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Abstract.  This paper is concerned with the wave propagation behavior of rotating functionally graded 

temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient 

stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. 

Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in 

the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory 

which has a trigonometric shear stress function. The governing equations are derived by Hamilton’s 

principle as a function of axial force due to centrifugal stiffening and displacement. By applying an 

analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are 

obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, 

nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion 

characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information 

for the next generation researches and exact design of nano-machines including nanoscale molecular 

bearings and nanogears, etc. 
 

Keywords:  wave propagation; FGMs; nonlocal strain gradient theory; rotating nanobeam; refined 
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1. Introduction 
 

Functionally graded materials (FGMs) have been created from a mixture of ceramic and metal 

with a continuous variation in one or more dimensions which are designed to reach the high 

structural performance. (Ebrahimi et al. 2016a, Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 

2015). Thus, it is important to investigate the mechanical specifications of FGM structures. 

Recently, many papers have been published concerning with analysis of FG nanostructures 

(Ebrahimi and Salari 2015a, b, 2016, Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 

2015, Ebrahimi and Hosseini 2016a, b, c). The physical and mechanical characteristics of 

structures in the nanobeam, render evident size effects that makes them to demonstrate significant 
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mechanical and thermal behavior which are superior to the conventional structural materials. 

Therefore, nanomaterials have the potential to revolutionize critical technologies. Hence, for 

investigation on the mechanical behavior of nanostructures in which the interatomic bonds possess 

a vital role on their regime, the classical continuum theory which disregards such a notable fact is 

not appropriate for this situation. Accordingly, this issue has been examined in the context of 

nonlocal continuum theories such as nonlocal elasticity theory (NET) of Eringen (1972, 1983). 

According to this theory, strain/stress state at any reference point is a function of corresponding 

states of other points of the continuum body. Reddy (2007) performed Nonlocal theories for 

bending, buckling and vibration of beams. Narendar and Gopalakrishnan (2009) performed small-

scale influences on wave propagation of multi-walled carbon nanotubes. Yang et al. (2011) 

researched wave dispersion of double-walled carbon nanotubes on the basis of size-dependent 

Timoshenko beam model. Also, Fotouhi et al. (2013), Lei et al. (2013) and Naderi et al. (2014) 

reported research based on NET. Thermal loading effects on buckling and vibrational behavior of 

FG nanobeam based on NET is explored by Ebrahimi et al. (2015, 2016). Hygro-thermal effects 

on vibration behavior of FG nano-beams based on nonlocal elasticity theory and unsing Power-

Law distribution model are explored by Ebrahimi and Barati (2016, 2016). Thermo-mechanical 

buckling analysis of curved functionally graded (FG) nanobeams based on nonlocal elasticity 

model performed by Ebrahimi and Barati (2016). A review on nonlocal elastic models for bending, 

buckling, vibrations, and wave dispersion of nanoscale beams is explored by Eltaher et al. (2016). 

Recently, it has been shown that nonlocal differential elasticity based model maybe ill-posed. 

Of course, due to the simplification of the nonlocal differential elasticity, many works have been 

focused on the size-dependent behaviors based on the nonlocal differential models. More recently, 

it is shown that the nonlocal differential and integral elasticity based models may be not equivalent 

to each other (Zhu and Li 2017a). So nonlocal differential model is an approximate model. (Zhu 

and Li (2017b, c) have studied the tension and vibration problem for CNTs and Graphene based on 

nonlocal integral and strain gradient elasticity theory. Most recently Ebrahimi and Barati (2016g, 

h, i, j, 2017a, b) and Ebrahimi et al. (2017) explored thermal and hygro-thermal effects on 

nonlocal behavior of FG nanobeams and nanoplates. 

