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Ellipsoidal bounds for static response of framed
structures against interactive uncertainties
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Abstract. This paper presents an optimization-based method for computing a minimal bounding
ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic
modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are
uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the
contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace
is uncertain. By using the S-lemma, we formulate a semidefinite programming (SDP) problem which
provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are
computed for a braced frame under several uncertain circumstances. 

Keywords: semidefinite program; data uncertainty; uncertain linear equation; interval analysis; braced
frame.

1. Introduction

This paper presents a solution method for computing ellipsoidal bounds for static response of a

braced frame under the assumptions that the external forces are imprecisely known and the stiffness

of each brace possesses uncertainty. Structural analyses considering the uncertainties have received

fast-growing interests, because structures actually built always have various uncertainties caused by

manufacturing errors, limitation of knowledge of input disturbances, observation errors,

simplification for modeling, damage or deterioration of structural elements, etc.

Probabilistic uncertainty modelings of structures were studied extensively. Non-probabilistic

uncertainty models have also been developed. In a non-probabilistic uncertainty model, a

mechanical system is assumed to contain some unknown parameters which are assumed to be

bounded. Ben-Haim and Elishakoff (1990) developed the well-known convex model approach, with

which Pantelides and Ganzerli (1989) proposed a robust truss optimization method. The info-gap

decision theory has been proposed by Ben-Haim (2006). Based on the info-gap uncertainty model,
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the authors proposed solution methods for robustness analysis of structures (Kanno and Takewaki

2006a, Takewake and Ben-Haim 2005).

The interval linear algebra was well developed for the so-called uncertain linear equations

(Alefeld and Mayer 2000), which has been employed in structural analyses considering various

uncertainties (Chen et al. 2002, McWilliam 2001, Muhanna and Mullen 2001, Qiu and Elishakoff

1998). In contrast to probabilistic modelings, non-probabilistic uncertainty modelings require only

bounds on the uncertain parameters, and hence it is not necessarily to estimate the probabilistic

distribution functions of uncertain parameters. Under the assumption of small variations of uncertain

parameters, interval analyses of static response have been developed based on the first-order interval

perturbation (Chen et al. 2002, Qiu and Elishakoff 1998). Further refinements of the linear interval

approach were proposed for static structural analyses including uncertainties (McWilliam 2001,

Muhanna and Mullen 2001). A comparison between the convex model analysis and interval analysis

was given by Qiu (2003).

Calafiore and El Ghaoui (2004) proposed a method for finding the ellipsoidal bounds of the

solution set of uncertain linear equations based on the semidefinite programming (SDP) problem

(Helmberg 2002), in which the uncertainty of data of the linear equations is described in terms of a

so-called linear fractional representation. The authors formulated an SDP problem which provides a

confidential ellipsoidal bound for static response of a truss including some bounded uncertain

parameters (Kanno and Takewaki 2006b). 

In this paper, we aim at obtaining an ellipsoidal bound for static response of an uncertain braced

frame. Both the external nodal loads and the stiffnesses of braces are assumed to be uncertain, and

to be included in a given bounded set. By using quadratic embedding of the uncertain parameters

and the S-lemma (Ben-Tal and Nemirovski 2001), we formulate an SDP problem that provides an

outer approximation of the minimum bounding ellipsoid. It is well known that SDP problems can

be solved efficiently by using the primal-dual interior-point method (Ben-Tal and Nemirovski 2001,

Helmberg 2002), where the number of arithmetic operations required by the algorithm is bounded

by a polynomial of the problem size. Hence, our method finds an outer approximation of the

minimum bounding ellipsoid within a polynomial time, while most of the methods based on the

interval algebra have in general exponential complexity [4, section 6.5.3].

This paper is organized as follows. The remainder of this section is devoted to the introduction of

notation and SDP. Section 2 introduces the uncertainty model of a braced frame subjected to load

and structural uncertainties. We formulate the problem to find the minimum bounding ellipsoid for

the distribution of static responses in section 3. In section 4, we propose an SDP problem which

provides a confidential approximation of the minimal bounding ellipsoid. Numerical experiments are

presented in section 5 for a braced frame. Finally, conclusions are drawn in section 6.

