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Abstract.  The evaluation of torsional effects on multistory buildings remains an open issue, despite 

considerable research efforts and numerous publications. In this study, a large number of multiple test 

structures are considered with normally distributed topological attributes, in order to quantify the statistically 

derived relationships between the torsional criteria and response parameters. The linear regression analysis 

results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most 

reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution 

and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the 

assessment of the torsional parameters‟ contribution to the nonlinear structural response was investigated 

using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional 

Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all 

the other torsional indices‟ contribution was investigated and quantified. 
 

Keywords:  shear center; torsional radius; ratio of torsion; omega ratio; regression analysis; statistical 
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1. Introduction 
 

The coupling of floor torsional oscillations under purely transformational excitation of the base 

is the cause of structural overloading affected by torsion. This coupling occurs because of the non-

symmetrical arrangement of the mass and the stiffness of the vertical structural elements of the 

building as the placement of external loading causes internal torque in the floor and subsequently 

torsional oscillation. In order to quantify the effect of torsion in buildings, many studies have been 

performed on the basic concept that the structure is oscillating around a specific point, while the 

distance of the center of mass from this point is directly related to torsional effects. In order to 

assess and design structures to withstand torsion, various approaches have been endeavored based 
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on the centers of rigidity, shear and twist, or on more sophisticated indices such as omega, 

torsional radius, center of strength and Base Shear Torque (BST) curves (Llera and Chopra 1995, 

Mylimaj and Tso 2002, and Paulay 1997). 

However, the evaluation of the torsional design criteria and their relationships to structural 

response remain open, as demonstrated in a critical review by Anagnostopoulos et al. (2015). This 

work aims to identify and measure the performance of the various torsional design criteria, the 

response parameters, utilizing a large database of structures, in order to estimate statistically 

reliable relationships. Two diverse earthquake analysis procedures have been applied in this work: 

a simplified demand spectrum based on the EC8 design code (modal spectrum) and also a 

pushover analysis for each test structure, where specific parameters are measured, such as 

displacements in the x and y axis, diaphragm rotation and story shears for the spectrum based 

procedures, while ductility demands and ultimate collapse load are additionally stored for the 

pushover analysis. This procedure is repeated via a generation of random structural designs with 

the assistance of a specific algorithm developed for this purpose. Additionally, for each random 

structure, the torsional design criteria are calculated and stored. This approach makes possible the 

calculation of correlations between torsional design criteria and response parameters, while several 

regression models are constructed in order to understand the relation of the independent variables 

(torsional design criteria) to the dependent variables (response parameters), and explore the nature 

of these relationships and the importance of each independent variable. 

The purpose of regression analysis is to identify the most appropriate model to fit the actual 

data, and consequently estimate the parameters of such model by minimizing the sum of square 

errors between the predicted values by the model and the raw data, designated analytically by 

Makridakis et al. (2008). This is performed using the t-test and the adjusted multiple R-squared as 

described analytically by Glantz et al. (1990) and implemented in the subsequent sections of this 

work. The novelty of this work is the construction of a reliable regression model in order to 

evaluate the influence of the variation of each design criterion (independent variables) to the 

torsional response parameters, such as diaphragm displacements and base shear (dependent 

variables). For this purpose, the first stage of this work was the development of a large number of 

multiscale generated structures. This random generation procedure is implemented in a large group 

of structures, which are produced with a random number of floors, bays in X and Y dimension, 

and columns sizes. 

Gaussian noise was introduced in the variables (regarding building geometry), since the 

computer algorithm, by default, routinely produces collinear independent random variables of 

uniform distribution. This assures the normal distribution of the values and that the independent 

variables are not collinear. This process establishes a reliable model showing that the torsional 

design criteria has a major influence on ductility demands at the vertical direction of the applied 

seismic forces and diaphragm rotation. The assessment of the criteria is achieved through multiple 

correlations (between criteria and response parameters) and via t-test values calculation 

(quantification of the probability of linear relationship of each independent variable with the 

dependent). The regression analysis is performed using the normalized data instead of the initial 

ones, using the general form 

  
  

  
   

 
 

Where    
  stands for the normalized data of the series, μ and σ the mean value and standard 

deviation of the series, while   
  stands for the initial value. The normalized data allows the direct 
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estimation of changes in independent variables to the dependent. Furthermore, within the structural 

designs examined, adequate confidence intervals (95%) for the limits (minimum and maximum) of 

the regression weights were defined. The aim is to extract reliable conclusions, based on accurate, 

not highly idealized models of eccentric one-story systems, contrary to most of the conducted 

research on this problem. As stated by Anagnostopoulos et al. (2015), most of the publications on 

torsion are limited to one story inelastic shear beam models. These models undergo many 

shortcomings-regarding the influence of the torsional design criteria on response parameters-so 

that the results obtained cannot be generalized to realistic buildings. 