Moreover, the stiffness enhancement observed in experimental works and strain gradient 

elasticity (2010) cannot be forecasted well by using Eringen’s nonlocal elasticity theory. Nonlocal 

strain gradient theory (NSGT) accounts the stress for both nonlocal elastic stress field and the 

strain gradient stress field. It is worth mentioning that the nonlocal strain gradient theory catches 

the true effect of the two length scale parameters on the physical and mechanical characteristics of 

small-scale structures. Li et al. (2016) reported vibration analysis of nonlocal strain gradient FG 

nano-beams. In these works, both stiffness-hardening and stiffness-softening influences on 

vibration behavior of FG nanobeams are presented. Yang et al. (2002), Lam et al. (2003), Akgöz 

et al. (2013), Li et al. (2015) and Farajpour et al. (2016) reported researches in the field of 

nonlocal strain gradient theory. Although the nonlocal strain gradient models are being used more 

and more extensively in examining the size-dependent effects on the statical and dynamical 

behaviors of micro/nano-structures. However, for the fake of simplification, the size-dependent 

effects are often assumed to be neglected in the thickness direction of beams and plates. Recently, 

a nonlocal strain gradient beam model incorporating the thickness effect is developed for the size-

dependent buckling analysis of nanobeams (Li et al. 2018). Devices in the nanometer realm with 

the moving parts called nano-machines. Rotating nanostructures containing molecular bearings, 

nanogears, nanoturbines and multiple gear systems have received notable consideration from the 

research community (1997, 2004). Hence, investigation of vibration and wave propagation of 
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nanomachines is significant for their accurate design. Pradhan and Murmu (2010) used a nonlocal 

beam model to investigate the flap-wise bending-vibration characteristics of a rotating 

nanocantilever. Narendar and Gopalakrishnan (2011) explored the wave dispersion behavior of a 

rotating nanotube using the nonlocal elasticity theory. Aranda-Ruiz et al. (2012) reported free 

vibration of rotating non-uniform nano-cantilevers according to the Eringen nonlocal elasticity 

theory. Recently, Mohammadi et al. (2016) investigated vibration analysis of a rotating 

viscoelastic nano-beam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal 

environment. Also, Ebrahimi and Shafei (2016) investigated the application of Eringen’s nonlocal 

elasticity theory for vibration analysis of rotating FG nano-beams.  

Recently, mechanical (static and dynamic) analysis of FG nano-realm structures attracted great 

deal of attention of researchers. Wang (2010) studied wave propagation analysis of fluid-

conveying single-walled carbon nanotubes applying strain gradient theory. Wave propagation 

analysis of single-walled carbon nanotubes exposed to an axial magnetic field in the framework of 

nonlocal Euler-Bernoulli beam model investigated by Narendar et al. (2012). Aydogdu (2014) 

studied longitudinal wave dispersion of carbon nanotubes. Also, Filiz and Aydogdu (2015) 

performed wave propagation analysis of functionally graded (FG) nanotubes conveying fluid 

embedded in elastic medium.  

Nonlocal thermo-elastic wave propagation in embedded nonhomogeneous FG nanobeams 

using nonlocal elasticity theory presented by Ebrahimi et al. (2016). Thermal environment effects 

on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order 

refined beam theory studied by Ebrahimi et al. (2016). Wave propagation analysis of quasi-3D FG 

nanobeams in thermal environment based on nonlocal strain gradient theory investigated by 

Ebrahimi and Barati (2016). Karami et al. (2017) reported the effects of triaxial magnetic field on 

the anisotropic nanoplates. An efficient shear deformation theory for wave propagation in FGM 

beams with porosities is presented by Benadouda et al. (2017). Flexural wave propagation in size-

dependent functionally graded beams based on nonlocal strain gradient theory is performed by Li 

et al. (2015). In another work, Ebrahimi and Barati (2016) explored flexural wave propagation 

analysis of embedded S-FGM nano-beams under longitudinal magnetic field. Narendar (2016) 

investigated wave dispersion in functionally graded magneto-electro-elastic nonlocal rod. 

Recently, Ebrahimi et al. (2016) reported wave propagation analysis of rotating strain gradient 

temperature dependent FG nanobeam in thermal environment based on Euler-Bernoulli beam 

theory.  

It is observable that, most of the researches are dedicated to buckling, static and vibration of FG 

nano-beams, and just a few number of them are working in the field of wave propagation of FG 

small-scale beams. Also, the studies in the field of temperature dependent FG nano-scale structures 

have not done a beneficial comparison between the effective parameter to make their effect clearer 

to investigate. According to the history, it is clear that wave dispersion analysis of rotating FG 

thermo-elastic nanobeam based on higher order shear deformable refined beam theory under 

different temperature distributions is a novel and beneficial topic to study.  