1.1 Notation

In this paper, all vectors are assumed to be column vectors. The (m+n)-dimensional column vector

(uT, vT)T consisting of u ∈ Rm and v ∈ Rn is often written simply as (u, v). For two sets A R
m

and B R
n, their Cartesian product is defined by A × B = {(aT, bT)T ∈ Rm+n| a ∈A, b ∈ B}.

Particularly, we write Rm+n = Rm × Rn. For a vector p = ( pi) ∈ Rn, ||p||2 and ||p||
∞
, respectively,

denote the standard Euclidean norm and l
∞
-norm of p defined as

||p||2 = (pTp)1/2

⊆
⊆
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||p||
∞

=

For p = ( pi) ∈ Rn and q = (qi) ∈ Rn, we write p ≥ 0 and p ≥ q, respectively, if pi ≥ 0 (i = 1, ..., n) and

p − q ≥ 0.

We write Diag (p) for the diagonal matrix with a vector p ∈ Rn on its diagonal. For pl ∈ Rnl (l = 1,

..., k), we simply write Diag(p1, ..., pk) instead of Diag  For p ∈ R and q ∈ R
satisfying p ≤ q, we denote by [p, q] the interval defined by

[p, q] = {x ∈ R| p ≤ x ≤ q}

For a matrix P ∈ Rn × n, tr(P) denotes the trace of P, i.e., the sum of the diagonal elements of P.

1.2 Outline of semidefinite program

Let Sn
R

n × n denote the set of all n × n real symmetric matrices. We write P O if P ∈ S
n is

positive semidefinite.

Let Ai ∈ S
n (i = 1, ..., m), C ∈ S

n, and b ∈ Rm be constant matrices and a constant vector.

The semidefinite programming (SDP) problem refers to the optimization problem having the form

of

(1)

where y = (yi) ∈ Rm is a variable vector (Helmberg 2002).

Recently, SDP has received increasing attention for its wide fields of application (Ben-Tal and

Nemirovski 2001, Kanno and Takewaki 2006a, Ohsaki et al. 1999). The primal-dual interior-point

method, which has been first developed for LP, has been naturally extended to SDP (Ben-Tal and

Nemirovski 2001, Helmberg 2002). It is theoretically guaranteed that the primal-dual interior-point

method converges to an optimal solution of the SDP problem (1) within the number of arithmetic

operations bounded by a polynomial of m and n.

2 Uncertainty model of braced frames

Consider a linearly elastic, rigidly-jointed frame with some pin-jointed braces in the two- or

threedimensional space. Small rotations and small strains are assumed. Let u ∈ Rnd
 and f ∈ Rnd

denote the vectors of nodal displacements and external forces, respectively, where nd denotes the

number of degrees of freedom of nodal displacements. The equilibrium equation is written as

Ku = f  (2)

where K ∈ S
nd

 denotes the stiffness matrix. In Eq. (2), we assume that K and f have uncertainties,

which shall be rigorously defined in sections 2.2 and 2.3.

2.1 Motivation

An example of a five-story braced frame is illustrated in Fig. 1. The conventional situation is

max
i 1 … n, ,{ }∈

pi

p1

T … pk

T, ,( )
T

( )

 ⊂

max b
T
y :C Aiyi O

i 1=

m

∑–
⎩ ⎭
⎨ ⎬
⎧ ⎫
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shown in Fig. 1 (i), where nominal static external forces are applied at some nodes.

Usually, the external load is defined as the ‘best’ estimate of the input disturbance, while it is

quite difficult to estimate the actual input disturbance precisely. Besides the limitation of

knowledge of the external load, a structure designed for only one loading scenario may not be

robust sufficiently. Hence, we consider the uncertainty of external loads as illustrated in Fig. 1

(ii), in which we assume that the nodal loads can run through the rectangles depicted with dashed

lines.

The frame shown in Fig. 1 have 10 braces. The brace members may play some roles in structural

analysis: A brace member represents the sum of the stiffness of the actual brace and the

contributions of some non-structural elements. The estimation of additional stiffness caused by the

non-structural elements depends on engineers, and hence it may differ drastically. This motivates us

to assume that the stiffness of each brace is uncertain in Fig. 1 (ii).

