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Abstract.  The present paper is focused on analyzing the delamination of inhomogeneous multilayered rods 

of circular cross-section loaded in torsion. The rods are made of concentric longitudinal layers of individual 

thickness and material properties. A delamination crack is located arbitrary between layers. Thus, the internal 

and external crack arms have circular and ring-shaped cross-sections, respectively. The layers exhibit 

continuous material inhomogeneity in radial direction. Besides, the material has non-linear elastic behavior. 

The delamination is analyzed in terms of the strain energy release rate. General solution to the strain energy 

release rate is derived by considering the energy balance. The solution is applied to analyze the delamination 

of cantilever rod. For verification, the strain energy release rate is derived also by considering the 

complementary strain energy. 
 

Keywords:  multilayered rod; torsion; delamination; material non-linearity; inhomogeneous material 

 
1. Introduction 
 

The inhomogeneous structural members, whose material properties vary continuously within a 

macro-volume, are widely used in various load-bearing structural applications in different 

branches of mechanical and civil engineering (Tokovyy and Ma 2008, 2013, Tokova et al. 2017, 

Tokovyy and Ma 2016). The wide-spread usage of inhomogeneous structural materials is due also 

to their ability to satisfy different structural requirements in different zones of a structural member.  

 New and advanced classes of inhomogeneous structural materials are functionally graded 

materials (Gasik 2010, Han et al. 2001, Hedia et al. 2014, Hirai and Chen 1999, Kawasaki and 

Watanabe, 1997, Mahamood and Akinlabi, 2017, Markworth et al. 1995, Miyamoto et al. 1999, 

Nemat-Allal et al. 2011, Saiyathibrahim et al. 2016, Shrikantha and Gangadharan 2014). They are 

made of two or more constituent materials mixed continuously and functionally during 

manufacturing. The properties of functionally graded materials change smoothly in the volume of 

a structural member and are functions of spatial position. One of the basic advantages of the 

functionally graded materials over the conventional homogeneous structural materials is the fact 

that the microstructure of the functionally graded materials can be tailored so as to meet high 

performance requirements. Thus, it is not surprising that the application of the functionally graded 
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materials has been constantly increasing for the last three decades in aerospace, nuclear reactors, 

electronics and biomedicine.  

 The frequent use of inhomogenous materials in various load-bearing engineering structures 

imposes high requirements with respect to their fracture behavior. Thus, in the last thirty years 

considerable attention has been paid from the international academic circles to analysis of the 

fracture behaviour of the inhomogeneous (functionally graded) materials and structures (Carpinteri 

and Pugno 2006, Dolgov, 2005, 2016, Erdogan, 1995, Tilbrook et al. 2005). Being different from 

the ordinary homogeneous structural members, the fracture analysis of inhomogeneous members 

possesses some specific characteristics. The most important of them is the fact that the properties 

of inhomogeneous materials are related to the coordinates which significantly complicates the 

fracture analysis.   

  Some problems of fracture behaviour of inhomogeneous (functionally graded) materials have 

been considered in (Erdogan 1995). Various analyses of fracture have been carried-out assuming 

linear-elastic mechanical behaviour of the inhomogeneous material.  Thus, solutions of crack 

problems have been derived by applying methods of linear-elastic fracture mechanics. The results 

obtained can be used by scientists and practicing engineers who are developing methods for design 

of inhomogenous structural members and components. Different aspects of surface cracking and 

debonding of inhomogeneous structures and materials are also considered (Erdogan 1995).  

  Various studies of fracture behaviour of inhomogeneous (functionally graded) materials have 

been reviewed in (Tilbrook et al. 2005). The influence of microstructural gradation on the fracture 

has been investigated. Linear-elastic analyses of cracks oriented parallel or perpendicular to the 

gradient direction have been presented. The analyses have been carried-out by applying linear-

elastic fracture mechanics. Solutions for rectilinear and curved cracks have been discussed. Works 

on fracture behaviour of inhomogeneous materials under fatigue crack loading conditions have 

also been reviewed. Studies of cracks in linear-elastic inhomogeneous materials under thermal 

loading have been presented too (Tilbrook et al. 2005).   

