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1. Introduction 
 

Earthquakes are a type of natural hazard that arises from 
the displacement of faults, leading to the discharge of 
energy that can have catastrophic effects on human society 
and infrastructures. This calamity is magnified by soil 
amplification which leads to it being considered in seismic 
design codes in the form of the site classification system 
(Adams 1990, Hryciw et al. 1991, Nakhaei and Ali 
Ghannad 2008, Abbas et al. 2021, Holzer et al. 2005). The 
effects brought upon by soil amplification are due to soil 
conditions which enhances the ground motion. This makes 
determining soil features crucial for assessing and designing 
structures. (Türköz 2019, Pradhan et al. 2021, Lee et al. 
2018). Hence the usage of average response spectra  
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recorded in various soil types (Seed et al. 1976) or 

extending the empirical scaling to that of pseudo relative 

velocity spectra (Lee 1987) were empirical studies of the 

local site conditions and their influence on the amplitudes 

of the ground motions were researched to determine the 

values of the soil amplifications. In search for the fitting 

model (Trifunac 1987), considered eight different linear 

models in which all of the it agreed with the trend suggested 

by the amplification formula presented by (Trifunac 1990). 

By considering these studies, designers can precisely 

analyze potential amplification effects and integrate suitable 

solutions into the structural design to mitigate dangers 

associated with local site effects and consider soil-structure 

interactions (Fatahi et al. 2014). 

Seismic site classification system has been developed to 

categorize different soil types based on the response of the 

soil layers due to seismic activity. This system enables 

seismic designers to construct a standard response spectrum 

for a specific site with various soil strata. Most of national 

bodies have adopted similar such as National earthquake 

hazard reduction program (NEHRP 1997), Eurocode 8, 

ASCE7-22, Japanese highway bridge design and building 

codes of different nations (BSSC 2003, Verdugo 2019). 

NEHRP site classification is one of the typical systems 

which relies on the average of values of the top 30 meters of  
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Abstract.  This study explores development of prediction model for seismic site classification through the integration of 

machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the 

research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and 

evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method 

(LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while 

Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection 

techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of 

LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding 

the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site 

classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection 

and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine 

learning in optimizing site classification accuracy. 
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Table 1 NEHRP seismic site classification system 

NEHRP Site 

Class 
Model Shear-Wave Velocity (m/s) 

A Hard Rock Vs30 > 1500 

B Rock 760 < Vs30 < 1500 

C 
Very dense soil and soft 

rock 
360 < Vs30 < 760 

D Stiff soil 180 < Vs30 < 360 

E Soft soil Vs30 < 180 

 

 

soil for its two parameters: the average shear wave velocity 

(VS30) or the average standard penetration resistance (𝑁). 

Vs30 is derived from the time it took for the shear wave to 

propagate through the soil layers unto the ground surface 

(Dobry et al. 2000) it can be also used to evaluate 

liquefaction potential (Ji et al. 2021) due to its capability to 

define dynamic soil behavior. In this study, the VS30 is 

adopted to classify soil to one of five classes: A, B, C, D, or 

E (Table 1). 

A primary limitation of this classification approach is its 

dependence on Vs30. In instances where a geotechnical 

report is unavailable due to challenges like difficult 

accessibility or insufficient funding for invasive techniques 

like borehole drilling it would make site categorization 

using NEHRP's method difficult. Thus, nondestructive 

seismic site categorization methods without soil borings 

have been investigated. Sites can be categorized by their 

primary period using average horizontal-to-vertical (H/V) 

response spectral ratios (Fukushima et al. 2007). Non-

invasive surface wave interpretations of ambient noise 

measurements have provided quantitative insights into site 

amplification (Bard et al. 2010). Phung et al. (2006) 

suggested utilizing the pseudo-acceleration response 

spectrum for the horizontal ground motion component using 

a 5% damping ratio instead of the usual Fast Fourier 

transform (FFT) for site assessment. Site categorization 

uses empirical methods, including peak frequencies and the 

empirical H/V spectral ratio approach (Ghasemi et al. 

2009). The horizontal to vertical spectral ratio (HVSR) is a 

popular seismic site classification method using 

microtremor or strong ground motion data. Unlike 

conventional approaches involving sensors or explosive 

charges, this study utilizes pre-existing earthquake data 

(Ghasemi et al. 2009, Lee et al. 2001, Phung et al. 2006, 

Pinzón et al. 2019, Wen et al. 2010, Zhao et al. 2023, 

2006). A common empirical formula was proposed by Zhao 

(2006) utilized to classify sites by using strong-motion 

attenuation models. Although this method is improved in 

terms of accuracy, the fluctuating accuracy of different soil 

types undermines its reliability. Therefore, this research opts 

for an alternative approach by integrating machine learning 

techniques into the existing methodologies used in HVSR 

analysis. 

Machine learning has significantly transformed 

predictive and classification approaches due to its ability to 

generate forecasts with superior predictive precision 

compared to traditional statistical methods (Vadyala et al. 

2022, Zhang et al. 2023). Traditional techniques, such as 

linear regression models and multinomial models hinge on 

assuming a simplistic straight-line relationship. Usually, 

traditional regression models are utilized in scenarios with 

substantial variable correlation (Bangdiwala 2018). While, 

machine learning techniques create more comprehensive 

prediction models such as decision trees, support vector 

machines, and neural networks without the need for high 

variable correlation (Matsunaga and Fortes 2010, Romero et 

al. 2020). Hence, these studies excel in capturing nonlinear 

relationships in more complex scenarios. Machine learning 

techniques have been also broadly utilized in the field of 

geotechnical engineering some of the examples are: Güllü 

(2013) utilized strong motion records in developing 

artificial neural network (ANN) and gene expression 

programming (GEP) models to forecast VS30. While another 

example of ANN and GEP is from Al-Swaidani et al. 