The various centers of single story systems coincide and for this reason several attempts have 

been made to investigate new, more accurate and better representative indices to assess the 

influence of torsional effects on buildings. Among them the center of strength, the base shear 

torque (BST) curves, and the Ω ratio, the classification to torsional stiff and flexible edges of a 

building plan as studied by Mylimaj and Tso (2002) and Paulay (1997). However, none of them 

has been proven to give a clear assessment of the strength and ductility demands amplification due 

to torsion. The present investigation is performed on a large number of structures, by varying the 

dimensions of the vertical structural elements and their topology and subsequently, all relevant 

stiffness and strength attributes, in order to obtain adequate and interpretable results for reliable 

conclusions. Regression analysis is stated as an efficient method for the assessment of the 

significance of a set of independent variables against a dependent one. In this work, the 

independent variables are the torsional design criteria and the dependent one the displacements due 

to torsion. 
 

 

2. Building torsion: Definitions 
 

2.1 Torsion 
 

The definitions of the main characteristic quantities used in the present study are the following: 

Center of stiffness, CS, (or rigidity) is the point in the floor plan, where if an external force is 

applied in any direction, the structure exhibits only translation without any torsion.  

Centre of shear, SC, is the point in the floor plan, where the resultant of all internal shear forces 

and torsional moments passes.  

Center of twist, CT, is the point in the floor plan, where if any external horizontal static torque 

is applied, it causes only rotation of the building diaphragm around it. 

The principal axes, І and ІІ, of the system are two orthogonal axes passing through the center  
 

 

 
Fig. 1 General plan of a building 
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of rigidity, so that if a static horizontal force is applied along one of the principal axes of the 

system, the diaphragm translates only in the direction of the force without any twist. 

The center of mass of the system is the point on the diaphragm through which the resultant of 

the inertia forces of the diaphragm is applied. If the masses of individual resisting elements are 

negligible, the center of mass of the diaphragm with uniform mass distribution coincides with its 

geometric center.  

These definitions are based on the Berkeley report of Hejal and Chopra (1987). 

 
2.2 Equations of motion 

 
The linear equations of motion for the one-storey system shown in Fig. 1, subjected to 

earthquake ground motion written with respect to the reference point O, the center of mass and the 

center of rigidity, are written as follows: 

Reference point O 
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where 

agx(t) and agy(t) are the accelerations along the X- and Y- axes, while J0 is the polar moment of 

inertia of the diaphragm with respect to point O given by 

  =m*(     
    

   (4) 

where r is the radius of gyration; xM, yM are the x and y coordinates of the center of mass 

The polar moment of inertia JR is about a vertical axis passing through the center of rigidity 

            (5) 

The static eccentricity e of the single-storey building is defined as the distance between the CR 

and the CM of the floor. 

e=
   

  
=

∑       

∑     
 (6) 

The static eccentricity is also defined as the distance between the center of mass and shear 

center of the building. For one-storey systems the two definitions are identical since the center of 

rigidity and the shear center of the system coincide. Moreover, for multi-storey buildings these two 

centers do not coincide. 
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Fig. 2 Arrangement of lateral resisting elements in a torsionally unrestrained system 

 

 
Fig. 3 Arrangement of lateral forces resisting elements in a torsionally restrained system 

 

 

Ω index 

The lateral vibration frequency of the corresponding uncoupled system is 

   =√
  

 
 (7) 

while the second uncoupled equation leads to the torsional vibrational frequency of the 

corresponding torsionally-uncoupled system 

  =√
   

   
 =√

  

   
 (

 

 
)  

  (8) 

Thus, the uncoupled torsional to lateral frequency ratio Ω, is written as 

Ω=
  

  
 (9) 

As presented by Hejal and Chopra (1987) for torsionally-stiff (Ω>1) systems, the fundamental 

mode is primarily lateral and the second mode is torsional. 