  A method for evaluation of the strength of structures composed by functionally graded 

materials containing cracks has been developed in (Carpinteri and Pugno 2006). The method has 

been applied successfully on inhomogeneous beams under bending and plates under tension 

assuming linear-elastic mechanical behaviour of the material. The fracture analyses have been 

performed at linear variation of the modulus of elasticity of the inhomogeneous material between 

two given values in the thickness direction of the structural member (Carpinteri and Pugno 2006.)  

  The above literature review indicates that fracture of inhomogeneous materials and structural 

members and components has been studied mainly assuming linear-elastic mechanical behavior of 

the material. Recently, papers which deal with analyses of delamination fracture of 

inhomogeneous (functionally graded) beams exhibiting material non-linearity has also been 

published (Rizov, 2018a, b,  2019). However, these papers consider individual analyses of separate 

beam configurations (Rizov, 2018a, b, 2019). Therefore, the aim of the present paper is to develop 

general analysis of the delamination fracture of inhomogeneous multilayered rods which exhibit 

non-linear elastic behavior of the material. The rods have a circular cross-section and are loaded in 

torsion. The rods are made of concentric longitudinal inhomogeneous layers and have a 

delamination crack located arbitrary between layers. The fracture is studied in terms of the strain 

energy release rate. General solution to the strain energy release rate is derived by considering the 

balance of the energy. The general solution is applied to analyze the delamination in a cantilever 

rod under torsion. The strain energy release rate is derived also by considering the complementary 

strain energy for verification.            
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On the analysis of delamination in multilayered inhomogeneous rods under torsion  

2. General approach for analyzing of the strain energy release rate 
 

A multilayered rod of circular cross-section of radius, RA, is shown in Fig. 1.  

The rod is made of adhesively bonded concentric longitudinal layers. The number of layers is 

arbitrary. Each layer has individual thickness and material properties. The material in each layer 

has non-linear elastic mechanical properties. Besides, each layer exhibits continuous (smooth) 

material inhomogeneity in radial direction. A delamination crack is located arbitrary between 

layers. The crack presents a circular cylindrical surface of radius, RB. Thus, the crack front is a 

circle of radius, RB. The internal and external crack arms have circular and ring-shaped cross-

section, respectively. The radius of the cross-section of the internal crack arm is RB. The internal 

and external radiuses of the cross-section of the external crack arm are RB and RA, respectively. 

The crack length is a. The rod is loaded in torsion by an arbitrary number of torsion moments, Ti. 

A torsion moment, Tb, is applied at the free end of the internal crack arm. Under these torsion 

moments, the rod is in a state of equilibrium. The length of the rod is denoted by l.  

The delamination fracture behaviour of the rod in Fig. 1 is analyzed in terms of the strain 

energy release rate, G. For this purpose, general solution to the strain energy release rate is derived 

by considering the balance of the energy. By assuming a small increase, δa, of the crack length, 

the balance of the energy is written as 
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where δψi  is the increases of the angle of twist of the rod cross-section in which the i-th torsion 

moment is applied, δψb is the increase of the angle of twist of the free end of the internal crack 

arm, nT is the number of torsion moments, U is the strain energy stored in the rod and lcf is the 

length of the crack front. From (1), G is expressed as 
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Since 
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Eq. (2) is re-written as 
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By using the integrals of Maxwell-Mohr, the angle of twist, ψi, is obtained as 
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(5) 

where m and q are the numbers of torsion moments applied on the external crack arm and the un-

cracked rod part (a≤x≤l), γj  is the shear strain at the periphery of the rod in the j-th portion of the 

external crack arm, γCD is the shear strain at the periphery of the rod in portion, CD, of the external  
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Fig. 1 Multilayered inhomogeneous rod with a delamination circular cylindrical crack loaded in torsion 
 