(2024), which predicts the strength of problematic clayey 

soil. Another great example of using neural network was 

made by Nguyen et al. (2022), wherein the where able to 

use predict the axial load bearing capacity of pile using 

ANN And also made an evaluation of the residual flexural 

strength of corroded reinforced concrete by using neural 

networks (Nguyen et al. 2022). On the other hand, Aydın et 

al. (2023) conducted a comparative analysis of various 

machine-learning techniques for a unified soil classification 

system (USCS). While, Javadi and Rezania (2009) 

pioneered the usage of genetic programming (GP) and 

evolutionary polynomial regression (EPR) for the modeling 

of the soil behavior as well as data mining in geotechnical 

engineering. As for Benemaran and Esmaeili-Falak (2023), 

they used multiple machine learning for predicting the 

Young’s modulus of frozen sand. And, Nguyen-Minh et al. 

(2024) wherein they made an ingenious approach by 

combining the isogeometric analysis (IGA), limit analysis, 

and, machine learning by using the multivariate adaptive 

regression splines model (MARS) to determine the 

undrained stabilities of specific circular cavities. It is also 

important to consider pre-processing techniques that may 

increase the accuracy of final machine learning models in 

geotechnical fields. In particular, removing of outlier and 

balancing the data is important for this study as data to be 

used for this study is inherently imbalanced and has many 

outliers due to the nature of recording instruments. This 

consideration can significantly impact the overall data 

quality and influence the efficacy of constructing a 

machine-learning model (Maniruzzaman et al. 2018). There 

is currently a lack of research investigating the integration 

of HVSR data from strong motion records into the dataset 

for machine learning models. 

This research would benefit the engineering practice by 

providing a framework for future works with the goal of 

making a tool that utilizes machine learning and different 

kinds of waves (strong ground motion, ambient noise., i.e.,) 

that will be able to serve as an alternative to traditional non-

destructive methods of site characterization. Which has a 

further potential to have great impact in countries that have 

multiple earthquake occurrence as it would provide a much 

cost-effective measure for determining site class and would 

help improve the safety of the area by providing proper 

basis for the structural design.  
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(a) Magnitude 

 
(b) Peak ground acceleration 

 
(c) Hypocentral distance 

Fig. 1 Distribution of dataset in terms of different input 

features 

 

 

This study aims to make a framework by integrating 

machine learning techniques with the HVSR to build a 

predictive model and to evaluate performance of various 

pre-processing methods with up-date machine learning 

algorithms and by: 

(1) utilizing strong ground recordings to obtain different 

features to create the dataset;  

(2) enhancing model accuracy by eliminating outliers by 

applying an outlier detection method;  

(3) applying the data balancing algorithm to even out the 

inherent imbalance in the dataset; an 

(4) evaluating various machine learning models to 

determine the most effective combination. 

 

 

2. Dataset and methodology 
 

2.1 Origin of data 
 
The dataset used for this study is publicly available data 

on the KiK-net website. The KiK-net is one of the well-

established strong-motion seismograph networks managed 

by the national research institute for earth science and 

disaster prevention (NIED) in Japan. There are 669 KiK-net 

strong-motion stations scattered throughout Japan, and  

Table 2 Class distribution of earthquake records used in this 

study 

NEHRP (1997) Site 

Class 
Number of Records 

A 258 

B 4312 

C 7848 

D 2484 

E 201 

 

 

these strong-motion stations have a minimum 100-m-deep 

borehole (Aoi et al. 2004). Each station has seismographs 

placed at the bottom of each borehole and on the ground 

surface. The stations use tri-axial force-balance 

accelerometers. Earthquake signals are recorded using  

SMAC-MDK devices up to 2000 gals. Ground motions 

are stored based on trigger conditions for 6.5 hours of data 

at 200 Hz. The system's internal clock is automatically 

calibrated every hour using GPS signals (Aoi et al. 2020). 

Finally, the dataset utilized in this study consists of 15,103 

earthquakes recorded during past years from 2000 to 2023 

at 625 stations in Kik-net. 

The resulting distribution of earthquake records used in 

this study is tabulated in Table 2. The output classification 

is based on the NEHRP general guidelines for site 

classification (BSSC, 2003) using the given VS30 data to 

determine the soil type of each site. Fig. 1 shows the 

distribution of the data in terms of the input features: 

magnitude, peak ground acceleration, hypocentral distance. 

Based on the Fig. 1, it can be seen that the magnitude of the 

earthquakes falls on the range of 4 to 9 with 7 having the 

highest frequency. 

While, peak ground acceleration is mostly between the 

range of 0.01 to 0.45 with 0.05 having the highest 

frequency. The hypocentral distance of the dataset can be 

also seen in Fig. 1 which shows that majority of the data is 

around the range of 50km to 700km with 100 km being 

prevalent. 

 

2.2 Flow of data processing   
 
The overview of the whole process done in this study is 

seen in Fig. 2. It will start off with extracting features from 

the earthquake data gathered from the KiK-net website.  

Then, additional processing will be done to address 

some of the problem of the dataset. 

Synthetic minority over-sampling technique (SMOTE) 

and removing of outliers will applied in the dataset this is to 

address the issue of imbalance and outliers. After 

processing the dataset, it would be split into 2 parts one for 

training and one for testing. The training set would then 

undergo training using various machine learning models 

and it will be tested using the testing set which would then 

result in the different performance metrics. 
This study partitions the dataset into training and testing 

sets with 70 percent and 30 percent of the data. Data 
splitting is randomized using the Scikit package, which 
guarantees an unbiased split. Subsequently, the dataset is  
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Fig. 2 Flowchart of data process 
 
 

subjected to three distinct outlier detection techniques: 
mahalanobis distance, isolation forest, and local outlier 
factor, examining potential errors that may occur during the 
recording of earthquakes due to sensors subjected to 
challenging environmental circumstances (Samara et al. 
2022). The ensuing datasets are subsequently employed for 
the seven machine-learning models that are previously 
discussed.  

Imbalanced datasets introduce bias into the outcomes of 

the machine learning models particularly in multi-class 

classification as it enhances the accuracy of the classes with 

more sample size. The proportion ratios of the original 

dataset to the smallest dataset in this study are 1.28: 21.45: 

39.04: 12.36: 1 for classes A, B, C, D, and E, respectively. 