Torsionally unrestrained systems are systems which cannot resist torsion in the post-yield 

range. Thus, no torsion is generated in the inelastic range, as it can be resisted only in the elastic 

range. 

Torsionally restrained systems are able to resist earthquake-induced torque in the inelastic 

range also. In such systems, the earthquake-induced torque can be resisted when all vertical 

resisting elements respond in the plastic range. 

59



 

 

 

 

 

 

Nikolaos Bakas, Spyros Makridakis and Manolis Papadrakakis 

 
Fig. 4 Typical BST curve 

 

 

Torsionally restrained systems are able to resist earthquake-induced torque in the inelastic 

range also. In such systems, the earthquake-induced torque can be resisted when all vertical 

resisting elements respond in the plastic range. 

Strength eccentricity is the distance between CM and CV defined by the equation 

 
   

∑     
∑   

 (10) 

where    is the distance of the element of the center of mass (CM) and Vni is the column‟s shear 

resisting capacity. The arrangement of the nominal strength within the columns would lead a 

system with optimal torsional response, assuming that∑      . In this case the ROT is greater 

than unit. The position of CV is dominant in the inelastic range, as the center of rigidity cannot be 

defined when the vertical resisting elements have yield. 

 

2.3 The base shear and torque surface (BST)  
 

The base shear and torque surface (BST) is the graphical representation of the envelope of all 

combinations of base shear and torque that when applied statically to the horizontal diaphragm, 

cause collapse of the system. The shear (Vx) and torque (T) region is separated by the BST curve in 

two regions, the interior and the exterior. The interior contains combinations of base shear and 

torque causing elastic behavior of the structure, while the exterior contains statically inacceptable 

base shear and torque combinations causing inelastic performance of the resisting elements. The 

BST surface is convex and it is composed of linear segments as described by Llera and Chopra 
(1995). 

It is recognized that using shear and twist centers, or other more sophisticated indices, such as 

omega, r RZ, CV or torsional radius, several problems may occur. Firstly, all these “centers” and 

criteria are well defined only in single floor structural systems, with absolutely rigid diaphragms. 

Secondly they do not offer a quantitative measurement of the negative effect of torsion. This is 

confronted with the utilization of ROT, as described by Stathi et al. (2015). The basic aspects of 

the concept of ROT is demonstrated in the following. 

60



 

 

 

 

 

 

Torsional parameters importance in the structural response... 

 
Fig. 5 vertical resisting elements internal forces 

 

 
Fig. 6 vertical resisting elements for one axis symmetric systems 

 
 

2.4 Ratio of torsion 
 

In the Fig. 5, an incidental floor plan is shown where shear walls and the corresponding shear 

forces are demonstrated. The shear forces acting on the vertical resisting elements satisfy the 
subsequent expression 

∑|    |  ∑     

 

   

 

   

 (11) 

where: 

n=the number of elements in a floor direction (x or y), 

i=the corresponding shear force of the element, 

and j=the direction of the earthquake motion 

In the case of a seismic action along the y direction, Eq. (11) is written as 

∑ |    |  ∑              

 

   

 

   

 (12) 

and 

∑|    |  ∑      

 

   

 

   

      (13) 
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Similar expressions can be written for a seismic action along X direction. The computation of 

the ROT value is demonstrated for the simple example of Fig. 6. 

The total value of ROT for the above building of Fig. 6 is 

ROT = ∑ ∑      
   
       

 
  (14) 

Where 

      = 
∑ |    |   ∑      

   
 
   

∑    
     

 (15) 

and 

n=the number of elements in a floor direction (x or y) 

i=the corresponding shear force of the element 

j=the direction of the earthquake motion 

and α=0 if i≠j or α=1 if i=j 

 
 
3. Multivariate modelling 

 
3.1 Linear regression 
 

Regression is a widely used statistical technique to investigate the relationship between a 

dependent variable and one or more independent ones. 

The estimated linear regression is of the form 

Yi = a + b1X1i + b2X2i + b3X3i +  . . .  +bmXmi + ei (16) 

Where Y 

 X1, X2, X3,   … Xm are the independent ones   

a, b1, b2, b3, … bm are the estimated regression coefficients, and ei are independent error 

terms, with a mean of zero, a constant variance and a normal distribution.  

The most important, practical advantage of linear regression is that the regression coefficients 

bj indicates the amount of change in the dependent variable Y when Xj changes by one unit. This 

characteristic is true because the independent variables Xj are orthogonal.  