This research deals with the wave dispersion characteristics of a rotating FG thermo-elastic 

nano-beam studying based on refined beam theory by using nonlocal strain gradient theory under 

different temperature distributions. Material properties are supposed to change gradually across the 

thickness of nanobeam based on Mori-Tanaka distribution model. The governing partial 

differential equations are derived by applying the Hamilton’s principle in the framework of higher 

order shear deformable refined beam model. An analytical solution is applied to capture required 

parameters. It is clear that, wave dispersion characteristics of rotating FG nanobeams are 
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extremely affected by temperature changes, angular velocity, wave number, nonlocal parameter, 

length scale parameter, and material graduation. 

 

 

2. Theory and formulation 
 

2.1 Mori-Tanaka FGM nanobeam model 
 

Material properties of the FG nanobeam are assumed to distribute according to Mori-Tanaka 

model about the spatial coordinate. Mori-Tanaka homogenization technique represents the local 

effective material properties including effective local bulk modules Ke and shear modules μe in the 

form (Barati et al. 2016) 

1 ( ) / ( 4 / 3)

e m c

c m m c m m m

K K V

K K V K K K 
=

−

− + − +
 (1) 

1 ( ) / [( (9 8 ) / (6( 2 ))]

e m c

c m m c m m m m m m m

V

V K K

 

       
=

−

− + − + + +
 (2) 

where, subscripts m and c define metal and ceramic, respectively and their volume fractions are 

related by the following for 

1c mV V+ =  (3) 

While, the volume fraction of the ceramic phase is given by 

1
( )

2

P
c

z
V

h
= +  (4) 

1
(

2
1 )m

Pz
V

h
+= −  (5) 

Here p indicates the gradient index which determines gradual alteration of material properties 

through the thickness of the nanobeam. Finally, the effective Young’s modulus (E), poison ratio 

(v) and mass density (ρ) can be expressed by 

( )
9

3

e e

e e

zE
K

K




=

+
 (6) 

( )
3 2

6 2

e e

e e

v z
K

K




=

−

+
 (7) 

( ) c c m mVz V  = +  (8) 

And thermal expansion coefficient (α) and thermal conductivity (κ) may be expressed as 
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1 1

1 1

e m e m

c m

c m

K K

K K

 

 
=

−
−

−
−

 (9) 

( )
1

3

e m c

c mc m
m

m

V

V

 

  



=
−

−−
+

 
(10) 

Also, temperature-dependent coefficients of material phases can be expressed according to the 

following relation 

1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T
−

−= + + + +  (11) 

where P0, P-1, P1, P2 and P3 are the temperature-dependent constants which are tabulated in Table 

1 for Si3N4 and SUS304. The bottom and top surfaces of FG nanobeam are fully metal (SUS304) 

and fully ceramic (Si3N4), respectively. 

 

2.2 Kinematic relations 
 

In the framework of refined shear deformation beam theories, the displacement field of 

nonlocal FGM beam can be written as 

( ) ( ), ( )b
x

sw w

x
u x z u x z f z

x
− −

 


=


 (12) 

( , ) ( ) ( )z b su x z w x w x= +  (13) 

where, wb, ws indicates the components correspond to the bending and shear transverse 

displacements of a point on the mid-surface of the beam, respectively and u shows longitudinal 

displacement. Also, f(z) denotes the shape function representing the shear stress/strain distribution 

through the thickness of the beam. The present theory has a trigonometric function in the form 

(Mantari et al. 2014) 

( ) sin( ) /f z z z = −  (14) 

where, ξ= π/h. Non-zero strains of the present beam model can be expressed in the following form 

2xx

2 2

2
( )b sw wu

x
z f

x
z

x


 

 
−


= −  (15) 

s
xz

w
g

x



=


 (16) 
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where, g(z)=1−df/dz. Also, the Hamilton’s principle states that 

0
( ) 0

t

U V K dt + − =
 

(17) 

Here, U is strain energy, V is the work done by external forces and K is kinetic energy. The 

virtual strain energy can be written as 

( )ij ij xx xx xz xz
v v

U dV dV         = = +   (18) 

Substituting Eqs. (15)  and (16) into Eq. (18) yields 

2 2

2 20
( )b s s

b s

L d w d w d wd u

dx dxdx dx
U N M M Q dx

  
 − − +=   (19) 