They result in an uneven dataset and site classes A and E are 

nearly 20 to 40 times lower than the other classes. In this 

research, the synthetic minority over-sampling technique 

(SMOTE) is employed to address the issue of imbalanced 

class distribution. The SMOTE generates artificial datasets 

by extrapolating from the minority classes, thereby 

achieving a balanced dataset with equal samples for each 

classification. The utilization of synthetic data is limited to 

the training set and excluded from the testing set, as its 

purpose is solely to facilitate the model development 

process rather than its evaluation (Fernández et al. 2018, He 

and Ma 2013, Brownlee 2020). 

The models were constructed using a dataset that 

underwent data balancing, explicitly employing the 

SMOTE. As mentioned earlier, the balancing technique 

employed three outlier identification approaches. 

Subsequently, the accuracy, precision, recall, and F1-score 

metrics were calculated at Table 3. 

 

2.3 Input features  
 

In this study, the HVSR of each earthquake record is 

selected as a key input parameter. The HVSR has been 

adopted as one of the crucial parameters, enabling the 

characterization of shallow-subsoil properties and assessing 

side effects. It measures the ratio of Fourier amplitudes 

between horizontal and vertical ground motion components  

 

Fig. 3 Example of HVSR plots 

 

 

at the Earth's surface. It is expressed as the following Eq. 

(1). In which HVSRs denotes the horizontal to vertical 

spectral ration at the surface while Hs and Vs are the 

horizontal and vertical spectral acceleration at the surface. 

𝐻𝑉𝑆𝑅𝑆 =
𝐻𝑆

𝑉𝑆

 (1) 

The basic principle of HVSR hinges on two 

assumptions: (1) the horizontal and vertical waves travel 

equally on the bedrock, making the horizontal to vertical 

spectral ratio at the bedrock, HVSRb, equal to 1. (2) The 

seismic waves travel from the bedrock to the surface with 

no enlargement in the vertical component which would 

make the vertical transfer function, TFV = 1. By combining 

both of these assumptions and Eq. (1), we can see the 

relationship between HVSRS and horizontal transfer 

function,TFH 

𝑇𝐹𝐻 =
𝐻𝑆

𝐻𝐵

∗  
𝑉𝐵

𝑉𝑆

∗  
𝐻𝐵

𝑉𝐵

=
𝐻𝑆

𝑉𝑆

 (2) 

𝐻𝑉𝑆𝑅𝑆 = 𝑇𝐹𝐻 (3) 

HVSR's simplicity in data acquisition and signal 

processing makes it applicable across various fields, 

including site effect research, earthquake recordings, and 

strong-motion data analysis. Its versatility makes it cost-

effective and practical for seismic hazard assessment 

(Gulowaty and Ksieniewicz 2019).  

In order to provide a detailed characteristic of HVSR 

curves, peak frequencies of HVSRs and ten spectral 

accelerations on the HVSR curves that are evenly 

distributed at a certain frequency are selected. To clarify, 

when the term HVSR is used in the study it is pertaining to 

the horizontal to vertical spectral ration at the surface 

(HVSRs). 

Additional input features include latitude and longitude 

of earthquake source, magnitude (Mw) of earthquake, 

sampling frequency (Hz) of records, arrival time of 

earthquake from its source to stations, hypocentral distance 

of hypocenter to the stations (Rhyp), and peak ground 

acceleration (PGA) of records. The majority of these 

parameters describe characteristics of strong earthquake 

motion records.  
 
2.4 Outlier detection methods  
 
Outlier detection methods (ODM) are procedures 

implemented to identify and rectify anomalous data that 
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does not follow the expected pattern (Wang et al. 2019). 

They fulfill a vital function by detecting system 

malfunctions, fraudulent activities, and errors. Traditional 

methods are initially arbitrary, but they progress to become 

more methodical and systematic based on computer science 

and statistics principles (Hodge and Austin 2004). There are 

multiple variations of ODM, but in this study, the focus will 

be on the following: Mahalanobis distance, isolation forest, 

and local outlier factor. 

 

2.4.1 Mahalanobis distance  
Mahalanobis distance is a measure used to quantify the 

dissimilarity between two groups or populations based on a 

set of relevant characteristics or measurements. It also 

allows for considering different scales and correlations 

between variables, making it a useful metric for comparing 

groups with multivariate data. Considering the covariance 

matrix, Σ, this function determines the squared Mahalanobis 

distance, D2, for every row in a matrix to the center vector, 

μ, defined with a singular column vector, x (Vinod 2014). 

𝐷2 = (𝑥 −  𝜇)′𝛴−1(𝑥 −  𝜇) (4) 

As a metric for identifying outliers, Mahalanobis 

distance quantifies the impact of data points on regression 

coefficients. Significant distances are regarded as having 

greater leverage. Because mean and standard deviation are 

sensitive to outliers, researchers use more robust metrics to 

replace the center and covariance in Mahalanobis distance 

calculations (Rehman et al. 2019). 

 

2.4.2 Isolation forest  
The Isolation Forest algorithm is a model-based 

approach used to detect data anomalies in high dimensional 
datasets. In contrast with traditional methods that generate a 
profile of normal instances, this algorithm focuses on 
isolating and identifying anomalies with significant 
accuracy (Nguyen et al. 2023). It takes advantage of the 
fact that anomalies are the minority and have attribute-
values that are very different from normal instances. The 
proposed methodology constructs an ensemble of isolation 
trees, whereby each tree isolates instances utilizing random 
partitioning. Anomalies are classified as instances 
exhibiting relatively low average path lengths on the trees. 
Isolation Forest has a linear time complexity, low memory 
requirement, and can handle large data sets and high-
dimensional problems. 
 

2.4.3 Local outlier factor  
The local outlier factor (LOF) is an outlier detection 

algorithm that operates on the density of data points. It 

identifies outliers by assessing the local deviation of a given 

data point within a dataset, making it particularly effective 

for datasets with uneven distributions. The algorithm 

determines outliers by analyzing the density between each 

data point and its neighboring points. If a data point exhibits 

lower density than its neighbors, it is more likely to be 

flagged as an outlier (Cheng et al. 2019). 