As mentioned above, the regression method fits the linear Eq. (16) by estimating the regression 

coefficients a and bj in such a way as to minimize the sum of square errors (Σei
2
), i=1, 2, 3 … n, 

where n is the number of observations. 

The procedure followed in this article generated more than two thousand data series by varying 

the columns‟ dimensions. This way, several hundreds of different structures and corresponding 

nonlinear pushover analysis were created. In order to produce a sample with normal distribution, a 

specific algorithm implementing Box-Muller (1958) transformation from randomly generated 

values was developed. The final aim was to produce a random sample of structural designs, each 

one corresponding to a particular structural set. Torsional eccentricity and other widely accepted 

design criteria related to the torsional behavior, were correlated to ROT in order to investigate the 

potential of ROT being used as a practical tool for structural design of new and existing buildings. 

Moreover, ROT quantifies the torsional introduced supplementary loading due to seismic actions 

and the floor plan‟s asymmetry.  

Once the data was generated an appropriate regression model was identified and its parameters 

62



 

 

 

 

 

 

Torsional parameters importance in the structural response... 

estimated in the form of Eq. (16). Such model is also written as 

Y = a + Σbιi*xi (17) 

where a and bi will be estimated using the least square error minimization between empirical data 

and a regression model Eq. (17). 

The multiple correlation factor R
2
 indicates that the independent variables Xj explain 

statistically, the R
2
 (percentage) of the total fluctuations in Y. Thus, R

2 
calculated value, is the 

assessment of the regression model fit to the raw data. However, in order for the regression to be 

valid, the following three additional assumptions to that of linearity must be satisfied: 

1. The error terms ei must be independent (before this assumption check, the dependent variable 

must have been sorted from the smallest to the largest value) 

2. The variance of the ei must be constant, and  

3. The distribution of the ei must be normal. 

Once the parameters of the regression Eq. (16) have been estimated and the three assumptions 

mentioned above are satisfied, the regression Eq. (16) can subsequently be used to predict Y values 

for various values of the independent variables, thus simulating any desired inputs. 

 
3.2 Neural networks 

 
A neural network is a network of process nodes (neurons) that quantifies the interconnections 

between them. Each such node receives a collection of numerical inputs from diverse sources 

(either from alternative neurons or from the environment), performs calculations on these inputs 

and produces an output. Three kinds of neurons constitute the neural network: input neurons, 

output neurons and process (hidden) neurons. The process neurons multiply every entry with the 

corresponding weight and calculate the whole add of the product. Artificial Neural Networks 

(ANN), can be used to model numerically nonlinear relationships between a number of 

independent variables (predictors) and dependent ones (outputs). Thus, neural networks can be 

used as universal function approximators (Raul 2013).  

The numerical model achieved using neural networks for nonlinear functions modelling can 

depict high R-squared between the actual and predicted variables and can be utilized without 

constraints, especially when the linear regression assumptions are not satisfied. However, an ANN 

model is characterized as a black box (Olden and Jackson 2002), because they cannot deliver 

explicit explanatory insight into the contribution of the independent variables to the predicted 

ones. Thus, a number of studies investigate equivalent methodologies to quantify the importance 

of the independent variables to the prediction (Olden et al. 2004, Gevrey et al. 2003). In this study, 

the connection weight approach is followed to investigate the influence of the torsional parameters 

to the structural response, as this approach exhibits the highest accuracy. The connection weight 

approach calculates the product of the connection weights between each input and output neuron 

and sums the products across all hidden neurons.  

Additionally, special attention must be taken into account, in order to avoid overfitting and 

overtraining of the ANN model. Although neural networks can simulate computationally any 

nonlinear multivariate relationship with a high degree of accuracy, the prediction model derived 

may not be able to predict new outputs using raw data that is not included in the training data. This 

problem is called overfitting, meaning that the model fit well to the data used, but cannot 

generalize the approximation of the dependent variables. The effect of overfitting can be vast, as 

studied by Lawrence et al. (1997). To avoid this condition, the variables‟ database is divided into a 

63



 

 

 

 

 

 

Nikolaos Bakas, Spyros Makridakis and Manolis Papadrakakis 

  

  
Fig. 13 Instances of random structure generation procedure 

 

 

training set (used for ANN model constitution) and a training set to estimate the generalization 

ability of the network, as depicted later in Fig. 26. The ANN structure used in the current study, 
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utilizes Bayesian Regularization, in order to improve generalization (Marquardt 1963).  