In which, the variables expressed in the above equation are defined as follows 

,

,

xx b xx
A A

s xx xz
A A

N dA M z dA

M f dA Q g dA

 

 

= =

= =

 

 
 (20) 

The first variation of the work done by applied forces can be expressed in the following form 

0

( ) ( )
( ( ))

L
T b s b sd w w d w w

V N dx
dx dx




+ +
=   (21) 

where, NT and NR indicate the applied force due to temperature and external force due to rotation 

that can be defined by 

/2

0
/2

( , ) ( , ) ( )
h

T

h
N E z T z T T T dz

−
= −  (22) 

/ 2
2

/2
( ( ) )

L h
R

x h
N b z A x dxdz

−
=    (23a) 

where, T0 shows the reference temperature and Ω denotes the angular velocity. In this research, we 

assume a uniform rotating FG nanobeam and maximum axial force is considered (Narendar and 

Gopalakrishnan 2011)  

/2
2

max
/2

( ( ) )
L h

R

x h
N b z A x dxdz

−
=    (23b) 

The variation of kinetic energy can be presented by 

0

0

2 2 2 2

1 2

2 2 2 2

1 2

2 2 2 2

2

( [ ( )( )]

( ) ( )

( ) ( )

( ))

L

b s b s

b b b b

s s s s

b s s b

dw dw d w d wd udu
K I

dt dt dt dt dt dt

d w d w d w d wdu d u
I I

dt dxdt dxdt dt dxdt dxdt

d w d w d w d wdu d u
J K

dt dxdt dxdt dt dxdt dxdt

d w d w d w d w
J dx

dxdt dxdt dxdt dxdt

 


 

 

 

= + + +

− + +

− + +

+ +



 

(24) 

378



 

 

 

 

 

 

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis…  

In which,  

2 2
0 1 1 2 2 2( , , , , , ) ( )(1, , , , , )

A
I I J I J K z z f z zf f dA=   (25) 

The following equations are obtained by inserting Eqs. (19)-(23) in Eq. (17) when the 

coefficients of δu, δwb and δws are equal to zero 

3 32

0 1 12 2 2

b sd w d wN d u
I I J

x dt dxdt dxdt


= − −


 (26) 

2 2

max2 2

2 2 3

0 12 2 2

4 4

2 22 2 2 2

( )
( )

( )

T Rb b s

b s

b s

d M d w w
N N

dx dx

d w d w d u
I I

dt dt dxdt

d w d w
I J

dx dt dx dt

+
+ +

= + +

− −

 (27) 

2 2
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2 2 3

0 12 2 2

4 4

2 22 2 2 2

( )
( )

( )

T Rs b s

b s

b s

d M d w wdQ
N N

dxdx dx

d w d w d u
I J

dt dt dxdt

d w d w
J K

dx dt dx dt

+
+ + +

= + +

− −

 
(28) 

 

2.3 The nonlocal FG nanobeam strain gradient model 
 

Nonlocal strain gradient elasticity (Li et al. 2015) enumerates the stress for both nonlocal stress 

and strain fields. Therefore, the stress can be expressed by the following relations 

(1)

(0) ij

ij ij

d

dx


 = −  (29) 

where, the stresses
(0)
xx and 

(1)
xx are related to strain εxx and strain gradient εxx,x, respectively and 

are defined as 

(0)
0 0

0
( , , ) ( )

L

ijkl klij x x e a x dxC     =   (30) 

(1) 2
1 1 ,

0
( , , ) ( )

L

ijkl kl xij l x x e a x dxC     =   (31) 
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In which, Cijkl are the elastic constants and e0a and e1a which are nonlocal parameters ate 

introduced to take into account the effect of nonlocal stress field (Narendar and Gopalakrishnan 

2011) and l is the length scale parameter and represents the influence of higher order strain 

gradient stress field. When the nonlocal functions 0 0( , , )x x e a  and 1 1( , , )x x e a  satisfy the 

developed conditions by Eringen (1983), the constitutive relation for a FGM nanobeam can be 

stated as 

2 2 2 2
1 0

2 2 2 2 2 2
1 0

[1 ( ) ][1 ( ) ]

[1 ( ) ] [1 ( ) ]ijkl kl ijkl kl

ije a e a

e a l e aC C 

−  − 

= −  − −  
 (32) 

