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Abstract.  Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting 

with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic 

deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static 

plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik 

hardening rule is adopted in our finite element calculations. Effects of multiple material properties 

simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. 

Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various 

inclusion radii. It is found that when temperature dependent material properties are considered, the 

maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded 

state due to lower temperature having larger yield stress. Temperature independent material properties 

overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse 

temperature. 
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1. Introduction 
 

Plasticity in the plane deformation is an important subject for scientific understanding and 

industrial applications. For examples, rigorous elastoplastic analysis of rotating annular disc has 

recently been carried out by Alexandrov et al. (2017) under the plane stress assumption. Studies of 

plastic deformation of bimetallic sheet under plane strain bending have been reported (Alexandrov 

et al. 2016). Furthermore, hollow discs with reversed yielding properties have recently been 

analyzed (Alexandrov et al. 2016). Since the abovementioned papers do not involve temperature 

loading, material properties are assumed to be constant throughout the analysis.   

Plastic deformation of materials with the consideration of temperature dependent (TD) material 
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properties is of importance for thermal loading in engineering analysis (Noda, 1970, Sayman and 

Arman 2006, Argeso and Eraslan 2008, Alexandrov et al. 2014, Alexandrov et al. 2014). 

Analytical results on discs in the two-dimensional analysis under thermal loading have shed new 

light, but no general analytical solutions have been provided (Alexandrov and Alexandrova 2001, 

Alexandrov and Chikanova 2000, Alexandrov et al. 2012). Effects of thickness variations on the 

elastoplastic behavior of annular discs have been studied (Wang et al. 2013). It was found that 

thickness variations have stronger effects when temperature-dependent material properties are 

considered. Aluminum composite discs under thermal loading have been studied (Topcu et al. 

2008). However, in this reference, material properties are assumed to be temperature independent. 

Recently, studies on the composite disc in views of the two-dimensional and three-dimensional 

analysis under monotonic temperature loading with consideration of temperature dependent 

material properties have been recently reported (Zarandi et al. 2016). 

Plastic deformation is known as one of important mechanisms to dissipate energy caused by 

external loading, albeit permanent deformation or residual stress may be present in the material 

when loads are removed. Wang and Ko (2015) reported the energy dissipation properties of a 

composite beam-column connector due to viscoelastic and plastic deformation processes. In 

addition to plasticity, materials’ microstructures may give rise to unusual mechanical properties, 

such as negative Poisson’s ratio (Wang et al. 2017). In addition, functionally graded materials 

have also demonstrated useful mechanical properties for industrial applications (Krenev et al. 

2015). 

In this work, we adopt the finite element method to numerically study the elastoplastic behavior 

and residual stress of the plane-strain composite disc under quasi-static temperature thermal 

loading and unloading. Both temperature dependent (TD) and temperature independent (TI) 

material properties are analyzed. Effects of hardening and inclusion size are considered. Our 

numerical results may serve as reference data for experimental findings or future analytical 

solutions on such problem. 
 

 

2. Theoretical and numerical considerations 
 

As shown in Fig. 1 (a), the composite disc consisting of a purely elastic inclusion and 

elastoplastic matrix. The inclusion-matrix interface is assumed to be perfectly bonded. The outer 

boundary of the composite disc is fully clamped, and a uniform temperature difference is 
 
 

  
(a) Schematic of the composite disc (b) Typical finite element mesh 

Fig. 1 Schematic and numerical mesh of the disc confined on the outer rim 
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applied to the whole disc under the quasi-static assumption. The physical properties of the 

purely elastic inclusion are assumed to be temperature independent, but those of the elastoplastic 

matrix are temperature dependent. In this work, the plane-strain assumptions are adopted, and the 

elastoplastic problems are analysed via the finite element method with the axisymmetric 

assumption.  

For the elastic-perfectly plastic material model, the von Mises criterion is adopted in this work 

(Lubliner 1990). 