 
2.5 Data balancing 
 
The resulting number of samples per each classification 

in this study is summarized in Table 2, presenting a great 
disparity in the total number of samples for A and E, with 
only 258 and 201, respectively, whereas C has the most 
samples with 7848. Itpresents an imbalance with the 
dataset, leading to a less accurate model. To make the best 
possible model, data balancing has been introduced in the 
form of SMOTE; Gulowaty and Ksieniewicz 2019), as 
shown in Fig. 2. The accuracy of the model is greatly 
affected by the imbalance in the class distribution. The 
imbalance in the dataset occurs because of the geographical 
distribution of Japan, where the majority of the lands with 
recording stations are classified as soil type C. 
Oversampling is determined to be more appropriate to 
balance the class distribution because it works well with 
moderately imbalanced data (Wongvorachan et al. 2023). 
Aside from that, if under sampling is used, the data would 
not be sufficient to make an accurate and reliable model. 

SMOTE is used in this study to generate synthetic class 
examples using the pre-existing data in the minority class. 
By doing so, the classifier would be able to make a larger 
decision region that uses nearby minority class points. This 
would result in having a much more balanced dataset with 
more related minority class samples, which is why SMOTE 
typically performs better than other data balancing methods 
(Chawla et al. 2002). 

 

2.6 Hyperparameter tuning 
 

Hyperparameter tuning is an essential step in the design 

process of machine learning models for performance 

optimization. This process plays an important role in 

maximizing model performance and improving prediction 

accuracy by preventing model overfitting and enhancing 

generalization performance. In this study, we have applied 

the grid search method among various hyperparameter 

tuning methods.  
The grid search method systematically detects the 

optimal configuration within a fixed range of 
hyperparameters using a decision-theoretic approach, 
providing an intuitive and complete method (Yang and 
Shami 2020). Table 3 presents the parameters applied to 
outlier detection and classification models, their ranges, and 
the optimal parameter values determined through grid 
search. In the “Range” column, the values in parentheses 
indicate the start, end, and increment values for the search 
range of each parameter. 
 

 

Table 3 Optimal hyperparameter selection via grid search 

 Model Parameter Range Optimal 

Outlier 
model 

Mahalanobis 

Distance 
scaling (0.01, 0.1, 0.01) 

0.01 

Isolation Forest 
max_sample (0, 200, 5) 140 

contamination (0.1, 0.5, 0.1) 0.1 

Local outlier 

factor 

n_neighbors (5, 40, 5) 40 

contamination (0.01, 0.1, 0.01) 0.01 

Classifier 

model 

Decision Tree criterion gini, c, log_loss gini 

Random Forest n_estimators (0, 200, 5) 190 

Gradient 

Boosting 
n_estimators (0, 200, 5) 

100 

LGBM boosting_type gbdt, dart, rf gbdt 

SVM C (1, 5, 1) 1 
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Fig. 4 Algorithm of SMOTE 

 

 

2.7 Machine learning 
 
Stuyts and Suryasentna (2023) defined machine learning 

as a specialized branch of artificial intelligence focuses on 

automating the learning process from tabular data. It 

encompasses four distinct sub-disciplines: supervised 

learning, unsupervised learning, semi-supervised learning, 

and reinforcement learning. In supervised learning, models 

are created using input-output. The primary objective is to 

enable the machine to acquire the experience by observing 

and understanding the relationship between input data and 

corresponding outcomes.  

On the other hand, reinforcement learning involves 

machine learning through interaction with its environment, 

primarily employing a trial-and-error approach to maximize 

rewards until reaching a specified target. Unsupervised 

learning, in contrast, lacks labeled output, with some 

algorithmic features emerging organically from the data. 

Semi-supervised learning is a hybrid approach, combining 

elements from supervised and unsupervised learning 

models. Its primary aim is to enhance learning performance 

by leveraging abundant unlabeled data alongside a limited 

labeled data set. 

Supervised machine learning models are adopted in this 

study, including decision tree, random forest, gradient 

boosting, LGBM; voting boosting, Support vector machine 

(SVM), and Multiple linear regression (MLR).  

 

2.7.1 Decision Tree (DT) 
A decision tree is a classification modeling approach 

that employs a divide-and-conquer strategy for analyzing 

large databases, illustrated in Fig. 1. It is particularly useful 

for discovering features and patterns relevant to 

discrimination and predictive modeling (Myles et al. 2004). 

The tree structure includes nodes (root, internal, and leaf) 

connected by branches, and key steps involve splitting, 

stopping, and pruning. This predictive tool aims to create a 

hierarchy of decision rules, maximizing accuracy while 

maintaining generalizability to new data (Song and Lu, 

2015). 

 

2.7.2 Random Forest (RF) 
Random Forests are an ensemble learning method 

comprising a collection of tree-structured classifiers. Each 

tree is grown with a randomly sampled vector, 

independently and with the same distribution across all 

trees. The method employs a voting mechanism, where the 

ensemble of trees collectively predicts the most popular 

class. The generalization error converges as the number of 

trees increases, and the model's robustness to noise is 

enhanced through random feature selection. Internal 

estimates, such as out-of-bag estimates, guide the model's 

parameters and monitor error, strength, and correlation. 

Random Forests are applicable to both classification and 

regression tasks, providing accurate and robust predictions 

while offering insights into variable importance (Breiman, 

2001). 

 

2.7.3 Gradient Boosting (GB)  
Gradient boosting is an ensemble machine learning 

technique that sequentially builds a strong predictive model 

by adding weak models, often decision trees, to correct 

errors the existing ensemble makes. The algorithm focuses 

on minimizing the negative gradient of a chosen loss 

function, allowing for flexibility in handling various data-

driven tasks. The method's adaptability to different loss 

functions makes it customizable, and its simplicity 

facilitates implementation and experimentation (Natekin 

and Knoll 2013). 

 

2.7.4 Light gradient boosting method (LGBM)  
Light gradient boosting machine is a gradient boosting 

decision tree (GBDT) algorithm designed to enhance the 

efficiency and scalability of GBDT in the face of high-

dimensional features and large datasets. To address these 

challenges it introduces two key techniques, Gradient-based 

One-Side Sampling (GOSS) and Exclusive Feature 

Bundling (EFB). GOSS selectively excludes data instances 

with small gradients during training, focusing on those with 

larger gradients for more accurate information gain 

estimation. EFB bundles mutually exclusive features to 

reduce their number, leveraging the sparsity of feature 

spaces. Through experiments on various datasets, it 

demonstrates significant acceleration in training speed, up 

to over 20 times, while maintaining nearly the same level of 

accuracy compared to conventional GBDT implementations 

(Ke et al. 2017). 