In which, 2 denotes the Laplacian operator. Supposing e1=e0=e and discarding terms of order 

O(2), the general constitutive relation in Eq. (34) can be stated as (Li et al. 2015) 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC −  = −   (33) 

Thus, the constitutive relations for a nonlocal refined shear deformable FG nanobeam can be 

expressed as 

2 2
2

2 2
( )( )xx xx

xx xxE z
x x

 
   

 
− = −

 
 (34) 

2 2
2

2 2
( )( )xz xz

xz xzG z
x x

 
   

 
− = −

 
 (35) 

where μ=ea2 and λ=l. By integrating Eqs. (34) and (35) over the cross-section area of nanobeam 

provides the following nonlocal relations for FGM beam model as 

2 2
2

2 2

2 2

2 2

(1 )

( ) Tb s
s x

N
N

x x

w wu
A B B N

x x x

 
 

− = −
 

 
− − −

  

 
(36) 

2 2
2
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b
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s b

M
M

x x

w wu
B D D M

x x x

 
 

− = −
 

 
− − −
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(37) 

2 2
2
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s
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s s s s

M
M

x x

w wu
B D H M

x x x

 
 

− = −
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 
− − −
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(38) 

2 2
2

2 2
(1 )( )s

s

wQ
Q A

xx x
 

 
− = −
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 (39) 
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where, the cross-sectional rigidities are explained as 

2 2

( , , , , , )

( ) (1, , , , , )

s s s

A

A B B D D H

E z z f z zf f dA= 
 (40) 

2 ( )s
A

A g G z dA=   (41) 

The governing equations of refined shear deformable FGM nanobeams in terms of 

displacements are obtained by inserting for N, Mb, Ms and Q from Eqs. (36)-(39), respectively, into 

Eqs. (26)-(28) as follows 

2
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(44) 
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3. Solution procedures 
 

The solution of governing equations of nonlocal thermoelastic FGM nanobeam can be 

presented by 

( , ) exp[ ( )]nu x t U i x t = −  (45) 

( , ) exp[ ( )]b bnw x t W i x t = −  (46) 

( , ) exp[ ( )]s snw x t W i x t = −  (47) 

where (Un, Wbn, Wsn) are the wave amplitudes; β and ω indicate the wave number and circular 

frequency, respectively. Inserting Eqs. (45)-(47) into Eqs. (42)-(44) gives 

11 12 13 11 12 13
2

21 22 23 21 22 23

31 32 33 31 32 33

0

n

bn

sn

Uk k k m m m

k k k m m m W

k k k m m m W



     
     

− =     
     
      

 (48) 

Where, 
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By setting the determinant of above matrix to zero, the circular frequency ω can be obtained. 

Hence, the roots of Eq. (43) can be written as 

1 0 2 1 3 2( ), ( ), ( )M M M     = = =  (49) 

These roots are corresponded with the wave modes M0, M1 and M2, respectively. The wave 

modes M0 and M2 are related to the flexural waves and mode M1 is related to the extensional 

waves. Also, the phase velocity of waves can be calculated by the following relation 

( )

( )
, 1, 2, 3i

p i

M
c i




= =  (50) 

which displays the dispersion relation of phase velocity cp and wave number β for the FGM 
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nanobeam. Also, the escape frequencies of the FG nanobeam can be obtained by setting β→∞. It 

should be noted that after the escape frequency, the flexural waves will not propagate anymore. 

 

 

4. Different types of thermal loading 
 

4.1 Uniform temperature rise (UTR) 
 

The temperature rise uniformly For a FG nanobeam with the reference temperature T0, to the 

final temperature T which ΔT=T−T0. 

 

4.2 Linear temperature rise (LTR) 
 
In this state, the temperature varies linearly through the thickness of the nanobeam as follows 

1
( )

2
m

z
T T T

h
= +  +  (51) 

Where, ΔT=Tc−Tm in which Tc and Tm are the temperature of bottom and top surface of the 

nanobeam, respectively. 