, (1) 

Here the yield function is denoted by F, and the yield surface is described by F = 0. The von 

Mises stress is defined as follows in terms of deviatoric stress tensor sij, or its second invariant J2. 

 

(2) 

Here δij is the Kronecker delta function, and the Einstein summation rule for the indices is 

applied. In addition, local effective plastic strain is defined as follows.  

, 
(3) 

As for the Ludwik hardening model, its stress is related to the effective plastic strain as follows 

. 
(4) 

The hardening parameter K controls the hardening strength, and is assumed to be temperature 

dependent. The hardening coefficient is denoted by n, which is assumed to be temperature 

independent throughout this work. The effective plastic strain is denoted by εpe. It is noted that the 

Ludwik model may be reduced to the linear isotropic hardening model by setting n = 1, and  

, 
(5) 

where ET is the isotropic tangent modulus and E the Young‘s modulus of the annular region of the 

composite disc.  

The temperature-dependent material properties of the matrix are adopted from Seif et al. (2016) 

for yield stress σy(T), Young’s modulus E(T) and hardening parameter K(T), as shown in Eqs. (6)-

(8). These three temperature dependent functions are in units of Pa (N/m2). It is assumed the 

matrix is a structural steel. We consider the matrix is elastic-perfectly plastic isotropic, 

homogeneous material with temperature-dependent properties. In addition, effects of hardening are 

also analysed with the Ludwik model (Hill, 1950). The symbols ν and α denote Poisson’s ratio and 

linear thermal expansion coefficient, respectively. Their temperature dependence, as shown in Eqs. 

(9) and (10), is based on Argeso and Eraslan (2008).  

𝜎𝑦(𝑇) = 𝜎0 {0.09 + 0.91𝑒
[− 

1

2
(

𝑇−20

588
)

7.514
− 

𝑇−20

1352
]
} (6) 
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𝐸(𝑇) = 𝐸0𝑒
[− 

1

2
(

𝑇−20

639
)

3.768
−  

𝑇−20

3300
]
 (7) 

 𝐾(𝑇) = 𝐾0𝑒
[−(

𝑇

540
)

7.82
]
 (8) 

𝑣(𝑇) = 𝑣0[1 + 2.5 × 10−4(𝑇 − 20) − 2.5 × 10−7(𝑇 − 20)2] (9) 

𝛼(𝑇) = 𝛼0[1 + 2.56 × 10−4(𝑇 − 20) − 2.14 × 10−7(𝑇 − 20)2] (10) 

where the testing temperature T is in ˚C and reference temperature is 20˚C. Also, at the reference 

temperature, the Young’s modulus, yield stress, Poisson’s ratio and linear thermal expansion 

coefficient of the matrix material are assumed to be E0 = 200 GPa, σ0 = 410 MPa, ν0 = 0.3, and α0 

= 11.7x10-6 per ˚C, respectively. The reference hardening parameter is set to be K0 = 694.81 MPa 

(Seif et al., 2016). Furthermore, we assume the Young’s modulus of the inclusion Ei = 41 GPa, the 

inclusion Poisson’s ratio νi = 0.28, the inclusion linear thermal expansion coefficient αi = 5.0 x 10-

6. This choice of inclusion material parameters is representative for the inclusion to provide elastic 

and thermal deformation to interact with the elastoplastic matrix. Deformation process is assumed 

to be quasi-static throughout this work. 

A typical finite element mesh is shown in Fig. 1(b) with the inclusion radius a = 0.3 m and 

whole disc radius b = 1 m. In this work, three different inclusion radii are chosen, namely a = 0.1, 

0.3 or 0.7. The value of a and b was so chosen for the purpose of examining the effects of thermal 

loading on the composite disc with different sizes of inclusion. The a/b ratio dominates elastically 

irreversible temperature (Te) and plastic collapse temperature (Tp), as discussed with Figs. 5 and 6. 

