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Abstract.  In the present investigation reflection and transmission of plane waves at an elastic half space and 

piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic 

solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half 

space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of 

incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The 

expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are 

computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide 

(CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of 

energy across the interface is verified. Some cases of interest are also deduced from the present investigation. 
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1. Introduction 
 

The nature of the earth is not known exactly; therefore one has to take the different 

mathematical model for the purpose of theoretical investigations. Abd-alla and Alsheikh (2009) 

studied a problem of reflection and refraction of quasi-longitudinal waves under initial stresses at 

an interface of two anisotropic piezoelectric media with different properties. Abd-alla et al. (2012) 

discussed propagation of plane vertical transverse waves at an interface of a semi-infinite 

piezoelectric elastic medium under the influence of the initial stresses. Achenbach (1973) analysed 

the wave propagation in elastic solids. Scott (1996) investigated the energy and dissipation of 

inhomogeneous plane waves in thermoelasticity. 

In classical theory of thermoelasticity, Fourier’s heat conduction theory assumes that the 

thermal disturbances propagate at infinite speed which is unrealistic from the physical point of 

view. One of the generalizations of the classical theory of thermoelasticity have been developed 

which predict only finite velocity of propagation for heat and displacement fields given by Lord 

and Shulman (1967) which incorporates a flux rate term into the Fourier’s law of heat conduction 

and formulates a generalized theory admitting finite speed for thermal signals. Lord and Shulman 
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(1967) theory of generalized thermoelasticity have been further extended to homogeneous 

anisotropic heat conducting materials recommended by Dhaliwal and Sherief (1980). All these 

theories predict a finite speed of heat propagation. Chanderashekhariah (1986) refers to this wave-

like thermal disturbance as second sound. A survey article of various representative theories in the 

range of generalized thermoelasticity have been brought out by Hetnarski and Ignaczak (1999). 

A stressed state of a piezoelectric body is produced mainly by its deformation, as well as by 

thermal and electric fields present in the body. Therefore a mathematical model 

piezothermoelasticity quite adequately reflects the properties of such bodies. The theory of 

thermopiezoelectric material was first proposed by Mindlin (1974) and derived governing 

equations of a thermopiezoelectric plate. The physical laws for the thermopiezoelectric material 

have been explored by Nowacki (1978, 1979). Chandrasekharaiah (1984) used generalised 

Mindlin’s theory of thermopiezoelectricity to account for the finite speed of propagation of 

thermal disturbances. Majhi (1995) studied the transient thermal response of the semi-infinite 

piezoelectric rod subjected to the heat source. Rao and Sunar (1993) pointed out the temperature 

variation in the piezoelectric media. Chen (2000) derived the general solution for transversely 

isotropic piezothermoelastic media. Vashishth and Sukhija (2014) investigated the problem of 

inhomogeneous waves at the boundary of an anisotropic piezothermoelastic medium. Othman et 

al. (2015) studied the propagation of plane waves in generalised piezothermoelastic medium: 

comparison of different theories. Vashishth and Sukhija (2015) studied the reflection and 

transmission of plane waves from a fluid-piezothermoelastic solid interface. 

Fractional Calculus is a field of mathematic study that grows out of the traditional definitions 

of the calculus integral and derivative operators in much the same way fractional exponents is an 

outgrowth of exponents with integer value. Studied over the intervening three hundred years have 

proven at least half right. It is clear, that within the 20th century, especially numerous applications 

have been found. However these applications and mathematical background surrounding fractional 

calculus are far from paradoxical. While the physical meaning is difficult to grasp, the definitions 

are no more rigorous than integer order counterpart. Kumar and Gupta (2013) studied the plane 

wave propagation in an anisotropic thermoelastic medium with fractional order derivative and 

void. Bassiory and Sabry (2013) discussed the fractional order two temperature thermo-elastic 

behaviour of piezoelectric materials. Attenuated fractional wave equations in anisotropic media are 

studied by Meerschaert and McGough (2014). Sur and Kanoria (2014) discussed the fractional 

heat conduction with finite wave speed in a thermo-visco-elastic spherical shell. Meral and 

Royston (2009) investigated the response of the fractional order on viscoelastic halfspace to 

surface and subsurface sources. Meral et al. (2011) discussed the Rayleigh-Lamb wave 

propagation on a fractional order viscoelastic plate.  

