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Abstract.  To investigate the surface effects on vibration of embedded circular curved nanosize beams, 

nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface 

tension and surface density for modeling the nano scale effect. The governing equations are determined via 

the energy method. Analytically Navier method is utilized to solve the governing equations for simply 

supported at both ends. Solving these equations enables us to estimate the natural frequency for circular 

curved nanobeam including Winkler and Pasternak elastic foundations. The results determined are verified 

by comparing the results by available ones in literature. The effects of various parameters such as nonlocal 

parameter, surface properties, Winkler and Pasternak elastic foundations and opening angle of circular 

curved nanobeam on the natural frequency are successfully studied. The results reveal that the natural 

frequency of circular curved nanobeam is significantly influenced by these effects. 
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1. Introduction 
 

Nano materials are attracting many researchers over the recent years due to their improvement 

of the quality properties. Atomistic modeling and experimental researches show that, the size 

effect gains important when the dimensions of structures become very small. Due to this fact, the 

size effect plays an important role on the mechanical behavior of micro- and nanostructures 

(Şimşek 2014). Among various nano structures, nanobeams have more important applications 

(Daulton et al. 2010, Hu et al. 2010).  

A nonlocal beam theory is presented by Thai (2012), and bending, buckling, and vibration of 

nanobeams have been investigated. In addition, bending, buckling and vibration analyses of 

nonho-mogeneous nanotubes using GDQ and nonlocal elasticity theory is presented by Pradhan 

(2009). However, the nonlinear vibration of the piezoelectric nanobeams based on the Timoshenko 

beam theory and nonlocal modeling has been investigated by Liang et al. (2012). In addition 

Murmu and Adhikari (2010), have investigated the nonlocal transverse vibration of double-

nanobeam-system. In this research, an analytical method has been developed for determining the  
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natural frequencies of the nonlocal double-nanobeam-system. Also Eltaher et al. (2012), have 

presented free vibration analysis of functionally graded (FG) size-dependent nanobeams using finite 

element method. Also in recent years the mechanical behavior of FG nanoplates is investigated based 

on various plate shear deformation plate theories (Ebrahimi and Barati 2016a, b, c, d, e, Ebrahimi et 

al. 2016a, Ebrahimi and Dabbagh 2016, Ebrahimi and Hosseini 2016a, b) while the analysis of nano-

structure’s mechanical behaviors is one of recent interesting research topics. (Ebrahimi and Barati 

2016f, g, h, i, j, k, l, m, n, Ebrahimi and Barati 2017). 

Because the nanobeams has the high proportion of the surface to volume, the surface stress effects 

has important role in their mechanics behavior of these structures (Ebrahimi et al. 2016a, 2015, 

Ebrahimi and Boreiry 2015). Hence, Gurtin and Murdach (1978) have considered surface stress 

effects. In this theory the surface is considered as a part of (nonphysical) the two-dimensional with 

zero thickness (mathematically) which has covered the total volume. This theory has used in many 

researches about nanobeams. Surface elasticity and residual stress effect on the elastic field of a 

nanoscale elastic layer is presented by Intarit et al. (2011). The nonlinear flexural vibrations of small 

scale beams in presence of surface properties have been studied by Gheshlaghi and Hasheminejad 

(2011). Nevertheless, nonlinear free vibration of functionally graded nanobeams with surface effects 

has been investigated by Sharabiani and Haeri (2013). In addition, Sahmani et al. (2014) have 

investigated Surface energy effects on the free vibration of post buckled third-order shear deformable 

nanobeams. And they have studied Surface properties on the nonlinear forced vibration response of 

third-order shear deformable nanobeams (Sahmani et al. 2015). In these papers they have been used to 

Gurtin-Murdach elasticity theory. Furthermore, the nonlinear free vibration of nanobeams with 

considering surface properties has been studied by Nazemnezhad et al. (2012). However, Hosseini-

Hashemi and Nazemnezhad (2013) have presented nonlinear free vibration of functionally graded 

nanoscale beams with surface properties. As well as, Ansari et al. (2014) have investigated nonlinear 

forced vibration characteristics of nanobeams including surface stress effect. In this study, a new 

formulation of the Timoshenko beam theory has been developed through the Gurtin-Murdoch 

elasticity theory in which the effect of surface stress has been incorporated. Moreover, the surface and 

nonlocal effects on the nonlinear flexural free vibrations of elastically supported non-uniform cross 

section nanobeams have been investigated by Malekzadeh and Shojaee (2013) simultaneously. 

Vibration and buckling characteristics of FG nanobeams subjected to thermal effects are investigated 

by Ebrahimi and Salari (2015a, b, c) and Ebrahimi et al. (2015b, c). Ebrahimi and Barati (2016o, p, q) 

have also analyzed buckling behavior of smart piezoelectrically actuated nanobeams and plates in 

thermal environment. 

In the field of elastic foundation there are linear and nonlinear which is named as Winkler and 

Pasternak respectively. Elastic foundation has employed in the size of macro and nanobeams in many 

recent researches as explained below. Zhao et al. (2015), have investigated the axial buckling of a 

nanowire resting on Winkler-Pasternak substrate medium with the Timoshenko beam theory. 