Consequently, we suppose that the braced frame shown in Fig. 1 (ii) is subjected to the

uncertain external loads, and the uncertainty of stiffnesses of braces are considered

simultaneously. The locations of nodes are assumed to be certain. Our aim is to find a bound on

the distribution of static response of the braced frame with the uncertain external load and brace

stiffness.

Fig. 1 5-story framed structure
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2.2 Uncertainty of nodal load

We assume without loss of generality that f is decomposed as

(3)

where fu ∈ Rnf
 and fc ∈ Rnd

− nf
 denote the vector of uncertain elements and that of certain elements

of f, respectively. We denote by nf the number of dimensions of fu. In the example of Fig. 1 (ii), fu

corresponds to the external forces, while fc represents the external moments.

Let ∈Rnf
 denote the nominal value of fu. Define ∈Rnd

 by = . In order to represent

the uncertainty of fu, we introduce a parameter vector ζf = (ζfj) ∈ Rnf
 . We assume that fu depends on

ζf as

(4)

where f 0 = ( ) ∈Rnf
 is a constant vector satisfying 0 ( j = 1, ..., nf ). Note that  represents

the magnitude of uncertainty of the jth component fj of fu. To define the model of distribution of the

unknown vector ζf , we define the set Zf by

Zf = {ζf ∈ Rnf
| 1 ≥ || ζf ||

∞
}  (5)

The set Zf is called the uncertainty set of ζf , and we assume that ζf is bounded as 

ζf ∈ Zf  (6)

Thus, the uncertainty of the external force f is modeled by Eqs. (4) and (6).

2.3 Uncertainty of brace stiffness

Let nm denote the number of brace members which are modeled as truss elements. The vector of

cross-sectional areas of brace members is denoted by a = (ai) ∈ Rnm
. Suppose that the axial stiffness

of each member has uncertainty. We describe the uncertainties of axial stiffness of the braces via the

uncertainties of member cross-sectional areas a.

Let = ( i) ∈ Rnm
 denote the nominal value of a. The uncertainty of a is described by using the

parameter vector ζa = (ζai) ∈ Rnm
. Suppose that a depends on ζa affinely as

ai = i + ζai,      i = 1, ..., nm  (7)

where a0 = ( ) ∈ Rnm
 is a constant vector satisfying

i > > 0,      i = 1, ..., nm  (8)

Note that  represents the magnitude of uncertainty of ai. Define the set Za R
nm

 by

Za = {ζa ∈ Rnm
| 1≥ || ζa ||

∞
}  (9)

which is the uncertainty set of ζa. We assume that ζa is running through Za as

ζa ∈ Za  (10)

f
fu

fc

⎝ ⎠
⎛ ⎞=

f̃ f̃ f̃ f̃u

 T

fc

 T,( )
T

fj f̃ j fj
 0ζfj       j 1 … n

f, ,=,+=

fi
 0

fj
 0

 ≠ fj
 0

ã ã

ã ai

0

ai

0

ã ai

0

ai

0
 ⊂
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The assumption (8) guarantees that the condition

ai > 0,      i = 1, ..., nm (11)

is satisfied for any ζa ∈ Za. From the mechanical point of view, it is natural to assume that the

condition (11) is satisfied, since a denotes the vector of member cross-sectional areas.

2.4 Solution set of uncertain equilibrium equation

Let KF ∈ S
nd

 denote the stiffness matrix consisting of all beam-column elements. The member

stiffness matrix of the ith brace member is proportional to ai and is denoted by aiKi ∈ S
nd

 (i = 1, ...,

nm). Since the stiffness matrix of the braced frame is defined as the superposition of the stiffness

matrices due to the frame and the braces, we can write

(12)

For a brace member, or a truss element, it is known that the row rank of the member stiffness

matrix is equal to one. Hence, for each i = 1, ..., nm, we can write

Ki = bi  (13)

where bi ∈ Rnd
 is a constant vector.