 

4.3 Nonlinear temperature rise (NLTR) 
 

In this case, the temperature varies nonlinearly through the thickness. Temperature distribution 

can be obtained by solving the steady-state heat conduction equation across the thickness, with the 

boundary conditions on bottom and top surfaces of the nanobeam 

( , ) 0
d Td

z T
dz dz


 

−   
 

=  (52) 

Considering the boundary conditions as follows 

,
2 2

c m
h h

T T T T
   
      
   

= − =  (53) 

The solution of Eqs. (12) and (13) is 

2

2

2

1

( , )
( )

1

( , )

z

h

m c m h

h

dz
z T

T T T T

dz
z T





−

−

= + −




 
(54) 

where, ΔT=Tc−Tm indicates the temperature change. 

 

 

5. Numerical results and discussions 
 

This section is assigned to investigate the propagation characteristics of mentioned nanobeam. 
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This nanoscale beam is modeled based on Higher-Order shear deformable refined beam theory. 

The thickness of nanobeam is considered to be h=100 nm. Material properties of mentioned 

nanobeam are reported in Table 1. The wave frequencies of mentioned nanobeam is verified with 

those of Ebrahimi et al. [31]. For various wave number and angular velocity and a good agreement 

is observed as reported in Table 2. 

Tables 3 and 4 reports the influence of angular velocity (Ω=1,3 and 5), length scale parameter 

or temperature change and material composition (p=0.2, 1 and 5) on phase velocity (cp) of rotating 

refined FG nanobeam for various temperature distribution (UTR, LTR, NLTR) at L/h=20.  

 

 
Table 1 Temperature-dependent coefficients for Si3N4 and SUS304 

Material Properties P0 P-1 P1 P2 P3 

3 4Si N  (Pa)E  348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

 -1(K )  5.8723e-6 0 9.095e-4 0 0 

 3( g/m )k  2370 0 0 0 0 

 (W/mK)  13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

 v 0.24 0 0 0 0 

SUS304  (Pa)E  201.04e+9 0 3.079e-4 -6.534e-7 0 

 -1(K )  12.330e-6 0 8.086e-4 0 0 

 3( g/m )k  8166 0 0 0 0 

 (W/mK)  15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

 v 0.3262 0 -2.002e-4 3.797e-7 0 

 

Table 2 Comparison of the wave frequency for rotating FG nanobeam. (NLTR, μ=1 nm, T=800, l=1.5) 

β Ω 

P=0 P=0.2 P=1 P=5 

Ebrahimi et 

al. [31] 
present 

Ebrahimi et 

al. [31] 
present 

Ebrahimi et 

al. [31] 
present 

Ebrahimi et 

al. [31] 
present 

0.1 

0 0.164617 0.106587 0.109812 0.0811336 0.0694308 0.0555902 0.058270 0.0405788 

1 0.164782 0.108673 0.109942 0.083689 0.0695951 0.0592566 0.0584509 0.0458823 

2 0.165275 0.114688 0.110329 0.0907568 0.070079 0.0674888 0.0589657 0.0578131 

5 

0 12.842553 12.8253 8.322701 8.16948 5.234263 5.231979 4.382287 4.359028 

1 12.842555 12.8255 8.322702 8.16952 5.234265 5.231980 4.382289 4.359033 

2 12.842562 12.8261 8.322707 8.16964 5.234271 5.231981 4.382296 4.359046 

15 

0 38.8989264 38.8931 25.208407 24.7478 15.853894 15.8469 13.273356 13.202798 

1 38.8989272 38.8932 25.208408 24.7478 15.853894 15.8469 13.273357 13.202800 

2 38.8989296 38.8934 25.208409 24.7479 15.853896 15.8469 13.273359 13.202804 

 

 

In Table 3, it is found that, increasing angular velocity leads the increase in phase velocity for 

all three Tables. Also, in a constant angular velocity, gradient index and temperature distribution 

type, the phase velocity will increase due to increase in T. Furthermore, with the increase in 

gradient index, the phase velocity will increase too. Finally, it can be seen that, for a constant value 

of Ω, gradient index and T phase velocity decreases due to change in type of temperature  
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Table 3 variation of phase velocity of FG nanobeam for various gradient indices, angular velocity, 

temperature changes and thermal loadings. (L/h=20, μ=1 nm, β=0.08 (1/nm), l=1 nm) 