 

2.7.5 Voting Boosting (Random Forest, Gradient 
Boosting, LGBM) 

Hard Voting (HV) model is a type of voting algorithm 

used as a meta-classifier. In this approach, multiple machine 

learning classifiers are trained and evaluated in parallel, and 

each classifier independently predicts a class label. The 

final prediction of the ensemble is determined by a majority 

(plurality) vote, where the class label most frequently 

predicted by the individual classifiers becomes the final 

Start 

Initialize i, j=0

Select a sample x 
of minority class

Calculate k-neighbor of x

Select sample xn
from k-neighbor of x

Generate new sample 
xnew based on smote 

algorithm

i < N

i < N

End 

i=i+1 j=j+1

N

N

Y
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output of the ensemble. In the context of the Hard-Voting 

model, the final class label zˆ is determined by calculating 

the mode (most frequently occurring value) of the set of 

predictions from the individual classifiers. HV is described 

as the simplest case of a voting algorithm with lower error 

and less overfitting, as it relies on the majority decision of 

the ensemble to make predictions. 
 
2.7.6 Support vector machine (SVM)  
SVM is a robust classifier aiming to establish a 

hyperplane, or decision boundary, between two classes in a 
labeled training dataset. The hyperplane maximizes the 
margin between classes and is positioned to be as far as 
possible from the closest data points, known as support 
vectors (Mahesh 2019). Originally proposed for linear 
classification, SVM also employs the kernel method for 
handling non-linear problems. Kernel functions map data 
into higher-dimensional spaces, facilitating linear 
separation, with the choice of kernel significantly impacting 
SVM performance. The Radial Basis Function (RBF) kernel 
is an example, and kernel selection often involves 
experimentation and cross-validation to identify the most 
effective kernel for a specific pattern recognition problem 
(Huang et al. 2018). 

 

2.7.7 Multiple linear regression (MLR)  
MLR is a statistical technique used for estimating 

relationships between variables with cause-and-effect 

associations. Unlike univariate regression, which analyzes 

the relationship between a dependent variable and one 

independent variable, MLR deals with regression models 

having one dependent variable and multiple independent 

variables (Uyanık and Güler 2013). 

 

2.8 Models from previous literatures  
 
Empirical models were used to properly compare the 

result of the machine learning with pre-existing models.  

The first model is by using the Eq. (5) proposed by Kramer, 

1996 (KR96) 

𝑓𝑝𝑒𝑎𝑘 =
Vz

4𝐻
 (5) 

Wherein Vz is the shear wave velocity which would 

become Vs30 , average shear wave velocity at 30 m, by 

considering that H, height, be equal to 30 m. While, fpeak is 

the peak frequency found in the average HVSR 

(Harinarayan and Kumar 2018). The second model would 

be the one proposed by Ghofrani and Atkinson 2014 

(GA14) 

log(𝑉𝑠30) = 2.56 + 0.20 log (𝑓𝑝𝑒𝑎𝑘) (6) 

As suggested by Ghofrani and Atkinson, this is only 
applicable for global region as wells as for fpeak greater than 
1 Hz (Ghofrani and Atkinson 2014). The last model was 
proposed by Kwak and Seyhan (KS18) which assumes a 
non-linear relationship between the Vs30 and the fpeak from 
the average HVSR 

𝑉𝑠30 = 200 [(
0.85𝑓𝑝𝑒𝑎𝑘

1 − 0.05𝑓𝑝𝑒𝑎𝑘

)

2

− 1]

1
6

 
(7) 

Table 4 Confusion Matrix and evaluation parameters 

 True False 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

Accuracy (TP + TN) / (TP + FP + TN + FN) 

Precision TP / (TP + FP) 

Recall TP / (TP + FN) 

F1-score 2 * ((Precision * Recall) / (Precision + Recall)) 

 

 

This model is particularly effective with fpeak in the 

range of 1-20 Hz but tends to overestimate the Vs30 when 

fpeak reaches 12 Hz or greater (Kwak and Seyhan).  

 

2.9 Metrics 
 
Performance metrics are essential for assessing 

algorithm or model performance with specific datasets, 

particularly in classification problems. In this study, the 

confusion matrix was used to evaluate model’s performance 

to calculate accuracy, precision, recall, and F1-score 

(Grandini et al. 2020, Aydin et al. 2023).  

Evaluation parameters are calculated with confusion 

matrix as shown in Table 4 to offer a comprehensive 

overview of a model's performance under various 

conditions and scenarios.  

 

 

3. Results & discussion 
 

The overall accuracy of the models are tabulated in 
Tables 6 and 7, ranging between 0.61 and 0.77 when the 
original dataset was utilized, with the decision tree model 
shows the highest level of accuracy. The overall precision 
values for the original dataset range from 0.51 to 0.87, 
whereas overall recall and F1-score values range from 0.23 
to 0.61. Upon applying outlier detection methods to the 
datasets, it was observed that all three methods yielded 
comparable levels of accuracy, ranging from 0.62 to 0.91. A 
discernible distinction becomes evident when alternative 
measurements are investigated, showing that the local 
outlier detection algorithm achieved the highest recall and 
F1-score. Meanwhile, the isolation forest algorithm had the 
highest precision value. In the context of the study, it was 
observed that the application of SMOTE resulted in a 
decrease in the lower boundary of accuracy for the original 
dataset to 0.36. 

In contrast, the maximum accuracy increased to 0.85. A 

similar impact occurred when SMOTE was used with the 

outlier detection method, resulting in an accuracy range of 

0.36 to 0.84 for all variations. The minimum accuracy is 

calculated for MLP and SVM, ranging 0.36 to 0.38 when 

SMOTE was used. On the other hand, the LGBM model 

increased accuracy, reaching a range of 0.84 to 0.85. 

Regarding the remaining metrics, the majority of the upper 

bounds remained relatively consistent. However, the lower 

bounds showed a decrease in value. 