 

crack arm, γDP is the shear strain at the periphery of the rod in portion, DP, of the un-cracked part 

of the rod, γk is the shear strain at the periphery of the rod in the k-th portion of the un-cracked part 

of the rod, Tij, TiCD, TiDP and Tik are, respectively, the torsion moments induced by the unit loading 

for obtaining of ψi in the j–th portion of the external crack arm, portion, CD, of the external crack 

arm, portion, DP, of the un-cracked part of the rod and the k-th portion of the un-cracked part of 

the rod, lj and sk are the abscissas of the cross-sections in which torsion moments, Ti and 
isT , are 

applied.  

   The angle of twist of the free end of the internal crack arm is found as 
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(6) 

where γbr  is the shear strain at the periphery of the internal crack arm, Tη, TDP and Tk are, 

respectively, the torsion moments induced by the unit loading for obtaining of ψb in the internal 

crack arm, portion, DP , of the un-cracked part of the rod and the k-th portion of the un-cracked 

part of the rod.   

   The strain energy in the rod is expressed as 

ncvnbr UUUU ++=
 

(7) 

where  Ubr, Uvn and Unc are the strain energies stored in the internal and external crack arms, and in 

the un-cracked portion of the rod, respectively. 

   The strain energy in the internal crack arm is written as 
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(8) 

where 
ibru0  is the strain energy density in the i-th layer of the internal crack arm, nb is the number 

of layers in the internal crack arm, Ri−1 and Ri are the radiuses of internal and external surfaces of 

the i-th layer, R and φ are the polar coordinates.    
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On the analysis of delamination in multilayered inhomogeneous rods under torsion  

   The mechanical behaviour of the material in the i-th layer is treated by non-linear stress-strain 

relation written in a general form 

( ) ii =  
(9) 

where τi and γ are the shear stress and strain, respectively. The strain energy density, 
ibru0 , is 

obtained by integrating of (9) 
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The strain energy in the external crack arm is written as 
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(11) 

where 
ijvnu0  is the strain energy density in the i-th layer of the j-the portion of the external crack 

arm, 
10 +imvnu  is the strain energy density in the i-th layer of portion, CD, of the external crack arm, nv 

is the number of layers in the external crack arm. The strain energy densities, 
ijvnu0  and 

10 +imvnu , are 

obtained, respectively, by replacing of τi  with τij and τim+1  in (10). Here, τij is the shear stress in the 

i-th layer of the j-the portion of the external crack arm, τim+1   is the shear stress in the i-th layer of 

portion, CD, of the external crack arm.  

The strain energy in the un-cracked part of the rod is expressed as 
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where 
10 incu  is the strain energy density in the i-th layer of portion, DP, of the un-cracked part of 

the rod, 
ijncu0  is the strain energy density in the i-th layer of the j-th portion of the un-cracked part 

of the rod (these strain energy densities are obtained by replacing of τi with τi1 and τij in (10) where 

τi1 is the shear stress in i-th layer of portion, DP, of the un-cracked part of the rod, τi is the shear 

stress in i-th layer of the j-the portion of the un-cracked part of the rod), nnc is the number of layers 

in the un-cracked part of the rod.  

The following general solution for the strain energy release rate for the delamination crack in 

the inhomogeneous multilayered rod shown in Fig. 1 is derived by substituting of (5), (6), (7), (8), 

(11) and (12) in (4) 
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(13) 

The integration in (13) should be performed by the MatLab computer program for particular 

rod geometry and loading conditions. The shear strain, γbr, that participates in (13) is obtained from 
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the following equation for equilibrium of the cross-section of the internal crack arm 
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In (14), the shear stress, τi, is presented as a function of shear strain, γ, by using the stress-strain 

relation (9). The distribution of the shear strain in the cross-section of the internal crack arm is 

treated by applying the Bernoulli’s hypothesis for plane sections since rods of high length to 

diameter ratio are considered in the present paper 
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where 

BRR 0  (16) 

After substituting of (9) and (15) in (14), the equation should be solved with respect to γbr by 

using the MatLab computer program. 