 P=0.2 P=1 P=5 

 Ω=1 Ω=3 Ω=5 Ω=1 Ω=3 Ω=5 Ω=1 Ω=3 Ω=5 

UTR          

T=0 5.61695 6.70877 7.976 4.25386 5.47553 5.79173 3.48769 4.97612 5.10986 

T=200 5.5248 6.62856 7.85451 4.18573 5.39787 5.67595 3.43427 4.89626 5.00331 

T=500 5.3587 6.47548 7.57756 3.98648 5.10782 5.27783 3.22105 4.53325 4.57983 

T=800 5.08321 6.2028 7.05056 3.59779 4.42377 4.49009 2.80093 3.72275 3.73479 

LTR          

T=0 5.61726 6.709 7.97607 4.25414 5.47565 5.79173 3.48798 4.97619 5.10986 

T=200 5.51818 6.62351 7.85319 4.17951 5.39554 5.67587 3.42816 4.89508 5.0033 

T=500 5.33957 6.46137 7.57473 3.96935 5.10389 5.27768 3.20446 4.53218 4.5798 

T=800 5.05115 6.18121 7.0478 3.57258 4.42196 4.48998 2.77723 3.72252 3.73478 

NLTR          

T=0 5.61726 6.709 7.97607 4.25414 5.47565 5.79173 3.48798 4.97619 5.10986 

T=200 5.51798 6.62335 7.85314 4.17911 5.39539 5.67587 3.42786 4.89503 5.0033 

T=500 5.33832 6.46045 7.57455 3.96707 5.10336 5.27766 3.20277 4.53206 4.5798 

T=800 5.04794 6.17905 7.04752 3.56749 4.42159 4.48996 2.77358 3.72248 3.73478 

 
Table 4 variation of phase velocity of FG nanobeam for various gradient indices, angular velocity, length 

scale parameter and thermal loadings. (L/h=20, μ=1 nm, β=0.08 (1/nm), T=800) 

 P=0.2 P=1 P=5 

 Ω=1 Ω=3 Ω=5 Ω=1 Ω=3 Ω=5 Ω=1 Ω=3 Ω=5 

UTR          

λ=0 5.0685 6.18976 7.03039 3.58813 4.41063 4.47595 2.79443 3.71107 3.72293 

λ=1 5.08321 6.2028 7.05056 3.59779 4.42377 4.49009 2.80093 3.72275 3.73479 

λ=2 5.12707 6.24163 7.11042 3.62659 4.46284 4.53223 2.82036 3.75752 3.77017 

LTR          

λ=0 5.03635 6.16819 7.02768 3.56287 4.40885 4.47585 2.77067 3.71085 3.72292 

λ=1 5.05115 6.18121 7.0478 3.57258 4.42196 4.48998 2.77723 3.72252 3.73478 

λ=2 5.09528 6.22001 7.10751 3.60156 4.46094 4.53211 2.79682 3.75728 3.77015 

NLTR          

λ=0 5.03314 6.16603 7.02741 3.55777 4.40849 4.47582 2.76701 3.71081 3.72291 

λ=1 5.04794 6.17905 7.04752 3.56749 4.42159 4.48996 2.77358 3.72248 3.73478 

λ=2 5.0921 6.21784 7.10722 3.5965 4.46055 4.53209 2.79319 3.75724 3.77015 

 

 

distribution (UTR˂LTR˂NLTR), but for the T=0 this change is vice versa.  

It is observable in Table 4 that, for a specific temperature distribution phase velocity will 

increase due to the increase in angular velocity and length scale parameter. However, with the  
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Fig. 1 Configuration of rotating FG nanobeam 

 

  

(a) p=0 (b) p=0.2 

  

(c) p=1 (d) p=5 

Fig. 2 Variation of phase velocity of rotating FG nanobeam versus wave number for various angular 

velocities and gradient indices (NLTR, µ=1 nm, λ=0.2 nm, ΔT=800) 

 

 

increase in gradient index, the phase velocity will decrease. In addition, for a constant value of Ω, 

gradient index and T phase velocity increases with the change in type of temperature distribution  
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(a) Ω= 1 (b) Ω= 3 

Fig. 3 Variation of phase velocity of rotating FG nanobeam versus wave number for various length scale 

parameters and temperature changes (NLTR, μ = 1 nm, p = 1) 
 

  
(a) β = 0.02 (b) β = 0.04 

  
(c) β = 0.06 (d) β = 0.08 

Fig. 4 Variation of phase velocity of rotating FG nanobeam versus angular velocity for various temperature 

changes (NLTR, μ = 1 nm, λ= 0.5 nm, p = 1) 
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Fig. 5 Variation of escape frequency of rotating FG nanobeam versus length scale parameter for various 

gradient indices (μ = 1 nm, T = 200 and Ω=2*10^9) 
 

 
Fig. 6 Variation of escape frequency of rotating FG nanobeam versus angular velocity for various 

temperature changes (μ = 1 nm, λ = 0.2 nm, p = 1) 
 

 

(UTR˃LTR˃NLTR).  