The investigation of models of an elastic and piezothermoelastic with fractional order 

parameter has been taken into account with growing interest under the influence of various 

physical fields such as thermal, electric and fractional order. An impetus for such studies was the 

creation of many new materials possessing properties that are not characteristic of usual elastic 

bodies. A piezothermoelastic half-space (PTHS), having 6 mm symmetry, loaded with elastic half-

space (EHS), is considered, and the expressions for the amplitude ratios are obtained. Further, 

these amplitude ratios are used to compute the energy ratios corresponding to reflected and 

transmitted waves using the appropriate boundary conditions. The effects of the angle of incidence 

and the fractional order parameter on the reflected and transmitted energy ratios are observed for a 

particular model of graphite and Cadmium Selenide (CdSe). Some particular cases of interest are 

also discussed. 
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2. Basic equations 

 
Following Kuang (2010) and Sherief et al. (2010), the basic equations for a homogeneous, 

anisotropic, thermally conducting, piezoelectric elastic medium in the absence of body forces and 

free charge density are as follows 
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(3) 

Equations of motion 

 
(4) 

Equations of heat conduction 

 

(5) 

Gauss equation 

( ), 0 , 1,2,3 (6)i iD i j= =  (6) 

Following Achenbach (1973), the constitutive relations for the elastic half space are 

, , ,2 , ( , , , 1,2,3) (7)e e e e e

ij j i j k k iju u i j k l   = + =  (7) 

and, equations of motion are 

( ), ,( ) 0, , 1,2,3 (8)e e e e e e e

i jj i ij iu u u i j   + + − = =  (8) 

where cijkl are elastic parameters, βij are tensors of thermal moduli respectively. ρ, Ce are, 

respectively, the density and specific heat at constant strain, T0 is the reference temperature, τ0 is 

the thermal relaxation time, which will ensure that the heat conduction equation will predict finite 

speeds of heat propagation of matter from one medium to other. , e

i iu u  are the components of 

displacement vectors u, ue in the piezothermoelastic solid and elastic half spaces, 

, ,

1
( ) , and ( ),

2

e e

ij ji ij ij i j j i iju u    = = + are the components of the stress and strain tensor in 

the piezothermoelastic and elastic half spaces, Kij(=Kji)Kij are the components of thermal 

conductivity,
 
α is the fractional order such that 0<α≤1, Ei is the electric field intensity, Di is the 

electric displacement, ϕ is the electric potential, pi are the pyroelectric constants, T is the absolute 

temperature of the medium, βij, pi, ηijk, ∈ij are tensors of piezothermal moduli, ρe, λe and μe are the 

density and the Lame’s constants in elastic media, respectively. The subscripts preceded by 
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comma “,” and superposed dot “.” corresponds to partial and time derivatives, respectively. The 

piezothermal coefficients cijkl, Kij, pi and Ce are positive.  

 

 

3. Formulation of the problem 
 

 
Fig. 1 Geometry of the problem 

 

Consider a piezothermoelastic half space (PTHS), having 6 mm symmetry in welded contact 

with an elastic half space (EHS) (Fig. 1) in order that the PTHS occupies the region x3>0, and the 

EHS occupies region x3<0 and x3=0 is the boundary interface. We consider plane waves in the 

x1−x3 plane with wavefront parallel to the x2 axis. For two dimensional problem, the displacement 

vectors u, ue in the piezothermoelastic solid and elastic half spaces are taken as u=(u1,0,u3) and 

. 