Consequently, by using Eqs. (4), (6), (7), and (10), the uncertain equilibrium Eq. (2) can be

written as

(14)

a = + Diag(a0)ζa, ζa ∈ Za  (15)

f = + , ζf ∈ Zf  (16)

Define the set U R
nd

 by

U = {u ∈ Rnd
| (14), (15), (16)}  (17)

i.e., U is the set of all possible solutions to the uncertain linear Eqs. (14)-(16). It follows from (11)

and (13) that K is positive definite for all possible ζa ∈ Za, which guarantees U .

3 Minimum bounding ellipsoid

3.1 Bounding ellipsoid

An ellipsoid in the r-dimensional space can be described as

K K
F

aiKi

i 1=

n
m

∑+=

bi

T

K
F

aibibi

T

i 1=

n
m

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

u f=

ã

f̃
Diag f

 0( )ζf

0⎝ ⎠
⎜ ⎟
⎛ ⎞

 ⊂

 ≠ 0
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E = {x ∈ Rr | x = + Dz, 1 ≥ || z ||2, z ∈ Rm}  (18)

where ∈Rr is referred to as the center of the ellipsoid. The matrix D∈Rr ×m is called the shape

matrix, and satisfies rank(D) = m ≤ r. Define P∈ Sr by P = DDT. Then Eqs. (18) is alternatively written as

(19)

where P O. Note that tr(P) corresponds to the sum of squares of the semi-axes lengths. We adopt

tr(P) as the measure of size of the ellipsoid Eq. (19).

For r = 1, we see that Eq. (19) is reduced to

E (P, ) = [ − P1/2, + P1/2]

which implies that the ellipsoid E (P, ) coincides with an interval. From this observation, we see

that finding a bounding ellipsoid includes finding a confidence interval as a particular case.

In this paper, the vector x in Eq. (19) is taken as a vector of state variables of a frame that we are

interested in. An ellipsoid E (P, ) is called a bounding ellipsoid of x if E (P, ) includes all

possible realization of x. Obviously, the bounding ellipsoid is desired to be as ‘tight’ as possible. In

section 3.2, we formulate the problem for finding the minimal bounding ellipsoid in the sense of the

measure tr(P).

3.2 Problem formulation

Suppose that we are interested in predicting the set of static response GTu ∈ Rr of the braced

frame, where G ∈ Rnd
× r is a constant matrix. Here, GTu is regarded as a vector of appropriately

chosen parameters representing the mechanical performance of the frame. We investigate two

typical choices of G in Examples 3.1 and 3.3 below. Define UG R
r by

UG = {GTu | u ∈ U}  (20)

where U has been introduced in Eq. (17). From the definition, an ellipsoid E (P, ) corresponds to a

bounding ellipsoid of GTu if it satisfies

UG E (P, )

i.e., if E (P, ) is an outer approximation of the set UG. Particularly, we attempt to find the

minimum bounding ellipsoid in the sense of the measure tr(P), which is realized by solving the

optimization problem

min {tr(P) : UG E (P, )}  (21)

where P ∈ S
r and ∈ Rr are the variables. If K and f are an interval matrix and interval vector,

respectively, then finding an exact interval of ui is known to be an NP-hard problem (Rohn 1997).

Thus, it is very difficult to find the global optimal solution of Eq. (21).

Example 3.1 (bounding ellipsoid of nodal displacement). Consider again the example of a plane

frame illustrated in Fig. 1. Suppose that we are interested in the distribution of the nodal

displacements of the node (b). We assume without loss of generality that the displacement of the

x̂

x̂

E P x̂,( ) x R
r
 

  P     x x̂–( )

x x̂–( )T
     1   

⎝ ⎠
⎛ ⎞ O∈
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⎨ ⎬
⎧ ⎫
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 ⊆ û

û
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node (b) is denoted by (u1, u2, u3), where u1 and u2 are the displacements in the x- and y-directions,

respectively, and u3 denotes the rotation. Suppose that we are interested in the distribution of (u1,

u2). Put

in Eq. (20), where r = 2. Then we can obtain the minimum bounding ellipsoid in R2 which includes

all possible realizations of (u1, u2) by solving Eq. (21).

