, 10, 
15, 18

3, 4, 8, 9, 10, 
12, 13, 15, 
16, 18

3, 4, 8, 9, 10, 
12, 13, 16

II 3, 4, 6, 10, 
11, 17, 18

3, 4, 6, 10, 
11, 17, 18

2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 
12, 13, 15, 
16, 17, 18

3, 4, 6, 10, 
11, 12, 16, 17

2, 3, 4, 6, 9, 
10, 12, 13, 
16, 17, 18

3, 4, 9, 12, 
13, 17, 18

Strain I 2, 4 2, 4 1, 2, 4 2, 4 2, 4 2, 4

II 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4

III / / 2 / / /

IV 4 4 2, 4 / / /

The number 
of measurements

21 21 40 19 25 19

Table 5 Comparison of the identified Young’s modulus (GPa)

Section Case 3 (Previous example) Case 4 (OP = 2%) Case 5 (OP = 35%)

Identified Bias Identified Bias Identified Bias

① 35.18  0.18 35.26  0.26 35.08  0.08

② 35.02  0.02 35.07  0.07 34.97 -0.03

③ 35.20  0.20 35.28  0.28 35.08  0.08

④ 35.01  0.01 34.94 -0.06 35.14  0.14

⑤ 34.98 -0.02 35.04  0.03 34.85 -0.15

⑥ 34.80 -0.20 34.72 -0.28 34.82 -0.18

⑦ 35.03  0.02 35.01  0.01 34.90 -0.10

⑧ 34.84 -0.16 34.75 -0.25 34.95 -0.05

Estimated absolute bias 0.23 / /

Average absolute bias 0.10 0.16 0.10

Maximum absolute bias 0.20 0.28 0.18
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5. Conclusions

This paper presents a new heuristic to design the optimal sensor placement. Since the true

parameters are unknown in the design phase, Monte Carlo simulation is proposed to obtain a

reasonable super measurements set. Based on these candidate measurements, the parameter

identification is carried out together with the sensor placement design. Both the sensor placement

design and the parameter identification can consider the multi-type sensors.

The validity of the proposed algorithms is illustrated by two bridge examples. It observes that it is

beneficial to using multi-type sensors in practice and Monte Carlo simulations can give very good

candidate measurements. Because the parameter identification starts from a super measurement set

and will be conducted alternatively with sensor design heuristic, the identified parameters are not

sensitive to the initial parameters and the redundancy of the sensor placement can be naturally

considered.

It is noted that the optimal sensor placement is dependent on loading cases. If there are multipul

truck loadings in practice, the proposed algorithms are still valid, provided that a super

measurement set should be constructed from the Monte Carlo simulation over all loading cases. 

In addition, although the proposed heuristic can give satisfactory results, further improvement on

the heuristic of combinatorial optimization still need in the future work. 
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