ANNs are used in a number of research works in the field of mechanical behavior of structures, 

as demonstrated by Yavuz (2016) for shear strength approximation of RC beams, Hakim et al. 
(2013), for structural damage investigation, Mohammadhassani et al. (2013) for strain forecasting, 

Peng-hui et al. (2015) for identification of beams damage, Alapour et al. (2013), for strength of 

lightweight concrete, and Beycioğlu et al. (2015) for compressive strength of mortar. ANN exhibit 

high performance in the investigation of numerical patterns, due to the fact that they fit a nonlinear 

model (mapping) associating one or many independent variables with one or more dependent. 

 
 
4. Database of random shape and topology test structures 
 

This work‟s approach constitutes the creation and utilization of a large database of multiscale 

structures in order to derive statistically reliable numerical results for the various torsional criteria, 

structural response parameters and their modeled relationships. Thus, in the initial step of this  

study, the structure‟s database was created using a random number of floors, bays in X and Y 

direction, and columns sizes. This procedure is highlighted in Fig. 13. As the numerical algorithm 

routinely produces collinear independent random variables of uniform distribution, Gaussian noise 

was introduced in the variables so as to have normal uncorrelated distribution. In order to perform 

the structural analysis and design for the generated population of structures (several hundreds of 

instances) and to derive necessary response parameters such us eccentricity of each one design, a 

random structures generator algorithm was implemented and linked to the structural analysis and 

design software. For each step of the random geometry generation algorithm, the dimensions of 

the vertical elements were changed as well as the number of floors and bays, and the 

corresponding structural response parameters were calculated and saved. Afterwards, the derived 

results of the structural analysis were utilized to construct the regression analysis model. 

Finally, in the random generation procedure (for cross section sizes, number of floors and 

number of bays), Gaussian noise was introduced in order to avoid multicollinearity of them. 

Gaussian noise or Gaussian distribution is a statistical noise which has a probability density 

function (PDF) equal to that of the normal distribution. Hence, this noise‟s values are Gaussian 

distributed. A Gaussian random variable z follows the probability density function p of Eq. (18) 

      
 

 √  
 
 

      

    (18) 

where z represents the grey level, μ the mean value and σ the standard deviation. 

 
 
5. Statistical inference of raw data 

 
5.1 Numerical procedure 

 

In this section, the outcome of statistical inference of the structural analysis results is 

demonstrated. Thus, an analytical regression analysis is performed, where in the regression model, 

only statistically significant independent variables were kept in a trial and error procedure. When 

excluding an independent variable from the model, the t-tests are recalculated and a prior 
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Table 1 Numerical procedure 

1. Data generation 

1.1 Structural layout generation 

1.1.1 Random generation of bays in x and y direction 

1.1.2 Random generation of floors 

1.1.3 Random generation of cross sections 

1.2 Structural analysis using fem method 

1.3 Calculation of torsional response parameters (Table 2) 

1.4 Database storage of outputs 

1.5 Return to step: 1.1 

2. Correlations of response parameters 

3. Regression analysis of the results 

 
Table 2 Outputs of the algorithm 

ROT  

(Ratio of Torsion) 
TwC (Center of twist) 

Rkx  

(Torsional stiffness radius 

by x axis) 

U2 (translation at  

y axis) 

CMCV (distance between center of mass and 

center of strength) 

Rky torsional stiffness 

radius by y axis) 

R3 (rotation of the 

diaphragm) 

CV (indicator depicting the angle of divergence 

when center of mass, center of rigidity and center 

of strength do not rely on a straight line) 

M (total mass derived as 

the sum of axial forces) 

Uyu (ultimate  

y displacement) 
CR (stiffness center) Omega 

Uy0 (yield  

y displacement) 
SC (shear center) Vx0 (Yield Base Shear) 

CM (center of Mass) TS (torsional stiffness) 
Vxu  

(Collapse Base Shear) 