The constitutive relations for the transversely isotropic piezothermoelastic half space in the 

x1−x3 plane are 
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(9a) 

The constitutive relations for the elastic half space in the x1−x3 plane are 

 

(9b) 

The field equations for transversely isotropic piezothermoelastic medium are 
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( )
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And the field equations for the elastic half space are 

 

(10b) 

We introduce the following dimensionless quantities 
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Using these dimensionless quantities in the Eqs. (10a) and (10b) with the removal of primes (') 

can be written as 

 

(12) 
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where
2

,
e e e

e e

e e

  
 

 

+
= = are velocities of longitudinal and transverse waves 

respectively. The displacement components are written as 

1 3
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 (13) 

where ϕe and ψe are scalar potentials which satisfy the following wave equations 

2 2
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Where 
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e e

c c

 
 = =  

The notations used above are mentioned in the Appendix A. For plane harmonic waves, we 

assume the wave solution in the piezothermoelastic medium is of the form 

( ) ( ) 1
1 3 3, , , , , , exp (15)
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where ω is the circular frequency and q is the unknown slowness parameter, c is the apparent 

phase velocity U, A, B and C are the unknown amplitude vectors associated with harmonic wave 

and that are independent of time t and coordinates x1, x3. The system of Eq. (12), with the aid of 

Eq. (15), yield a system 

0, (16)=VS  (16) 

where S=[U,A,B,C]tr, and V is a 4×4 matrix whose elements are listed in Appendix A. This system 

of the equations has a non-trivial solution if the determinant of the coefficients S=[U,A,B,C]tr 

vanish i.e., 

det 0, (17)=V  (17) 

which yields a characteristic equation in q as 

8 6 4 2

11 12 13 14 15 0 (18)f q f q f q f q f+ + + + =  (18) 

The coefficients f1i(i=1,2,3,4,5) are given in Appendix A. q1, q2, q3 and q4 correspond to the 

roots of the Eq. (18) whose imaginary parts are positive, and q5, q6, q7 and q8 denote the roots 

whose imaginary parts are negative. The eigen values are arranged in descending order such that 

q1, q2 and q3 corresponds to the propagating quasi P (qP) mode, quasi S (qS) mode, quasi T (qT) 

mode and q4 corresponds to the electric potential component wave mode (eP) of wave propagation, 

respectively.  

The complex phase velocities of the quasi-waves, given by , 1, 2,3,i
i

i

n
v i
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= = where ni  
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represents the direction of slowness, will be varying with the direction of phase propagation. The 

complex velocity of the quasi-waves, i.e., vi=vRi+ivIi, defines the phase propagation velocity
2 2

i i
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R I
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R

v v
V

v

+
= , and attenuation quality factor 

2
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− =  for the corresponding waves. 

For each qi (i=1,2,…8), the corresponding eigen vectors Ui, Ai, Bi and Ci can be written as  

 

(19) 

 

 

 

 
Fig. 2 Reflection and transmission of plane wave in PTHS with EHS 
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and cof (Vij)qi denotes the cofactor of Vij to the eigen value qi. The amplitudes (Ui, Ai, Bi and Ci) of 

the plane harmonic waves decrease as these waves propagates in a piezothermoelastic medium. 

The amplitudes of the plane harmonic waves propagating in a piezothermoelastic medium also 

depend on the frequency. The formal solution for the mechanical displacement and the electric 

potential becomes 
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The solution of wave in the elastic medium can be expressed as 
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where 
0 0( )e eA B and are amplitudes of the incident P(or SV) wave and, A1

e and B1
e are amplitudes 

of reflected P wave and reflected SV wave, respectively. 

 
 
4. Reflection and transmission coefficients  

4.1 Amplitude ratios 
 

A plane longitudinal wave, making an angle θ0 with the x3 axis is incident at the interface 

through the EHS. This wave results in one reflected longitudinal wave (P wave) and one reflected 

transverse wave (SV wave) in the EHS and four transmitted waves, represented by qP, qS, qT 

corresponds to the quasi-longitudinal, quasi-transverse, quasi-thermal and the fourth mode eP 

corresponds to the electric potential wave mode in the PTHS.  

The formal solutions for the mechanical displacements, the temperature, the electric potential, 

the stress components, and the electric displacements in a PTHS are 
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' for incident SV wavesin
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The coefficients D1i, D2i and D4i
 
have been computed and are mentioned in appendix B.  