   The shear strain, γCD, that is involved in (13) is obtained from the following equation for 

equilibrium of the cross-section of the external crack arm in portion, CD 
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where the torsion moment in portion, CD, is written as (Fig. 1) 
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The strain, τim+1, is expressed as a function of shear strain, γCD, by using the stress-strain relation 

(9).  

The distribution of γ in the cross-section of the external crack arm is written as 
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where 
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The equation obtained by substituting of (9), (18) and (19) in (17) should be solved with 

respect to γCD by using the MatLab computer program.  

The following equation for equilibrium of the rod cross-section in portion, DP, is used to 

determine the shear strain, γDP, that participates in (13) 
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where the torsion moment in rod portion, DP, is found as (Fig. 1)   
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The stress-strain relation (9) is used to express the shear stress, τi1, as a function of shear strain, 

γ. The distribution of γ in the cross-section of the rod in portion, DP, is written as   
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where 

ARR 0  (24) 

After substituting of (9), (22) and (23) in (21), the equation should be solved with respect to γDP 

by the MatLab computer program.  

 

 

3. Numerical example 
 

The general solution (13) derived in the previous section of this paper is applied here to analyze 

the strain energy release rate for the delaminatiion crack in the multilayered inhomogeneous 

cantilever rod shown in Fig. 2. The cross-section of the rod is a circle of radius, RA. The rod is 

made of an arbitrary number of adhesively bonded concentric longitudinal layers. A delamination 

circular crack of radius, RB, and length, a, is located between layers. The length of the rod is l. The 

rod is clamped in its right-hand end. The loading of the rod consists of two torsion moments, T1 

and TB, applied at the external crack arm and at the free end of the internal crack arm, respectively. 

  The non-linear mechanical behaviour of the material in the i-th layer of the rod is treated by 

the following stress-strain relation (Petrov, 2014) 
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where τi is the shear stress, γ is the shear strain, Ei is the modulus of elasticity, Hi, Li, αi and βi are 

material properties.  

The material in each layer exhibits continuous material inhomogeneity in radial direction. The 

distribution of Ei in radial direction of the i-th layer is described by the following power law 
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where  

 ii RRR −1  
(27) 

In (26), 
iQE  and 

iME  are the values of 
iE  at the internal and external surfaces of the layer, fi is 

a material property that controls the material inhomogeneity.   

   For the rod in Fig. 2, one writes 
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Fig. 2 Geometry and loading of a multilayered inhomogeneous cantilever rod 
 

 

1=Tn  (28) 

Therefore, the solution to the strain energy release rate (13) takes the form  
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(29) 

The shear strain, γbr, that is involved in (29) is obtained from the Eq. (14). After substituting of 

(15), (25) and (26) in (14), the equation is solved with respect to γbr by the MatLab computer 

program. Equation (17) is used to determine the shear strain, γCD, that is involved in (29). For this 

purpose, by using (18), the torsion moment, TECD, is found as 

1TTECD=  
(30) 

Then, the equation obtained by substituting of (19), (25), (26) and (30) in (17) is solved with 

respect to γCD by the MatLab computer program. The shear strain, γDP, that that is involved in (29) 

is determined by equation (21). By applying (22), the torsion moment is obtained as 

bUDP TTT −= 1  
(31) 

After substituting of (23), (25), (26) and (31) in (21), the equation is solved with respect to γDP 

by the MatLab computer program.  

The strain energy density, 
ibru0 , that is involved in (29) is obtained by substituting of (25) in 

(10). The result is  
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Fig. 3 Two three-layered inhomogeneous cantilever rods with a delamination circular cylindrical crack 

located between (a) layers 2 and 3 and (b) layers 1 and 2 

 

 

Eq. (32) is used also to derive 10 +imvnu . For this purpose, γ is replaced with γCD.  The strain 

energy density, 
10 incu , is obtained by replacing of γ with γDP in (32).  