RZ modal participating mass of the first torsional eigenmode to modal participating mass of the first 

translational eigenmode 
 

 

statistically significant variable (high value of t-test usually assumed greater than two) turns into 
an insignificant one. In addition, the residuals of the regression are examined and the outliers are 
excluded iteratively, until they are lower than three standard deviations. The aim of the regression 
was mainly to understand which, among the independent variables, are related to the dependent 
variable and to explore if the derived regression model depicts high values of R squared, meaning 
that the dependent variable (correspondent with torsional response) is explained accurately enough 
with the independent ones (torsional design criteria). Special attention was given to exclude 
collinear variables from the calculated regression model, aiming at the maximum R squared. This 
is a common procedure followed when modelling correlations between many independent 
variables and one dependent using a linear regression model. The reason is that collinear 
independent variables depict low t-test values due to arithmetical instability. Thus, they become 
insignificant and the adjusted R squared of the model decreases. Furthermore, the data was 
normalized in order to avoid computational errors, as the independent variables data range was 
different between the independent variables. Moreover, the intercept term a, was forced to be zero, 
so Eq. (17) turns into 

Y = Σbιi*xi (19) 
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Table 2 Regression summary results 

 
 

Fig. 14 Histogram of independent variable dimension 
 
Table 3 Regression results 

 
 

 

This is reasonable, as the torsional response (dependent variable Y) is equal to zero if the 

design criteria (independent variables) equals to zero. Namely, an in plan symmetric structure 

should respond zero diaphragm rotation for any direction and acting point of the horizontal loads. 

After the random generation and structural analyses, the outputs of the algorithm are 

demonstrated in Table 2. 

 
5.2 Linear regression results 

 
In this section, ROT and center of twist are confirmed to be the torsional design criterion with 

the higher prediction capacity in terms of torsional response. For simplicity reasons, specific 

patterns of some of the families explored are demonstrated, while the others depict similar 

representations. The linear regression model, when structural shape and topology are randomly 

varying, takes a high value of multiple R equal to 0.9071, as shown in Table 2. The dependent 

variable is the displacement in direction Y while the earthquake is acting on direction X. This is a 

certain measure of torsional response, since for a symmetric building, the diaphragm 
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Fig. 15 Residuals plot Fig.16 ROT vs TwC 

 

 

Table 4 Regression summary results 

 
Fig. 17 Residuals against values 

 

 

displacements in the vertical direction of the earthquake excitation-U2 should be equal to zero. 

Regression analysis is used, primarily to understand which among the independent variables are 

related to the dependent variable, and secondly to explore the forms of these relationships. After 

several trials to constitute a model with statistically significant independent variables and a high 

value of R, the optimum model found was the one using as predictors ROT, CR, SC, CM, TS, kx, 

ky, M and Rky. The data used are normalized, so the coefficients reflect the change in U2 when 

each independent variable changes for one unit. The constant term is forced to be zero, as the 

dependent variable equals to zero when the independent ones are also zero. The t-test values for 

ROT depict the higher value (49.41) as shown in Table 3. Values higher than 1.5 or 2.0, confirm 

empirically that there is a linear relationship between that particular independent variable and the 

dependent one.  

The Twist Center was not included in the model, as it depicts high correlation with ROT, in 

order to avoid computational instabilities described above in section 6.1. However the four strong 

linear patterns demonstrated in Fig. 16 are of high interest. The residuals of the regression were 

lower than 2 standard deviations, exhibiting no pattern, meaning that the independent variables 

explain the majority of the U2 fluctuations. 

 

 

6. Artificial neural network results 
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Table 5 Regression results 

 
 

 
Fig. 18 ANN Regression 

 
 

The regression analysis results for the prediction of the ultimate shear strength, gave poor 

results. In particular the residuals were not constant as demonstrated in Fig. 25, and the multiple R-

squared was 0.6387 as depicted in Table 4. Therefore, the ANN model was used to investigate the 

torsional parameters influence on the structural response. 

The ultimate collapse load is found to be strongly correlated with BST, with a t-test value of 

21.69. However the multiple R found equal to 0.63 and the residuals indicate a highly nonlinear 

trend, as shown in Fig. 17. This means that a more complex non-linear relationship exists between 

independent variables and dependent, as demonstrated in the ANN modeling. Several ANN 

architectures were investigated and the most optimal was found to be the one with 150 hidden 

neurons. In Fig. 18 the R-squared for the test set calculated equal to 0.98159 for the training set 

and 0.90611 for the test set. Thus, the ANN model is assumed to be reliable enough to predict the 

structural response from the torsional parameters. 