The formal solution of wave in elastic medium is given by Eq. (22).  

The boundary conditions at the interface x3=0 are as follows:  

(i) Continuity of normal stress 

 
(24a) 

(ii) Continuity of the tangential stress 

13 13, (24b)e =  (24b) 

(iii) Continuity of tangential displacement 

 
(24c) 

(iv) Continuity of normal displacement 
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(24d) 

(v) Thermally insulated boundary 

3

0, (24e)
T

x


=


 (24e) 

(vi)Vanishing of electric displacement 

3 0, (24f )D =  (24f) 

Eqs. (21)-(22) with the aid of Eqs. (12)-(14) and these boundary conditions result into a non-

homogeneous system 

, (25)AX = B  (25) 
 

 

 

  
Fig. 3 Variation of reflected energy ratio (ERP) 

with angle of incidence (P wave) 
Fig. 4 Variation of reflected energy ratio (ERS) 

with angle of incidence (SV wave) 

  

Fig. 5 Variation of transmitted energy ratio (ES1) 

with angle of incidence (Transmitted qP) 
Fig. 6 Variation of transmitted energy ratio 

(ES2) with angle of incidence (Transmitted qS) 
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where  

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36
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and the elements of 6×6 matrix A and notations used in X and B are given in the Appendix B. 

After solving the system Eq. (25), the transmitted and the reflected amplitude ratios are obtained.  

 
4.2 Energy ratios 

 
The distribution of energy between different reflected and transmitted waves at the interface 

x3=0, across a surface element of unit area is considered. Following Scott (1996), Kuang and Yuan 

(2011) and Ikeda (1996), the normal acoustic flux P in a piezothermoelastic solid is 
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 and for incident and reflected waves for the elastic phase are 
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and the average energy fluxes of the transmitted waves are derived as 
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The energy ratios of the reflected and transmitted waves are defined as 

(i) For incident P wave 
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( ), , , 1,2,3,4 (31)
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(ii) For incident SV wave 
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The interaction energy ratios in the both cases, which account for the interaction between 

different fields and displacements corresponding to transmitted waves, are described as 

, for incident P wave.

, for incident SV wave.
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Fig. 7 Variation of transmitted energy ratio (ES3) 

with angle of incidence (Transmitted qT) 
Fig. 8 Variation of transmitted energy ratio 

(ES4) with angle of incidence (Transmitted eP) 

 
Fig. 9 Variation of interaction energy ratio (Eint) with angle of incidence 
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where 

( )2 33
2 1 4 5

0

1
Re , 1,2,3,4

2

(33)

st s s t s t s t s t t s s s s t
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 
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(33) 

The energy is conserved if 

4

int

1

1, (34)s RP RS

s

ES E E E
=

+ + + =  (34) 

where 
4

int

, 1

st

s t
s t

E E
=



=  is the resultant interaction energy between the transmitted waves.  

 

 

5. Numerical discussion 
 

The amplitude ratios and energy ratios for the reflected and transmitted waves and the 

interaction energy ratios are computed numerically with the help of the software Matlab 7.8 and 

graphs of energy ratios are shown. Further, law of conservation of energy is verified.  

Following Vashishth and Sukhija (2015), we take the following values of the 

piezothermoelastic parameters. 
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Following Bullen (1963), the numerical data of graphite in elastic medium is given by 

αe=5.27×103 ms-1, ρe=2.65×103 Kgm-3, βe=3.17×103 ms-1. 

In all the graphs, notations  ALP 0.25, ALP0.75, ALP1 denote the energy ratio 

curves corresponding the value of fractional order parameter at α=0.25, 0.75 and α=1, respectively. 

 

5.1 For incident P wave 
 

5.1.1 Energy ratios of reflected wave (ERP) 
It is noticed that Fig. 3 depicts the energy ratio for the reflected P wave monotonically 

increases with increase in angle of incidence from 0° to 60°. Then it decreases for the angle of 

incidence varying from 60° to 80° and for 80°≤θ0°≤100°, it becomes stationary for the different 

values of fractional order parameter. 