After substituting of  γbr, γm+1, 
1s

 , 
ibru0 , 

10 +imvnu  and 
10 incu  in (29), the integration is carried-out 

by the MatLab computer program.  

In order to verify (29), the strain energy release rate is derived also by differentiating the 

complementary strain energy with respect to the crack area  
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where da is an elementary increase of the crack length, U* is the complementary strain energy. By 

substituting of (3) in (33), one obtains 
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The complementary strain energy is expressed as 
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(35) 

where 
*

0 ibru , 
*

0 1+imvnu  and 
*

0 1incu  are the complementary strain energy densities in the i-th layers of 

the internal and external crack arms, and the un-cracked part of the rod, respectively, l1 is the 

abscissa of the cross-section in which the torsion moment, T1, is applied (Fig. 2).  

Since the complementary strain energy density is equal to the area that complements the area 

enclosed by the stress-strain curve to a rectangle, the complementary strain energy density in the i-

th layer of the internal crack arm is written as  
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Fig. 4 The strain energy release rate in non-dimensional form plotted against 
12

/ QQ EE  (curve 1 – for the 

three-layered rod configuration with a delamination crack between layers 2 and 3 (Fig. 3a), curve 2 – for 

the three-layered rod configuration with a delamination crack between layers 1 an 2 (Fig. 3b)) 
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By substituting of (25) and (32) in (36), one derives 
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Eq. (37) is applied also in order to obtain the complementary strain energy density in the i-th 

layer of the external crack arm. For this purpose, γ is replaced with γCD. The complementary strain 

energy density in the i-th layer of the un-cracked part of the rod is found by replacing of γ with γDP 

in (37). 

By substituting of (35) in (34), one obtains the following expression for the strain energy 

release rate for the delamination crack in the cantilever rod shown in Fig. 2 
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(38) 

The integration in (38) is carried-out by the MatLab computer program. It should be noted that 

the strain energy release rate obtained by (38) is exact match of that found by (29). This fact is a 

verification of the delamination fracture analysis of the inhomogeneous multilayered non-linear 

elastic rod developed in the present paper.  

The solution to the strain energy release rate (38) is applied in order to evaluate the effects of 

the material inhomogeneity, the crack location in radial direction and the non-linear mechanical 

behaviour of the material on the delamination fracture in the inhomogeneous multilayered 

cantilever rod configuration. The strain energy release rate is presented in non-dimensional form 

by using the formula )/(
1 AQN REGG = . In order to evaluate the effect of crack location in radial 

direction on the fracture behaviour, two three-layered cantilever rod configurations are analyzed 

(Fig. 3). A delamination circular cylindrical crack of length, a, is located between layers 2 and 3 in 

the rod shown in Fig. 3(a). A three-layered rod configuration with a delamination circular  
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Fig. 5 The strain energy release rate in non-dimensional form plotted against 
11

/ QM EE  ratio (curve 1 – at 

linear-elastic behaviour of the material, curve 2 – at non-linear behaviour of the material) 

 

 
Fig. 6 The strain energy release rate in non-dimensional form plotted against α1 (curve 1 - at 

066.0/
11 =QEH , curve 2 – at 132.0/

11 =QEH  and curve 3 – at 200.0/
11 =QEH ) 

 

 

cylindrical crack of length, a, located between layers 1 and 2 is also considered (Fig. 3(b)). The 

thickness of each layer in both rod configurations is t (Fig. 3). Both rods are clamped in their right-

hand ends. The loading of the rods consists of two torsion moments, Tb and T1, where Tb is applied 

at the free end of the internal crack arm. The external crack arm is loaded by the torsion moment, 

T1, applied at distance, l1, from the free end of the rod (Fig. 3). It is assumed that t=0.004 m, 

l=0.250 m. T1=12  Nm and Tb=5 Nm.     