Example 3.2 (bounding interval of displacement). In the same situation as (3.1), a simpler

problem is to find bounding intervals of u1 and u2. The set UG coincides with an interval including

all possible u1 by putting

in Eq. (20) with r = 1. Then the minimum bounding interval including all possible realizations of u1

by solving Eq. (21). Indeed, letting the pair of P* ∈ R and * ∈ R be an optimal solution of Eq.

(21), we see that the interval

corresponds to the minimal bounding interval of u1.

Example 3.3 (bounding interval of member stress). We continue to consider the example of

Fig. 1. Let σ1 and σ2 denote the extreme-fiber normal stress at the lower end of the member (1).

Suppose that we are interested in estimating the distribution of (σ1, σ2). Assuming the bi-axial

symmetry of the cross-section, let hi denote the depth of the cross-section of the ith member. We

denote by li and Ti ∈ R6 × nd
, respectively, the member length and the constant transformation matrix

from the global coordinate system of the displacements to the local (member) coordinate system.

The elastic modulus is denoted by E. Putting

in Eq. (20) with r = 2, the set of stress vectors (σ1, σ2)
T ∈R2 is represented by UG. Accordingly, the

minimum bounding ellipsoid including all possible realizations of (σ1, σ2)
T is obtained by solving Eq. (21).

4. Semidefinite programming approximation

As discussed in section 3.2, it is very difficult to find the global optimal solution of Eq. (21). The

purpose of this section is to construct an efficiently solvable problem which approximates the

problem Eq. (21).

Let ej ∈ Rnd
 denote the jth column vector of the identity matrix I ∈ S

nd
. Define the constant

matrices Ψ and E0 as

Ψ = (b1, ..., bnm) ∈ Rnd
× nm

G
T 1 0 0 … 0

0 1 0 … 0⎝ ⎠
⎛ ⎞=

G
T

1 0 … 0( )=

û

û∗ P∗ û∗ P∗+,–[ ]

G
T E

l1

2
---

l1– 3h1 2l1h1 l1 3h1– l1h1

l1– 3– h1 2– l1h1 l1 3h1 1– l1h1
⎝ ⎠
⎜ ⎟
⎛ ⎞

T1=
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R
nd

× (nd
− nf)

For simplicity, define  by

(22)

Proposition 4.1. u ∈ U if and only if there exists a vector p = (pi) ∈ Rnm
 satisfying

(23)

, 1 ≥ | ζfj |,      j = 1, ..., nf (24)

pi = ( )ζai, 1 ≥ | ζai |,      i = 1, ..., nm  (25)

Proof. It follows from Eqs. (12), (13), and the definition of KF in Eq. (22) that the stiffness matrix K

can be written as

ζaibi

Observe that the relation

holds. Hence, defining p = (pi) ∈ Rnm 
as

,      i = 1, ..., nm (26)

we obtain

Ku = u + Ψp

Accordingly, Eq. (14) is equivalently rewritten as Eq. (26) and

u + Ψp = f  (27)

From the definitions of E0 and ej , we see that the condition Eq. (16) is equivalent to

(28)

,      j = 1, ..., nf, ζf ∈ Zf   (29)

E0

O
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Consequently, Eqs. (14)-(16) are equivalent to Eqs. (26)-(29) and

ζa ∈ Za

By substituting Eq. (27) into Eqs. (28) and (29), and by using Eqs. (5) and (9), we see that the

conditions (26)-(29) are equivalent to Eqs. (23)-(25).

Proposition 4.1 implies that the system (14)-(16) of uncertain equilibrium equations is equivalent

to the system (23)-(25). In comparison with the original system (14)-(16), it is of interest to note

that the unknown parameters ζf and ζa appear only on the right-hand side of Eqs. (23)-(25). We next

eliminate these unknown parameters by using the quadratic embedding technique (Calafiore and El

Ghaoui 2004, Kanno and Takewaki 2006).