 

5.1.2 Energy ratios of reflected wave (ERS) 
It is noticed that Fig. 4 shows the energy ratio for the reflected SV wave decreases with 
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increase in angle of incidence from 0° to 60°. Then it instantaneous increases with the angle of 

incidence varying from 60° to 80° and for 80°≤θ0°≤100°, it becomes stationary. It shows the same 

behaviour for the different values of fractional order parameter i.e., α=0.25, 0.75, 1.  

 

5.1.3 Energy ratios of transmitted wave (ES1) 
The energy ratio for the transmitted wave (qP) decreases initially and near the normal 

incidence, it increases and for intermediate values of θ0°, it shows the oscillating behaviour as 

shown in Fig. 5 for the different values of fractional order parameter. 

 
5.1.4 Energy ratios of transmitted wave (ES2)  
Fig. 6 shows that the energy ratio for the transmitted wave (qS) decreases monotonically with 

increase in angle of incidence from 0° to 60°. Then it increases as θ0° increases and for 

80°≤θ0°≤100°, it becomes stationary for all values of α.  

 
5.1.5 Energy ratios of transmitted wave (ES3) 
Fig. 7 shows that the energy ratio for the transmitted wave (qT) instantly increases with 

increase in angle of incidence from 0° to 20°. It is evident that it shows a moderate increment in  

 

 

  
Fig. 10 Variation of reflected energy ratio with 

angle of incidence (P wave) 

Fig. 11 Variation of reflected energy ratio with 

angle of incidence (SV wave) 

  
Fig. 12 Variation of transmitted energy ratio with 

angle of incidence (Transmitted qP) 

Fig. 13 Variation of transmitted energy ratio 

with angle of incidence (Transmitted qS) 
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energy ratio for θ0° lies between 20° and 40° and it continuously decreases for 60°≤θ0°≤100° with 

the variations in fractional order parameter.  

 
5.1.6 Energy ratios of transmitted wave (ES4) 
From Fig. 8, it is clear that the energy ratio for the transmitted wave (eP) decreases 0°≤θ0°≤40°. 

Further slightly increases but then continuously decreases for θ0°≥40° for the different values of 

fractional order parameter. 

 
5.1.7 Interaction energy ratios (Eint) 
Fig. 9 shows the variations in interaction energy ratio with respect to angle of incidence for the 

different values of fractional order parameter. For 0°≤θ0°≤20°, it decreases and the monotonically 

increases with increase in angle of incidence and for 80°≤θ0°≤100°, it becomes stationary.  

 
5.2 For incident SV wave 
 
 

  
Fig. 14 Variation of transmitted energy ratio (ES3) 

with angle of incidence (Transmitted qT) 
Fig. 15 Variation of transmitted energy ratio 

(ES4) with angle of incidence (Transmitted eP) 

 
Fig. 16 Variation of interaction energy ratio (Eint) with angle of incidence 
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5.2.1 Energy ratios of reflected wave (ERP) 
It is noticed that Fig. 10 infers the energy ratio for the reflected P wave first decreases for 

0°≤θ0°≤20° and then monotonically increases with increase in angle of incidence from 0° to 40°. 

Then it shows the stationary behaviour for the angle of incidence θ0°≥40° for the different values 

of fractional order parameter i.e., α=0.25, 0.75, 1. 

 
5.2.2 Energy ratios of reflected wave (ERS) 
It is noticed that Fig. 11 shows the energy ratio for the reflected SV wave increases with 

increase in angle of incidence from 0° to 20°. Then it decreases for the angle of incidence varying 

from 20° to 40°. It shows the stationary behaviour for the different values of fractional order 

parameter i.e., α=0.25, 0.75, 1 with increase in angle of incidence. 