The number of rectangular quadratic elements used in the analysis was about 20000, and the 

number of degrees of freedom (d.o.f.) was about 90000, including the d.o.f. for plasticity. We 

adopted COMSOL (2019) for the finite element calculations throughout this study. 

 
 

3. Results and discussion 
 

3.1 Temperature loading/unloading profile and temperature-dependent material properties 
 

As an example, Fig. 2 (a) shows the quasi-static thermal loading and unloading profile, for ΔT 

= 100 K temperature difference, with respect to the loading parameter, which can be considered as 

a step size parameter during the analysis. In our calculated cases, ΔT is so chosen that plastic 

behavior can be observed. Furthermore, at a chosen loading parameter, say 1, temperature of 393 

K is uniformly applied to the whole disc. Reference temperature is set to be Tref = 293 K (i.e., 

20˚C). Since only steady-state response of the composite disc to temperature is analyzed, dynamic 

effects, such as Biot number or thermal conductivity, are not considered. 

We term “loading stage 1” for loading parameter = 0, which is the initial state; “loading stage 

2” for loading parameter = 1, which is the maximum loaded state; “loading stage 3” for loading 

parameter = 2, which is the unloaded state and residual stress is determined at this stage of 

loading. At loading stage 1, T is 305˚C, and at loading stage 2, T = 395˚C. Since only static 

equilibrium is studied, the rate of temperature change does not affect the results of our analysis. 

The temperature functions for the material properties are shown in Fig. 2 (b). As can be seen, the 

yield stress exhibits strongest temperature dependence. Thermal expansion coefficients increase  
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(a) Quasi-static thermal loading profile (b) Temperature-dependent material properties 

Fig. 2 Temperature loading/unloading profile and temperature-dependent functions stated in Eqs. (7)-(10) 

 

 

with temperature and Poisson’s ratio is assumed to be mildly dependent on temperature. The other 

three material parameters, i.e., Young’s modulus, yield stress and hardening parameter K, decrease 

with temperature.  

 

3.2 Effects of material parameters being temperature dependent 
 

At the loading stage 2, i.e., the composite disc under the largest temperature loading, the von 

Mises stress distributions inside the disc with the consideration of single material parameter 

changing with temperature are shown in Fig. 3(a). It can be seen that, except for the yield stress, 

results from other single TD parameter do not deviate from the temperature independent (TI) case. 

When considering multiple TD material parameters, one can see the TD material parameters other 

than yield stress contribute little to the stress distribution. It is noted that, in Figs. 3-9, the 

horizontal axis is in units of meter. However, since we choose the outer radius always equal to 1 

m, the numeric values of the radius abscissa can also be interpreted as the radius ratio of inclusion 

to the matrix. 

 

 

  
(a) Effects of single TD material parameter (b) Effects of multiple TD material parameters 

Fig. 3 Effects of material parameters being temperature-dependent at the loading stage 2 for ΔT = 100 K 
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3.3 Effects of radius ratio on residual stress 
 

With the perfectly plastic assumption, residual Mises stress distributions (red color) obtained 

from the loading stage 3 for radius ratio a/b = 0.1, 0.3 and 0.7 are shown in Fig. 4(a)-4(c),  
 
 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

 
(c) Radius ratio a/b = 0.7 

Fig. 4 Residual stress distribution, i.e., at the loading stage 3, for various radius ratios under ΔT = 100 K 

 

  

(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

Fig. 5 Stress distribution, i.e., at loading stage 2, under various thermal loadings for the TD cases 
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(c) Radius ratio a/b = 0.7 

Fig. 5 Continued 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

 
(c) Radius ratio a/b = 0.7 

Fig. 6 Residual stress distribution, i.e., at loading stage 3, under various thermal loadings for the TD cases 

 

 

respectively. In order to compare with the initial (stage 1) and maximum (stage 2) stress 

distribution. 