Letting

n = nm + nd

define the vector ξ ∈ Rn by

 (30)

Moreover, define the constant matrices Ω0 ∈ S
n + 1, Ωfj ∈ S

n + 1, and Ωai ∈ S
n + 1 by

 (31)

 

,      j = 1, ..., nf (32)

,      i = 1, ..., nm  (33)

Proposition 4.2. There exist ζf and ζa satisfying (23)-(25) if and only if ξ defined by (30) satisfies

ξ TΩ0ξ ≥ 0  (34)

ξ TΩfjξ ≥ 0,      j = 1, ..., nf  (35)

ξ TΩaiξ ≥ 0,      i = 1, ..., nm  (36)

Proof. Observe that the Eq. (23) is equivalently rewritten as the inequality

 (37)

ξ

p

u

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Ω0

ΨT

K̃

f̃
T

–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

E0E0

T Ψ K̃ f̃–( )–=

Ωfj Diag 0 0 fj
 0( )

2

, ,( )

Ψ
T

K̃
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T
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ejej

T Ψ K̃ f̃–( )–=

Ωai ai

0( )
2

0
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0⎝ ⎠
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⎜ ⎟
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0
T
 bi

T
 0( ) Diag ei 0 0, ,( )–=

E0

T
Ku
˜

Ψp f̃–+[ ] 2

2

0≤
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because the left-hand side of Eq. (37) is nonnegative. From the definition (31) of Ω0, we see that

(37) is equivalent to Eq. (34). For s ∈ R, t ∈ R, ζ ∈ R, observe that the implication

s = ζt, 1 ≥ |ζ|  s2 ≤ t2 (38)

holds. By applying Eqs. (38) to (24), we see that there exists a vector ζf satisfying Eq. (24) if and

only if the inequalities

,       j = 1, ..., nf (39)

are satisfied. From the definition (32) of Ωfj, we see that the condition Eqs. (39) is equivalently

rewritten as (35). Moreover, by applying (38) to (25), we see that there exists a vector ζa satisfying

Eq. (25) if and only if the inequalities

,      i = 1, ..., nm  (40)

are satisfied. From the definition Eq. (33) of Ωai, we see that the condition (40) is equivalently

rewritten as (36).

Proposition 4.2 implies that the uncertain linear Eqs. (23)-(25) are equivalent to a finite number of

quadratic inequalities (34)-(36). It should be emphasized that the unknown parameters ζf and ζa

have been eliminated as a result of this quadratic embedding.

We next consider the constraint condition of (21). Let wf = (wfj) ∈ Rnf
, wa = (wai) ∈ Rnm

, and w0

∈ R. Define the matrix-valued function Y : Rnf
× Rnm

× R→ S
r + n + 1 by

 (41)

Proposition 4.3. The condition

UG E (P, )

is satisfied if there exist wf, wa, and w0 satisfying

wf ≥ 0, wa ≥ 0, w0 ≥ 0

Proof. It follows from Proposition 4.1 and Proposition 4.2 that the condition u ∈ U is equivalent to

(34)-(36). Then this proposition can be shown in a manner similar to Proposition 4.2 in Kanno and

Takewaki (2006).

Proposition 4.3 provides a sufficient condition of the constraint condition of the problem (21).

It should be emphasized that the matrix Y defined by Eq. (41) depends on the variables (wf, wa,w0)

linearly. This naturally motivate us to solve the following problem in the variables P ∈ S
r, ∈ Rr,

wf ∈ Rnf
, wa ∈ Rnm

, and w0 ∈ R:
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û
T

–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Diag 0 0 1, ,( ) Y wf wa w0, ,( )–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

O

û
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                                   min tr(P)

(42)

wf ≥ 0, wa ≥ 0, w0 ≥ 0

which yields a bounding ellipsoid of UG , that is optimal in the sense of the sufficient condition

provided by Proposition 4.3. Note that (42) is an SDP problem. Indeed, (42) can be embedded into

the standard form (1) of SDP. Hence, we can solve (42) efficiently by using the primal-dual interior-

point method (Helmberg 2002).