 

5.2.3 Energy ratios of transmitted wave (ES1) 
The energy ratio for the transmitted wave (qP) monotonically increases initially for 0°≤θ0°≤40°  

 

 

  
Fig. 17 Variation of phase velocity with angular 

frequency (quasi longitudinal wave) 

Fig. 18 Variation of phase velocity with angular 

frequency (quasi transverse wave) 

  
Fig. 19 Variation of phase velocity with angular 

frequency (quasi thermal wave) 

Fig. 20 Variation of phase velocity with angular 

frequency (electric potential wave) 

 

 

and then decreases for
 
θ0°≥40°. At θ0°≤40°, the magnitude values of energy ratios are in 

descending order for α=0.25, 0.75, 1 as shown in Fig. 12. 

5.2.4 Energy ratios of transmitted wave (ES2) 
Fig. 13 shows that the energy ratio for the transmitted wave (qS) increases with highest 
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magnitude value for α=0.25, then decreases with angle of incidence varies from 20° to 40°. Then it 

increases for θ0°≥40° and onwards for α=0.25, 0.75, 1.  

 
5.2.5 Energy ratios of transmitted wave (ES3) 
Fig. 14 shows that the energy ratio for the transmitted wave (qT) increases for 0°≤θ0°≤40° and 

then decreases with increase in angle of incidence. It is evident that the energy ratios for α=0.25, 

0.75 possess higher magnitude values than for α=1. 

 
5.2.6 Energy ratios of transmitted wave (ES4) 
From Fig. 15, it is clear that the energy ratio for the transmitted wave (eP) increases 0°≤θ0°≤40° 

and 60°≤θ0°≤100° but decreases for 40°≤θ0°≤60° for the different values of fractional order 

parameter.  

 

 

  
Fig. 21 Variation of attenuation quality factor 

with angular frequency (quasi longitudinal 

wave) 

Fig. 22 Variation of attenuation quality factor 

with angular frequency (quasi transverse wave) 

  
Fig. 23 Variation of attenuation quality factor 

with angular frequency (quasi thermal wave) 
Fig. 24 Variation of attenuation quality factor 

with angular frequency (electric potential wave) 
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Fig. 16 shows the variations in interaction energy ratios with respect to angle of incidence 
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5.3 Phase velocity and attenuation quality factor 
 

Figs. 17-20 depict the variation of phase velocity (Vi) and Figs. 21-24 depict the variation of 

attenuation quality factor (Qi
-1) of the obtained waves with respect to angular frequency (ω) for the 

different values of fractional order parameter and for the dimensionless value of c(c=0.001) taken 

arbitrary and n1=1. The phase velocity (V1) of quasi longitudinal wave shows a constant behaviour 

of increasing trend for the different values of α. And, the phase velocity (V2) of quasi transverse 

wave hikes for α=0.75 and then shows a sudden fall depicting further the same behaviour as for 

the other values of α. V3 shows an alternate behaviour but finally tends to decrease with the 

increase in angular frequency. And, V4 shows the same behaviour of decreasing trend with respect 

to angular frequency for the different considered values of α.  

The attenuation quality factor (Qi
-1) first increases for α=1, then shows a constant behaviour for 

2≤ω≤10. Figs. 22, 23 show the increasing trend of Q2
-1 and Q3

-1 for different values of α and, Q4
-1 

decreases with the increase in angular frequency and varying α. 

 
 
6. Particular cases  
 

• By taking τ0=0, we obtained the energy ratios at the interface of elastic and piezothermoelastic 

half spaces. 

• If α=1, we obtained the energy ratios at an interface of elastic and piezothermoelastic solid 

half spaces with one relaxation time. The results obtained are similar to one if we solve the 

problem directly. 

 
 
7. Conclusions 
 

• Amplitude ratios are affected by the frequency, angle of incidence fractional order parameter 

and piezothermoelastic properties of the material. 

• Piezothermoelastic and fractional order parameter have a significant influence on the energy 

ratios. 

• Principle of conservation of energy has been verified.  

• The different values of fractional order parameter (α) depict variations in energy ratios of the 

different reflected and transverse waves with different magnitude values.  

The effect of fractional order parameter on phase velocity and attenuation quality factor of the 

obtained waves has been observed ominously. 
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