In Fig. 2, variation of the phase velocity (cp) of rotating FG nanobeam versus wave number (β) 

for various angular velocities (Ω) and different values of gradient indices for a constant value of 

nonlocality parameter (µ=1 nm), length scale parameter (λ=0.5 nm) and temperature (T=800) for 

nonlinear temperature distribution model is plotted. It is observable that, in the lower values of 

wave number with an increase in wave number, the phase velocity will increase (it is not true Ω=3 

and 4 for p=1 and 5). But for β≥0.9 (approximately), the phase velocity will decrease, then in β≥10 

the phase velocity tends to a constant value and don’t have sensible change with the increase in 

wave number. In addition, at a constant value of wave number, the phase velocity increases with 

the increase in angular velocity. However, diagram of different angular velocities in β≤0.9 nm are 

more distinguished and more observable. Thus, angular velocity of the mentioned nanobeam has 
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no considerable influence on phase velocities at higher values of wave number. Moreover, phase 

velocity will decrease with increase in gradient index because of higher portion of metal phase by 

an increase in the gradient index.  

Fig. 3 indicates the variation of phase velocity of rotating FG nanobeam versus wave number 

for various length scale parameters (λ=0.5 and 1.5) and temperature changes with the constant 

values of nonlocality parameter (μ = 1 nm) and gradient index (p = 1). It is clear that the phase 

velocity increases due to increase in wave number. But, for the λ=0.5 after β≥0.8 (approximately) 

the phase velocity decreases with the increase of wave number. In addition, increasing in length 

scale parameter leads to increase in phase velocity in higher values wave number. Also, diagrams 

of diagram various length scale parameter are distinguished. Moreover, for β≥10 the phase 

velocity tends to a constant value and don’t change anymore. Finally, with the increase in 

temperature change and with constant wave number, the phase velocity will decrease. 

Variation of escape frequency of rotating FG nanobeam versus length scale parameter for 

various gradient indices with the constant values of nonlocality parameter (μ = 1 nm), temperature 

change (T = 200) and angular velocity (Ω=2*10^9) for the NLTR temperature distribution is 

plotted in Fig. 4. It is observable that, increase in length scale parameter leads to the increase of 

escape frequency in a linear way. Also, the escape frequency decreases due to increase in gradient 

index. 

Variation of escape frequency of rotating FG nanobeam versus angular velocity for various 

temperature changes and a constant value of nonlocality parameter (μ = 1 nm), length scale 

parameter (λ = 0.2 nm) and gradient index (p = 1) for NLTR temperature distribution type in 

reported in Fig. 5. It can be seen that, escape frequency decreases due to increase in temperature 

change. Also, it is clear that the escape frequency has no sensible change with the increase in 

angular velocity.  

 

 

6. Conclusions 
 

In this paper, wave dispersion characteristics of a rotating thermos-elastic FG nanobeam is 

explored based on higher order refined shear deformable beam theory. Also, Mori-Tanaka 

distribution model and nonlocal strain gradient theory are applied. Finally, through some 

parametric study, the influence of different parameters such as angular velocity, gradient index, 

nonlocality parameter, wave number, temperature rise, and different temperature distribution on 

wave dispersion behavior of mentioned nanobeam is investigated. It is found that, increasing in 

angular velocity leads to the increase of phase velocity especially at higher values of angular 

velocity. However, the increase in angular velocity have no sensible effect on the escape 

frequency. Also, increasing in wave number causes the increase in phase velocity for lower values 

of wave number and angular velocity. In addition, phase velocity will increase due to increase in 

angular velocity, but the diagrams in lower values of wave number are distinguished. Moreover, 

increasing in length scale causes the increase of escape frequency, but in the constant value of 

length scale parameter, increasing in the gradient index leads to decreasing in escape frequency.  
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