5. Numerical experiments

The minimum bounding ellipsoids are computed for various static response parameters of the

braced frame illustrated in Fig. 1. We solve the SDP problem (42) by using SeDuMi Ver. 1.05

(Sturn 1999), which implements the primal-dual interior-point method for the linear programming

problems over symmetric cones. Computation has been carried out on Pentium M (1.5 GHz with

1.0 GB memory) with MATLAB Ver. 6.5.1 (2002).

s.t.
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Table 1 Definition of the nominal load 

Node Force (kN)

x-direction y-direction

(b) 300.0 0

(c) 400.0 0

(d) 500.0 0

(e) 600.0 0

(f) 700.0 −2000.0

(l) 0 −2000.0

f̃

Table 2 Definition of the uncertainty magnitudes f 0 of the external force

Node Force (kN)

x-direction y-direction

(b), (h) 20.0 20.0

(c), (i) 20.0 20.0

(d), (j) 60.0 20.0

(e), (k) 80.0 20.0

(f), (l) 100.0 20.0
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The frame shown in Fig. 1 consists of 10 columns, 5 beams, and 10 braces, i.e., nm = 10. The

columns and beams are modeled as the beam-column elements, while the braces are modeled as the

truss elements. The nodes (a) and (g) are the fixed-supports, and hence nd = 30. We set W = 400.0

cm and H = 300.0 cm. The elastic modulus is 200 GPa.

5.1 Bounds for nodal displacements

The cross-sectional area and the second moment of cross section of each beam are 60.0 cm2 and

500.0 cm4, respectively. For each column, the cross-sectional area and the second moment of cross

section are set as 40.0 cm2 and 213.3 cm4, respectively. The nominal cross-sectional areas of the

braces are

i = 20.0 cm2, i = 1, ..., 10

As the nominal external force , the nodal loads are applied to the nodes (b)-(f) and (l) as listed in

Table 1. Note that no external moments are applied. The dashed lines in Fig. 2 depict the

deformation of the frame with the nominal cross-sectional areas  of the braces subjected to the

nominal external load , where the displacements are amplified 10 times.

As an uncertainty model of f, suppose that uncertain external forces may possibly be applied at all

free nodes (b)-(f) and (h)-(l). Note again that no uncertain external moments are considered.

Accordingly, we see that nf = 20 in (3). The coefficients f 0 of the uncertainty in (4) are listed in

Table 2. Consequently, the external force f is running through the rectangles depicted with the

dashed lines in Fig. 1 (ii). As the uncertainty models of a introduced in (7), we consider the

following two cases:

Case 1: = 6.0 cm2, i = 1, ..., 10;

ã

f̃

ã

f̃

ai

0

Fig. 2 Bounding ellipsoids and bounding boxes of the nodal displacements for Case 1 and the deformation at
the nominal situation (displacements amplified 10 times)
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Case 2: = 12.0 cm2, i = 1, ..., 10.

We first consider Case 1. Based on the formulation investigated in Example 3.1, we compute the

minimal bounding ellipsoid of the nodal displacement of each free node by solving the SDP

problem (42). Note that we have solved 10 SDP problems in total. Each SDP problem has 36

variables, 31 linear inequalities, and the constraint that the symmetric matrix in S43 should be

positive semidefinite. The average and the standard deviation of CPU time, respectively, required

for solving one SDP problem are 2.01 sec and 0.32 sec. Similarly, according to Example 3.2, we

compute the minimal bounding interval for each component of the displacements by solving the

SDP problem (42). Note that we do not compute the bounding intervals for the rotation angles, and

hence we have solved 20 SDP problems in total. Each SDP problem has 33 variables, 31 linear

inequalities, and the constraint that the symmetric matrix in S42 should be positive semidefinite.

The average and the standard deviation of CPU time, respectively, required for solving one SDP

problem are 2.08 sec and 0.34 sec. The obtained ellipsoids and intervals (boxes) are illustrated in

Fig. 2 at the locations of the corresponding nodes.

In order to verify these results, we randomly generate a number of ζa and ζf, and compute the

corresponding displacements. The obtained displacements are shown by many points in Fig. 3 and

ai

0

Fig. 3 Bounding ellipsoids and the nodal displacements (in cm) for randomly generated ζa and ζf in Case 1
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Fig. 4 with the bounding ellipsoids and intervals, respectively. It is observed in Fig. 3 and Fig. 4

that all generated displacements are included in the bounds computed, which ensures that the

obtained bounding ellipsoids and intervals correspond to outer approximations of the sets of nodal

displacements. In addition, the bounding ellipsoids seem to represent the characteristics of

distribution of the nodal displacements more clearly and intuitively compared with the bounding

intervals. We can also see that these bounds are sufficiently tight.