The overall performance of the classical HVSR methods 

were shown in Table 5 which is compared to the machine  
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learning models. We have used 3 models from previous 
literatures in estimating the Vs30 to get the site 
classification. The accuracy, precision, recall, and, F1-score 
were all below 50 percent, ranging from 0.14 to 0.44, which 
is low in comparison with the machine learning models. In 
particular, GA14 performed the least out of the three 
empirical models. Some of the can be attributed to the 
nature of the model which is not a good indicator for deep 
soil site as well as for fpeak less than 1 Hz (Ahn et al. 2021). 
This is because of the sample size present for each of the 
recording station. The current sample size is not sufficient 
for the empirical models because using peak frequencies 
require larger sample size per station and its accuracy may 
decrease significantly depending on the number of samples 
(Zhao et al. 2006). 

 
3.1 The effect of eliminating outliers  
 
The impacts of removing outliers using three distinct 

ODMs of Mahalanobis distance, isolation forest, and local 
outlier factor, were investigated in this study. The effect of 
removing the outlier can also be observed in Table 6, which 
presents the outcomes of each model. According to the 
findings presented in the tables, the decision tree algorithm 
exhibited superior performance when applied to the original 
dataset. However, removing outliers did not provide have 
any notable impact on the algorithm's performance. This 
outcome is similar to MLP, SVM, and RF, as deleting the 
outliers had little effect on these models. In the case of  

 

 
 

LGBM, GB, and VB, removing outliers resulted in a 
notable increase in their respective performance metrics. 
Consequently, LGBM emerged as the most proficient model 
among the abovementioned models when outliers were 
removed.  

In order to improve understanding of the effects 
associated with removing outliers, graphical representations 
were generated to illustrate the comparative analysis of 
accuracy, precision, and F1-score across various site 
classifications before and after implementing ODM in Fig. 
5. Meanwhile, Figs. 6 and 7 present a comparative analysis 
for precision and F1-score. The diagonal lines in figures, 
represents where the results remain unchanged irrespective 
of ODMs. If a point is above this line, it indicates a positive  
change in the outcome after removing outliers. The size of 
the symbols represents the data size for the different site 
class. 

Conversely, if a point is positioned below the line, it 
suggests an adverse change in the outcome. Based on the 
data presented in Figs. 5 to 7, a significant proportion of the 
data points are above the diagonal line. In contrast, only a 
minority of points are positioned below this line. This result 
suggests an improvement in the performance of the models 
in terms of their accuracy, precision, and F1-score for each 
specific site class. 

 
3.2 The Impact of data balancing  
 
Considering the dataset's inherent imbalanced class  

Table 5 Comparison of overall performance metrics between machine learning models and classical HVSR 

models 

 MLP SVM LGBM GB VB DT RF KR96 GA14 KS18 

Original 

Dataset 

Accuracy 0.62 0.61 0.69 0.66 0.68 0.77 0.76 0.33 0.28 0.44 

Precision 0.68 0.84 0.51 0.51 0.57 0.61 0.87 0.30 0.19 0.15 

Recall 0.28 0.23 0.38 0.34 0.36 0.60 0.43 0.39 0.23 0.22 

F1-score 0.29 0.21 0.41 0.37 0.40 0.61 0.48 0.27 0.14 0.18 

Table 6 Overall Performance Metrics for Outlier Detection Methods 

 MLP SVM LGBM GB VB DT RF 

Original 

Dataset 

Accuracy 0.62 0.61 0.69 0.66 0.68 0.77 0.76 

Precision 0.68 0.84 0.51 0.51 0.57 0.61 0.87 

Recall 0.28 0.23 0.38 0.34 0.36 0.60 0.43 

F1-score 0.29 0.21 0.41 0.37 0.40 0.61 0.48 

Local 

Outlier 

Factor 

Accuracy 0.62 0.62 0.91 0.82 0.85 0.75 0.77 

Precision 0.64 0.84 0.84 0.69 0.73 0.53 0.88 

Recall 0.27 0.23 0.75 0.57 0.58 0.54 0.44 

F1-score 0.28 0.22 0.79 0.81 0.84 0.74 0.49 

Isolation 

Forest 

Accuracy 0.62 0.62 0.91 0.82 0.85 0.79 0.77 

Precision 0.64 0.83 0.88 0.78 0.93 0.68 0.88 

Recall 0.27 0.23 0.71 0.60 0.61 0.65 0.43 

F1-score 0.28 0.22 0.77 0.66 0.69 0.66 0.48 

Mahalanobi

s Distance 

Accuracy 0.62 0.61 0.90 0.82 0.84 0.76 0.76 

Precision 0.63 0.84 0.80 0.69 0.71 0.54 0.85 

Recall 0.27 0.23 0.70 0.56 0.57 0.55 0.42 

F1-score 0.28 0.21 0.74 0.81 0.82 0.74 0.47 
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distributions in this study, the effect of a data balancing 
technique, SMOTE, was examined. The initial hypothesis 
suggested that the process of balancing the dataset would 
lead to an enhancement in the overall accuracy of all 
models, as compared to the scenario where SMOTE was not 
employed. However, when comparing the outcomes 
depicted in Tables 6 and 7, before and after utilizing 
SMOTE, it is evident that this expectation still needs to be 
met. It is apparent that a comparable trend with the effects 
of removing outliers emerged wherein the performance of 
MLP, SVM, and DT models showed a decrease in their  

 

 
 
performance when SMOTE was used. This is in contrast to 
LGBM, GB and VB, which showed increased accuracy. On 
the other hand, Random Forest exhibited the same accuracy 
whether data balancing was utilized or not. 