The effect of the crack location in radial direction on the delamination fracture behaviour is 

illustrated in Fig. 4 where the strain energy release rate in non-dimensional form is plotted against 

12
/ QQ EE  ratio for both three-layered rod configurations shown in Fig. 3. It is assumed that  

3.0/
11
=QM EE

, 
2.0/

11 =QEH
, 

1.0/
11 =QEL

, 5.01 =f , 7.01 = , 6.01 = ,  

4.0/
22
=QM EE

, 
3.0/

22 =QEH
, 

1.0/
22 =QEL

, 5.02 =f , 7.02 = , 6.02 = , 

5.0/
13
=QQ EE

, 
3.0/

33
=QM EE

, 
1.0/

31 =QEH
, 

5.03 =f
, 

7.03 =
 and 

6.03 =
. 
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Fig. 7 The strain energy release rate in non-dimensional form plotted against β1 (curve 1 – at

033.0/
11 =QEL , curve 2 – at 066.0/

11 =QEL   and curve 3 – at 100.0/
11 =QEL ) 

 

 

Fig. 8 The strain energy release rate in non-dimensional form plotted against the layer thickness, t (curve 

1 – at T1=7.2 Nm and Tb=3 Nm, curve 2 – at T1=9.6  Nm and Tb=4  Nm,  and curve 3 – at T1=12 Nm and 

Tb=5  Nm) 

 

 

The curves in Fig. 4 indicate that the strain energy release rate is higher when the crack is 

located between layers 2 and 3. This finding is attributed to the fact that when the crack is located 

between layers 2 and 3 (Fig. 3(a)) the stiffness of the external crack arm, which is loaded by a 

torsion moment of a higher magnitude, is lower in comparison with the case when the crack is 

between layers 1 and 2 (Fig. 3(b)). One can observe also in Fig. 4 that the strain energy release rate 

decreases with increasing of 
12

/ QQ EE  ratio (this behaviour is due to increase of the stiffness of the 

rod).  

The effect of material inhomogeneity in radial direction of layer 1 on the delamination fracture 

behaviour is evaluated too. The material inhomogeneity in radial direction of layer 1 is 

characterized by 
11

/ QM EE  ratio. Thus, in order to evaluate the effect of material inhomogeneity, 

calculations of the strain energy release rate are carried-out at various 
11

/ QM EE  ratios. The three-

layered inhomogeneous cantilever rod configuration with delamination crack located between 

layers 2 and 3 is considered (Fig. 3(a)).  

On can get an idea for the effect of 
11

/ QM EE  ratio on the delamination fracture behaviour from 
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On the analysis of delamination in multilayered inhomogeneous rods under torsion  

Fig. 5 where the strain energy release rate in non-dimensional form is plotted against 
11

/ QM EE  

ratio. It is evident from Fig. 5 that the strain energy release rate decreases with increasing of  

11
/ QM EE  ratio. The effect of the non-linear mechanical behaviour of the inhomogeneous material 

on the delamination fracture is evaluated also. For this purpose, the strain energy release rate 

derived assuming linear elastic mechanical behaviour of the material is plotted in non-dimensional 

form against 
11

/ QM EE  ratio in Fig. 5 for comparison with the non-linear solution. It should be 

mentioned that the linear-elastic solution to the strain energy release rate is derived by substituting 

of Hi=0 and Li=0  in the non-linear solution (38) since at Hi=0  and Li=0  the non-linear stress-

strain relation (25) transforms into the Hooke’s law assuming that Ei is the modulus of elasticity of 

the inhomogeneous material in the i-th layer of the rod. It can be observed in Fig. 5 that the non-

linear mechanical behaviour of the material leads to increase of the strain energy release rate.   

The influence of 
1

/1 QEH  ratio and material property, α1, on the delamination fracture behaviour 

is investigated. The rod configuration with delamination crack located between layers 1 and 2 is 

considered (Fig. 3(a)). The strain energy release rate in non-dimensional form is plotted against α1 

in Fig. 6 at three 
1

/1 QEH  ratios. The curves shown in Fig. 6 indicate that the strain energy release 

rate increases with increasing of α1. It can be observed also in Fig. 6 that the strain energy release 

rate increases with increasing of 
1

/1 QEH  ratio.  