To compare effects of different temperatures with the consideration of temperature dependent 

(TD) material properties, Figs. 5 and 6 show the Mises stress and Mises residual stress 
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distributions at selected temperatures. The label TT in figure legends throughout this paper has the 

same meaning as ΔT. In addition, the labels Te and Tp indicate the elastic reversible temperature 

and plastic collapse temperature, respectively. The method used to determine Te and Tp 

numerically in this work is by gradually increasing ΔT and observing the Mises stress plateau 

 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

 
(c) Radius ratio a/b = 0.7 

Fig. 7 Stress distribution, i.e., at loading stage 2, under various thermal loadings for the TI cases 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

Fig. 8 Residual stress distribution, i.e., at loading stage 3, under various thermal loadings for the TI cases 
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(c) Radius ratio a/b = 0.7 

Fig. 8 Continued 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

 
(c) Radius ratio a/b = 0.7 

Fig. 9 Effective plastic strain for various three radius ratios under various temperature loading 

 

 

in the figures at loading stage 2. If the stress plateau is just formed near the inclusion-matrix 

boundary, then the corresponding temperature is termed Te. If the stress plateau is in the entire 

matrix domain, then the corresponding temperature is called Tp. From the figures, it can be seen 

that these two temperatures are highly dependent on the a/b ratio. For the a/b = 0.3 and 0.7 cases, 
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the plastic collapse temperature can be determined, while the Tp for the a/b = 0.1 case requires 

much higher temperature than ΔT = 270 K. As for the residual stress, the dips shown in the 

residual stress curves are the consequence of self-equilibration to maintain equilibrium under no 

external excitations.  

Contrast to the cases shown in Figs. 5 and 6 with TD material parameters, Figs. 7 and 8 show 

the Mises stress and Mises residual stress for the cases of material properties being temperature 

independent. As can be seen, although the distribution patterns are similar, the TI cases 

overestimate stresses inside the disc, as well as the Te and Tp temperature. For the a/b =0.3 and 0.7 

case, it can be seen that the TI models always overestimate Te and Tp temperature, while the TD 

models reveal smaller temperature values for onset of elastic irreversibility and plastic collapse. It 

is noted that the maximum residual stress is greater than the maximum stress at loading stage 2 due 

to larger yield stress at lower temperature. For the TI case, this phenomenon does not occur, and 

the maximum stresses are always the same at any loading stage. 

 

3.4 Plastic strain after unloading 
 

The effective plastic strains in the Mises sense in the matrix after unloading are shown in Fig. 9 

for various loading history. Note since the inclusion is assumed to be purely elastic, the horizontal 

axis of the figures starts from different values in accordance with the size of the inclusion. As can 

be seen, the maximum effective plastic strain is about 5% for the a/b = 0.1 and 0.3 case. However, 

the maximum plastic strain is only about 1.2% for the a/b = 0.7 case at the temperature difference 

ΔT = 320 K.       

 
3.5 Effects of hardening rules 

 

With the temperature dependent parameter K(T), shown in Eq. (8), and temperature 

independent coefficient n, used in Eq. (4), in the Ludwik model, we compare the Mises stress at 

the loading stage 2 and residual stress distributions in Fig. 10 and 11, respectively. The applied 

temperature difference was ΔT = 200 K. As can be seen in Fig. 10, regardless hardening, 

temperature independent cases always overestimate stress levels in the stress plastic deformed 

regime. However, in the region between elastic-plastic boundary and outer rim of the disc, the disc 

only deforms elastically, the difference between TI and TD with or without hardening is small.  

As for the residual stresses shown in Fig. 11, when a/b = 0.1, the differences between data with 

and without hardening are small for both the TD and TI case. However, the differences become 

noticeable for a/b = 0.3 and a/b= 0.7. Due to the temperature dependence, the yield stress is larger 

at low temperatures. Hence, the residual stress is larger than that calculated from the TI models.  