In order to analyze the impacts of data balancing, the 
outcomes of the distinct site classes for each model are 
compared in Figs. 8 to 11. There is a noticeable rise in the 
precision of the site classifications, namely for classes A, B, 
and E. In contrast, the application of SMOTE resulted in a 
decrease in accuracy for site class C. Regarding accuracy,  
most of the findings are situated in the upper part of the  

Table 7 Overall Performance Metrics for SMOTE 

 MLP SVM LGBM GB VB DT RF 

Original 

Dataset 

Accuracy 0.36 0.38 0.85 0.70 0.81 0.66 0.76 

Precision 0.30 0.31 0.77 0.50 0.64 0.46 0.60 

Recall 0.51 0.52 0.78 0.72 0.76 0.55 0.60 

F1-score 0.28 0.29 0.77 0.55 0.67 0.48 0.60 

Local 

Outlier 

Factor 

Accuracy 0.37 0.38 0.84 0.69 0.79 0.69 0.76 

Precision 0.31 0.31 0.64 0.50 0.62 0.51 0.61 

Recall 0.51 0.51 0.75 0.72 0.72 0.58 0.61 

F1-score 0.28 0.29 0.71 0.55 0.65 0.53 0.61 

Isolation 

Forest 

Accuracy 0.36 0.37 0.84 0.69 0.79 0.67 0.74 

Precision 0.30 0.30 0.83 0.51 0.63 0.51 0.63 

Recall 0.57 0.54 0.76 0.74 0.69 0.57 0.61 

F1-score 0.27 0.28 0.87 0.56 0.65 0.53 0.61 

Mahalanobi

s Distance 

Accuracy 0.36 0.36 0.84 0.69 0.80 0.66 0.75 

Precision 0.30 0.30 0.83 0.49 0.59 0.50 0.56 

Recall 0.44 0.47 0.67 0.62 0.63 0.57 0.55 

F1-score 0.27 0.28 0.65 0.53 0.81 0.53 0.76 

Table 8 Feature Importance Analysis Based on Random Forest 

Original Mahalanobis Distance Isolation Forest Local Outlier Factor 

Feature MDI Feature MDI Feature MDI Feature MDI 

Station Code 0.115 Station Code 0.118 Station Code 0.118 Station Code 0.121 

Peak Frequency 0.081 Peak Frequency 0.086 Peak Frequency 0.089 
Peak 

Frequency 
0.093 

SR10 0.068 SR10 0.074 SR10 0.069 SR1.667 0.068 

SR1.667 0.063 Rhyp 0.063 SR1.667 0.068 SR3.333 0.068 

SR3.333 0.06 SR1.1667 0.061 Rhyp 0.06 SR10 0.063 

Rhyp 0.06 SR3.333 0.06 SR3.333 0.06 SR5 0.055 

SR1.429 0.059 SR5 0.055 SR5 0.058 Rhyp 0.055 

SR5 0.054 SR1.429 0.054 SR1.429 0.054 SR1.429 0.054 

SR2 0.053 SR2.5 0.052 SR2 0.053 SR2 0.052 

SR1.111 0.05 SR2 0.05 SR1 0.046 SR1 0.045 

SR1 0.049 SR1 0.044 SR1.111 0.044 SR2.5 0.045 

SR2.5 0.046 SR1.111 0.042 Lat 0.042 SR1.111 0.043 

Lat 0.041 SR1.25 0.041 SR2.5 0.041 SR1.25 0.04 

Long 0.041 Long 0.04 SR1.25 0.04 Lat 0.04 

SR1.25 0.04 Mag 0.039 Long 0.039 Long 0.04 

Mag 0.035 Lat 0.038 Mag 0.036 Arrival Time 0.039 

Arrival Time 0.035 Arrival Time 0.033 Arrival Time 0.035 Mag 0.033 

PGA 0.031 PGA 0.03 PGA 0.032 PGA 0.03 

Sampling Freq 0.019 Sampling Freq 0.019 Sampling Freq 0.015 Sampling Freq 0.017 
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graph and in proximity to the diagonal line, indicating a 

lack of substantial variation in their outcomes. Although 

there is a rise in the F1-score, its magnitude is less 

substantial than accuracy.  

The overall metrics indicate a decline in performance 

for specific models when SMOTE was employed, it was 

observed that other site classes experienced a significant 

improvement in accuracy and F1-score, particularly the 

minority classes. This outcome aligns with the primary 

objective of implementing data balancing techniques: 

mitigating bias towards classes with a high sample count. 

The SMOTE algorithm is employed in conjunction with 

removing outliers, as depicted in Figs. 8 to 11. In contrast  

to the data presented in Table 7, Figs. 8 to 11 indicate a 

comparatively lesser degree of improvement across the 

various site classes, except for classes A and E. Regarding, 

the precision and F1-score, the outcome remained 

comparatively consistent. Although this is the case, there 

remains a compelling case for combining SMOTE with 

outlier detection methods, specifically the combinations of 

LGBM plus Isolation and Forest plus SMOTE, which yields 

the highest overall F1-score and maintains a near-perfect 

accuracy ranking in this study. 

 

 

 
 
3.3 Feature importance analysis  
 

Feature importance analysis is made to determine which 

feature contributes the most in different machine learning 

modes. By doing so, it would help in having a greater 

understanding on how the features affect the models 
(Nguyen-Minh et al. 2023). By doing so, it can also 

improve the reliability and performance while also 

decreasing the complexity of the models by removing 

features that were shown to be the least significant. Table 8 

presents a list of feature importance rankings based on the 

Mean Decrease in Impurity (MDI) values using the Random 

Forest model. The rankings compare the features of the 

original dataset, which has not undergone outlier 

processing, with the features by outlier detection model 
(Archer and Kimes 2008). The analysis is based on the top 

and bottom five features according to their frequency of 

occurrence across all scenarios. The top five features, which 

include 'Station Code' and 'Peak Frequency,' consistently 

show the highest importance across all scenarios, indicating 

their crucial role in the model's predictive performance.  

While, 'SR10' and 'SR1.667,' despite some variation in 

importance rankings depending on the scenario,  

   
(a) Isolation forest (b) Local outlier factor (c) Mahalanobis distance 

Fig. 5 Comparison of before and after removing the outliers (Accuracy) (The size of the figures indicates the sample size) 

   
(a) Isolation forest (b) Local outlier factor (c) Mahalanobis distance 

Fig. 6 Comparison of before and after removing the outliers (Precision) (The size of the figures indicates the sample size) 

   
(a) Isolation forest (b) Local outlier factor (c) Mahalanobis distance 

Fig. 7 Comparison of before and after removing the outliers (F1-score) (The size of the figures indicates the sample size) 
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consistently emerge as significant variables. 'SR3.333' and 

'Rhyp' exhibit changes in importance across different 

models such as Mahalanobis Distance, Isolation Forest, the 

Original, and the Local Outlier Factor. 