The bounds of nodal displacements are also computed for Case 2. The minimum ellipsoids and

intervals obtained are illustrated in Fig. 5 at the locations of the corresponding nodes. Fig. 6 and

Fig. 7 depict the ellipsoids and intervals obtained, respectively, as well as the displacements

corresponding to randomly generated ζa and ζf. It should be emphasized that these bounds are very

tight, even though in Case 2 we consider very large magnitudes of perturbations of a.

5.2 Bounds for stresses

We next consider the uncertainties of stresses of beams and columns. The uncertainty modeling of

a and f is the same as Case 1 in section 5.1.

Based on the formulation investigated in Example 3.3, we compute the minimal bounding

ellipsoid of (σ1, σ2), where σ1 and σ2 denote the extreme-fiber normal stress at the lower end of the

Fig. 4 Bounding boxes and the nodal displacements (in cm) for randomly generated ζa and ζf in Case 1
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Fig. 5 Bounding ellipsoids and bounding boxes of the nodal displacements for Case 2 and the deformation at
the nominal situation (displacements amplified 10 times)

Fig. 6 Bounding ellipsoids and the nodal displacements (in cm) for randomly generated ζa and ζf in Case 2
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Fig. 7 Bounding boxes and the nodal displacements (in cm) for randomly generated ζa and ζf in Case 2

Fig. 8 Bounding ellipsoid and bounding box of the extreme-fiber nominal stress vector (σ1, σ2) at the lower
end of the column (1) together with the stresses for randomly generated ζa and ζf in Case 1
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column (1) shown in Fig. 1. The bounding intervals of σ1 and σ2 can also be obtained by solving

(42) in a manner similar to Example 3.2. The minimum bounding ellipsoid and intervals of (σ1, σ2)

are illustrated in Fig. 8. We also generate a number of ζa and ζf randomly, and the corresponding

stresses (σ1, σ2) are depicted by a number of points in Fig. 8. It is observed in Fig. 8 that all

generated stresses are included in the ellipsoidal and interval bounds obtained.

Similarly, consider the extreme-fiber normal stresses σ3 and σ4 at the left end of beam (2) shown

in Fig. 1. The minimum bounding ellipsoid and box computed are illustrated in Fig. 9, as well as

the stresses corresponding to randomly generated ζa and ζf. It is observed from Fig. 9 that the

bounds obtained are sufficiently tight.

6. Conclusions

In this paper, an optimization-based approach has been proposed for computing ellipsoidal

deterministic confidence bounds on static response of braced frames including uncertainties. Both of

the external loads and the member stiffnesses of braces are assumed to be imprecisely known.

It is shown that an ellipsoidal bound for all realizations of static response of a braced frame can

be obtained efficiently by solving a convex optimization problem, which is called a semidefi-nite

programming (SDP) problem. By using the quadratic embedding of uncertainty parameters and the

S-lemma, we proposed a sufficient condition that an ellipsoid includes all possible realizations of

static response. Based on this sufficient condition, we formulated an SDP problem which

approximates the problem for finding the minimal bounding ellipsoid.

It should be emphasized that most of convex model approaches have been developed based on the

first-order perturbation, while the proposed method uses a semidefinite relaxation technique. It is

known that an SDP problem can be solved within the polynomial time of the problem size by using

the primal-dual interior-point method. Hence, our method has polynomial-time complexity of prob-

lem size, whereas interval calculus approaches have in general exponential complexity. Compared

with confidence intervals, confidence ellipsoids may help intuitive understanding of characteristics

Fig. 9 Bounding ellipsoid and bounding box of the extreme-fiber nominal stress vector (σ3, σ4) at the left end
of the beam (2) together with the stresses for randomly generated ζa and ζf in Case 1
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of mechanical behaviors, e.g. distribution of nodal displacements.

In the numerical examples, the SDP problem presented has been solved by using the primaldual

interior-point method. It has been shown that bounding ellipsoids of nodal displacements and

stresses of beam-column elements can be obtained effectively. We have also illustrated that the

obtained ellipsoidal and interval bounds are sufficiently tight even for large magnitudes of

perturbations of external loads and brace member stiffnesses.
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