From our analysis, it can be seen that the a/b ratio plays a crucial role in stress distribution and 

Te and Tp temperatures. In general, Te and Tp are larger when a/b is small. At the same temperature 

loading, larger a/b ratio leads to smaller residual stress at the interface. One may control residual 

stress by selecting suitable a/b ratios. In addition, one may introduce a buffer layer, which may be 

functionally graded, between the inclusion and matrix to reduce its magnitude. Detailed design of 

the buffer layer requires further analysis.  

 

3.6 Discussions on other stress components  
 

In the previous sections, discussions based on the Mises stress are made. Here, we demonstrate 
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other residual stress components for the a=0.3, TD case without hardening effects. The hydrostatic 

residual stress, defined by (σxx+σyy+σzz)/3, is shown in Fig. 12 (a). Due to the axisymmetric nature  

 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

 
(c) Radius ratio a/b = 0.7 

Fig. 10 Effects of hardening rules on the Mises stress under thermal loading ΔT = 200 K at the loading 

stage 2 

 

  
(a) Radius ratio a/b = 0.1 (b) Radius ratio a/b = 0.3 

Fig. 11 Effects of hardening rules on residual stress under thermal loading ΔT = 200 K at the loading 

stage 3 
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(c) Radius ratio a/b = 0.7 

Fig. 11 Continued 

 

  
(a) Residual σkk/3 distribution along y-axis (b) Residual σkk/3 distribution for ΔT = 600 K 

Fig. 12 Distribution of hydrostatic residual stress (σkk/3) under various maximum thermal loading 

 

  
(a) Residual σxx distribution along radial axis (b) Residual σxx distribution for ΔT = 600 K 

Fig. 13 Distribution of σxx residual stress under various maximum thermal loading 

 

 

of the problem, the hydrostatic stress contour under ΔT = 600 K, shown in Fig. 12 (b), does not 

exhibit any θ dependence. In the contour plots, the color bars are in units of MPa. At elevated 

temperature, thermal expansion of the matrix is greater than that of the inclusion. 

Hence, the size of the inclusion is reduced. For the same case, its σxx, σxy and σzz residual stress 

distributions are shown in Figs. 13, 14 and 15, respectively. It can be seen that the residual stress  
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(a) Residual σxy distribution along radial axis (b) Residual σxy distribution for ΔT = 600 K 

Fig. 14 Distribution of σxy residual stress under various maximum thermal loading 

 

  
(a) Residual σzz distribution along radial axis (b) Residual σzz distribution for ΔT = 600 K 

Fig. 15 Distribution of σzz residual stress under various maximum thermal loading 
 

 

σzz has no θ dependence, while σxx, and σxy are dependent on θ., following the transformation rule 

of second order tensor. The distributions of residual stress satisfy the self equilibrium condition.  

In the above quasi-static analysis, since the interface between the inclusion and matrix is 

assumed to be perfectly bonded, the nature of discontinuity due to mismatch in material constants 

at the interface causes stress jumps around it, as can be seen in Figs. 12-15. Because the dynamic 

effects are not included in the present analysis, our qualitative numerical results may be considered 

as realistic under the presumptions of steady-state responses and perfect bonding at the interface. 

As for possible real-life applications, our analysis may be used to delineate the residual stress in 

machine parts under thermal loading. Furthermore, the numerical results may serve as reference 

data to compare future experimental data or analytical solutions. 

 

 

4. Conclusions 
 

Elastoplastic behavior and residual stress of the composite disc under thermal loading and 

unloading are studied. Considerations of temperature-dependent material properties are of 

paramount importance in providing accurate estimations of stress distribution and plastic collapse 

temperature. Temperature-independent material properties overestimate stresses inside the 

material, as well as Te and Tp. It is found that, for the TD models, maximum residual stress may be 
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greater than their maximum stress at the loaded stage since at high temperature the yield stress is 

smaller than that at low temperature.  
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