For the bottom five features, 'Sampling Freq', 'PGA', 

and 'Arrival Time' consistently display the lowest 

importance, suggesting that they have little influence on the 

model's decision-making process. 'Mag' shows variability in 

 

 

 

 

 

importance rankings across different scenarios but 

consistently appears, indicating a lower impact. 'SR1.25', 

'Lat', and 'Long' are not consistently significant but appear 

frequently, hinting at their limited influence. This suggests 

that the impact of these variables on model performance can 

vary depending on the given conditions and scenarios. 

 

3.4 Optimal combinations 

   
(a) Accuracy (b) Precision (c) F1-score 

Fig. 8 Comparison of the pre-SMOTE and post-SMOTE using the original dataset (The size of the figures indicates the 

sample size 

   
(a) Accuracy (b) Precision (c) F1-score 

Fig. 9 Comparison of the pre-SMOTE and post-SMOTE in conjunction with Isolation Forest (The size of the figures 

indicates the sample size) 

   
(a) Accuracy (b) Precision (c) F1-score 

Fig. 10 Comparison of the pre-SMOTE and post-SMOTE in conjunction with Local Outlier Factor (The size of the 

figures indicates the sample size) 

   
(a) Accuracy (b) Precision (c) F1-score 

Fig. 11 Comparison of the pre-SMOTE and post-SMOTE in conjunction with Local Outlier Factor (The size of the 

figures indicates the sample size) 
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The results indicate that LGBM has the highest overall 

accuracy of 0.84 to 0.91 when outlier detection methods 

and SMOTE are used. This is excellent, given that there are 

five classes in the study. At first, LGBM achieved an 

accuracy of 0.69 without ODM or SMOTE. However, upon 

applying ODM or SMOTE, its overall classification 

increased from third to first, and it now possessed the 

highest accuracy among all models and combinations. 

Subsequently, voting boosting maintains an accuracy range 

of 0.68 to 0.85. Although the remaining models exhibit a 

decent accuracy ranging from 0.51 to 0.82, The sole 

anomalies seen were in the outcomes of Support Vector 

Machines (SVM) and Multiple Linear Regression (MLR), 

where the overall accuracy fell below 50 percent (about 

0.34 to 0.40) when SMOTE was employed. In summary, the 

accuracy of LGBM exhibited the most substantial 

improvement when outliers were eliminated, both before 

and after the use of SMOTE. This phenomenon can be 

explained in greater detail by referring to Fig. 12. 

Fig. 12 depicts a graphical representation that compares 

the overall accuracy and F1-score. The 64 data points 

represent a unique combination of ODM, SMOTE, and 

machine learning models. A value of 0.75 for both accuracy 

and F1-score can be set as a baseline for dataset with mode 

input features and real-world data (Guo et al. 2022). This 

baseline would show the best possible combination of pre-

processing and machine learning model. Based on the data 

presented in Fig. 12, it is evident that the majority of 

accuracy values for the various combinations fall within the 

range of 0.6 to 0.9. 

In contrast, the F1-score has a broader distribution from 

0.2 to 0.9. Several combinations have demonstrated an 

accuracy exceeding 0.75, although they failed to attain an 

F1-score of 0.75. The only combinations that exhibited 

accuracy and F1-score values exceeding 0.75 were those 

using LGBM as the machine learning model. Specifically, 

 

 
the combination of LGBM with Isolation Forest and 
SMOTE and LGBM with LOF yielded the highest F1-score 
and accuracy, respectively. This finding demonstrates that 
the LGBM model exhibited superior performance compared 
to other models when either ODMs or SMOTE techniques 
were employed. Based on the results of this research, it is 
recommended to use outlier detection methods particularly 
LOF or IF which was shown to have significant impact in 
both the accuracy and the F1-score. On the other hand, it is 
recommended to use SMOTE for a fairly imbalanced 
dataset as it would help in having a balanced accuracy 
across all classes. 
 
 
4. Conclusions 

 
This study investigated the utilization of seven machine 

learning models to classify the locations of 625 different 

stations based on a dataset of 15,103 earthquakes from 2000 

up to January 2023 reported at KiK-net from Japan. In order 

to enhance the outcomes of the analysis, the following 

procedures were implemented in this research: outlier 

detection approach and data balancing. Three outlier 

detection approaches, namely Mahalanobis Distance, 

Isolation Forest, and Local Outlier Factor, are used to 

eliminate any outliers. Data balancing is used in this paper 

due to the dataset's intrinsic imbalance by SMOTE. In 

summary, the following conclusions were drawn from this 

study:  
• Outlier detection methods are proven to increase the 
accuracy of LGBM, gradient boosting, and voting boosting. 
• The SMOTE is also proven to increase the accuracy of the 
site classes with lower count.  
• In this study, it is concluded that LGBM is the best 
performer out of all of the machine learning models as it 
outperformed the other model in both accuracy and F1-
score. 

 

Fig. 12 Overall Accuracy vs Overall F1-score 
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• Peak frequency is shown to have significant impact based 
on the MDI. This further proves its applicability as a 
parameter for site characterization.  
• The results of this research suggest that the findings and 
the machine learning model can serve as an initial 
framework for in the researcher’s goal of developing a tool 
that can classify soils by using pre-existing earthquake 
recordings that would be beneficial in engineering practices 
as it would serve as another means of determining soil 
classification using non-destructive methods and pre-
existing sensors. 
• The results of this research prove that the process is highly 
accurate. Thus, the process shown in this research can be 
used with other or local pre-existing strong motion records, 
which gives engineers a preliminary soil characterization. 

Based on the experiences of the researchers during this 

research, here are some recommendations for future works: 

Larger dataset would be beneficial in making improving the 

machine learning model. While, other outlier detection 

method, data balancing method, and feature importance 

analysis method can be done to get more insights. And, 

exploration of new features like geological topography 

which has several empirical models to predict Vs30 are great 

directions for this research.  

Lastly, the final goal of this research is to develop a 

practical tool that is able assess the site classification and 

predict Vs profile by using weak ground motion as well as 

ambient mechanical noise recording while only relying on a 

single accelerometer which continuously gather data in a 

cheap and non-destructive way.  
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