Early stopping was used so as to stop the training process when the test set error was minimum 
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Fig. 19 ANN Training performance 

 
Table 6 Regression summary results 

 
 

 

as shown in Fig. 19. 

In the following Table 6, and Fig. 20 the sum of the product of the internal neuron weights are 

demonstrated. The Strength Center, the Torsional Stiffness and the BST curves were found to 

exhibit the highest impact on the structural response. In particular the Center of strength has a 

positive impact on all the torsional parameters while the others exhibit variant values and signs, 

according to Table 6 and Fig. 20. Additionally in Table 6, and Fig. 20 the particular contribution of 

each torsional parameter to the U2, R3, Uyu and Uy0 can be obtained. These outputs regarding a 

large, multiscale database of test structures can be considered as reliable due to the high R-squared 

of the test set (0.90611) and the overall approach, instead of using some specific structures to 

exclude contradictory conclusions. 

In the following Table 7, the results of the ANN weight approach (Olden et al. 2002 and 

Gevrey et al. 2003) are depicted for the dynamic spectral analysis as well. In particular, an 

artificial neural network with ten internal nodes was trained, with input nodes the torsional criteria 

and output node the displacements U2, consistently with the linear regression analysis. The results 

obtained with the ANN are similar with the regression analysis, depicting ROT as the criterion 

with the highest influence to the output. 

The BST surface as defined by Llera and Chopra (1995) “is assumed to divide the force space 

into two regions; the interior, containing combinations of the base shear and torque representing 

elastic behavior of the structure, and the exterior, containing statically inadmissible base shear and 

torque combinations. This surface is the boundary between these two regions and is where all the 
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Fig. 20 Parameters importance in structural response 

 
Table 7 Weights of independent variables in the ANN 

 
 

 
Fig. 21 Base shear torque surface and loading states until collapse 

 
 
inelastic action of the system takes place”. Thus, by definition can be derived, that a structure with 

initial combinations of base shear and torque near the BST boundary surface is more likely to pass 

the inelastic stage and eventually collapse with fewer increments of the initial elastic load during a 

pushover analysis. Furthermore, Lucchini et al. (2010) state that “the parameters governing the 

nonlinear response of the asymmetric-plan building are associated with the centers of resistances 

(CRs) of the system. These CRs correspond to the “base shear-torque” (BST) combinations 
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Fig. 22 Test example for the constitution of the BST surfaces 

 

 

producing the plastic mechanisms”. The correlation of BST surface and ultimate collapse capacity 

is also demonstrated by Humar et al. (2010). In this study it is specified that “with increasing 

earthquake intensity, which will push the model farther into the inelastic range…”, while the 

positions of base shear and torque combinations inside and outside the BST boundary is 

graphically demonstrated, for various increasing intensities. 

In the following Fig. 21, the BST surface for the example structure of Fig. 22 is demonstrated. 

Two loading cases are presented, one without torsion (with symbol x) and one with torsion 

(symbol +). These points represent the loading stages of the nonlinear analysis, from the beginning 

(0, 0) to the collapse (points near and outside the BST surface). It is apparent that as the loading 

factor increase, the structure‟s loading state is near the BST boundary and thus closer to the 

collapse loading conditions. 

 
 
7. Conclusions 

 
This work attempts to contribute to the literature on the reliability of structural design criteria 

considering torsional effects. In the majority of relative works, the conclusions reached are based 

on an insufficient amount of test examples and simplified assumptions. This lack of reliability is 

overcome via a statistical inference of various torsional design criteria, corresponding response 

parameters, for a numerically adequate, multiscale database of test structures.  

The analysis of the derived data using linear regression and constructing a multivariate model 

with R-squared of 0.90 depict high t-test values for ROT and center of twist. Thus, these 

parameters are considered the most influential (to the displacements due to torsion). This is 

rational, as this approach is based on modal response spectrum analysis, in which these indices are 

defined, using elastic attributes of the structures. 

The ANN analysis also derived a regression model with R-squared of 0.90 for the test set. The 
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nonlinear indices Center of Strength and BST curves exhibit the highest impact on the ductility 

demands derived from the nonlinear pushover analysis. Additionally, this work quantifies the 

contribution of the other torsional indices to the ductility demands. The results are based on a large 

database of multiscale buildings, and the simulated numerical relationships exhibit high values of 

R-squared, thus can be considered as reliable, contributing to the explanation of the contradictory 

results of the relative literature. 
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