The influence of material property, β1, and 
1

/1 QEL  ratio on the delamination fracture behaviour 

is also investigated. The three-layered rod with crack between layers 2 and 3 is under 

consideration. Calculations of the strain energy release rate are carried-out at various values of β1. 

The results obtained are presented in Fig. 7 where the strain energy release rate in non-dimensional 

form is plotted against β1  at three 
1

/1 QEL  ratios. One can observe in Fig. 7 that increase of β1 leads 

to increase of the strain energy release rate. The curves in Fig. 7 indicate also that the strain energy 

release rate increases with increasing of 
1

/1 QEL  ratio. 

The influence of the thickness of the layers, t, on the delamination fracture behaviour is 

analyzed. The influence of the loading conditions is analyzed too. The rod with delamination crack 

located between layers 2 and 3 is considered (Fig. 3(a)). The strain energy release rate is calculated 

at various values of t at T1=7.2 Nm and Tb=3 Nm, T1=9.6  Nm and Tb=4 Nm, and T1=12 Nm and 

Tb=5 Nm. The influences of the thickness of the layers and the values of the torsion moments on 

the delamination fracture behaviour of the rod are illustrated in Fig. 8 where the strain energy 

release rate in non-dimensional form is plotted against t at T1=7.2 Nm and Tb=3  Nm, T1=9.6 Nm 

and Tb=4 Nm, and T1=12  Nm and Tb=5  Nm. It is evident from the curves in Fig. 8 that the strain 

energy release rate decreases with increasing of the thickness, t. The curves in Fig. 8 indicate also 

that the strain energy release rate increases with increasing of the magnitudes of the torsion 

moments applied on the rod.                 

 

 

4. Conclusions 
 

Delamination fracture behaviour of inhomogeneous multilayered rod configurations of circular 

cross-section is analyzed.  

The rods are made of adhesively bonded concentric longitudinal layers. A delaminating crack 

presenting a circular cylindrical surface is located arbitrary between layers. The internal crack arm 

has a circular cross-section. Thus, the delamination crack front is a circle. The external crack arm 
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has a ring-shaped cross-section. The rods are loaded by torsion moments. The internal crack arm is 

loaded by a torsion moment applied at the free end. Each layer exhibits continuous (smooth) 

material inhomogeneity in radial direction. Besides, the material has non-linear elastic mechanical 

behaviour. The delamination fracture behaviour of the rods is studied in terms of the strain energy 

release rate. For this purpose, general solution to the strain energy release rate is derived by 

considering the balance of the energy. The solution is valid for rods made of an arbitrary number 

of concentric longitudinal layers. Besides, each layer has individual thickness and material 

properties. The solution holds for arbitrary law for continuous distribution of the material 

properties in radial direction. The solution is used to analyze the delamination fracture of an 

inhomogeneous multilayered non-linear elastic cantilever rod configuration loaded in torsion. The 

strain energy release rate for the delamination crack in the cantilever rod is derived also by 

considering the complementary strain energy for verification. The solution is applied to investigate 

the effects of material inhomogeneity in radial direction, the loading conditions, the non-linear 

mechanical behaviour of the material and the crack location in radial direction on the delamination 

fracture. The analysis reveals that the strain energy release rate decreases with increasing of 

11
/ QM EE  ratio. It is found also that the non-linear mechanical behaviour of the material leads to 

increase of the strain energy release rate. The calculations show that the strain energy release rate 

increases with increasing of  
1

/1 QEH  and 
1

/1 QEL  ratios. The increase of α1 and β1 leads also to 

increase of the strain energy release rate. Concerning the effect of the thickness of the layers on the 

delamination fracture behaviour, it is found that the strain energy release rate decreases with 

increasing of the thickness.                         
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