However, free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-

Pasternak elastic foundation is presented by Civalek (2010). In addition, Simple analytical expressions 

have been presented by Fallah and Aghdam (2011) for large amplitude free vibration and post-

buckling analysis of functionally graded beams rest on nonlinear elastic foundation. Furthermore, 

Jang et al. (2011), have presented a new method of analyzing the non-linear deflection behavior of an 

infinite beam on a non-linear elastic foundation. Also, Niknam and Aghdam (2015) have obtained a 

closed form solution for both natural frequency and buckling load of nonlocal functionally graded 

beams resting on nonlinear elastic foundation. Moreover, the static instability of a nanobeam with 

geometrical imperfections with elastic foundation has been investigated by Mohammadi et al. (2014). 
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In this paper, Size-dependent effect is included in the nonlinear model. Nevertheless, differential 

transformation method has been used to predict the buckling behavior of single walled carbon 

nanotube on Winkler foundation under various boundary conditions by Pradhan and Reddy (2011). 

In recent years vibration of curved nanobeams and nanorings, have been worked in many 

empirical experiments and dynamic molecular simulations (Wang and Duan 2008). Hence some 

researchers are interested in studding of vibration curved nanobeams and nanorings. Yan and Jiang 

(2011) have investigated the electromechanical response of a curved piezoelectric nanobeam with the 

consideration of surface effects. In addition, a new numerical technique, the differential quadrature 

method has been developed for dynamic analysis of the nanobeams in the polar coordinate system by 

Kananipour et al. (2014). Moreover, Khater et al. (2014) have investigated the effect of surface 

energy and thermal loading on the static stability of nanowires. In this research, nanowires has been 

considered as curved fixed-fixed Euler-Bernoulli beams and has been used Gurtin-Murdoch theory to 

represent surface effects. The model has taken into account both von Kármán strain and axial strain. 

Wang and Duan (2008) have surveyed the free vibration problem of nanorings/arches. In this research 

the problem was formulated on the framework of nonlocal elasticity theory. Nevertheless, explicit 

solution has been shown for size and geometry dependent free vibration of curved nanobeams with 

including surface effects by Assadi and Farshi (2011). 

To the best of the author’s knowledge, there has been no record or any study regarding the curved 

nanobeams with surface effects and elastic foundation. Therefore, there is strong scientific need to 

understand the dynamic behavior of curved nanobeam with surface effects in considering the effect of 

elastic foundations. The aim of this research is to survey the effects of Winkler and Pasternak elastic 

foundation on vibrations and natural frequencies of curved nanobeams. In this regard, the curved 

nanobeams have been used in framework Euler-Bernoulli beam theory. So the paper has investigated 

the effects of surface density, surface elasticity and surface residual stress. 

 

 

2. Problem statements 
 

In plane free vibration of curved nanobeam is considered. As it shown in Fig. 1, the radius 

curvature and thickness are considered R and h respectively. Additional surface effects are 

supposed for all the external surfaces. 

The dynamic equilibrium equations for a curved Euler-Bernoulli beam, are given as 
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(1) 

Where F(θ, t) is the shearing force, P(θ, t) is the tensile force, A is the cross sectional area, ρ is the 

mass density, ρ
s
 is the surface density of the nanoring and b is the width of nanoring In Eq. (1). It 

should be notice the displacement components of the surface property must satisfy the following 

relations (Rao 2007). 

; 2  

      r ru u u u u u  (2) 

By employing Eq. (2) and substituting into Eq. (1) the equilibrium equations can be determined as 

follow. 
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Fig. 1 Geometry of an element of a circular curved nanobeam with surface layers 
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(3) 

The normal stress resultant P from Eq. (3) should be vanished. Therefore, obtains the relation 

between radial displacement and bending moment such as Eq. (4) 

 
2 42 4 2

2 4 2 2 2 2

1
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s r ru uM M p f
R AR Rb

R t t
 (4) 

The stress components of the surface layers must satisfy the following equilibrium relations 

(Gurtin and Murdoch 1978) 

    τ δ τ τ τ                   s su u u u  (5) 

Where    are residual surface tensions under unconstrained conditions, μ
s
 and λ

s  are the surface 

Lamé constants for the surface material. 

The strain in the curved element can be expressed as 

1 r
r

u ux
u u

R R


 

  

    
      

    
 (6) 

Considering inextensible deformation of the curved element at x=0, it can be concluded that 

   ru u . The stress-strain relation for the surface material can be determined as 

  2
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 (7) 

Bending moment resultant M due to normal stress σχ χ can be described by integrating the strain 

components on the cross section as follow as 

2

2

M b ( τ )
2

h

h

bh
E xdx     


     (8) 
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By substituting Eqs. (6) and (7) into Eq. (8), the bending moment of curved element, can be 

obtained as 

 2 s s 2

r
r2 2 2

bh 2? λ 1 ν ντ uEI
M u

R 2R θ

            
   

 
(9) 

Using Eq. (9) in Eq. (4) yields the governing equation for the curved nanobeam as 

 
6 4 2 2 42

sr r r r r
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Where f and λ, defined as follow 

2
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For free vibration of curved nanobeam or nanoring, the radial displacement can be considered as 

   ni t

r ru u e
 




  (13) 

In which ωn is the natural frequency of the nanoring. By substituting Eq. (13) into Eq. (10) the 

following equation can be determined 
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3. Numerical results 
 

In this section, The bulk elastic properties are E=177.3 Gpa, ρ=7000 g/m
3
 the surface elastic 

properties are λ
s
=−8 N/m, μ

s 
=2.5 N/m, τ=1.7 N/m and ρ

s
=7×10-

6 
Kg/m

2
. To validating results, 

Assume 
*

n  and 
*

n  be the corresponding parameters for a curved beam with vanished surface 
properties and ignored Winkler and Pasternak foundation. Next employing Eq. (14) in which βn 

reflects the effects of mode shapes with consideration of surface effects and obtaining the relation for 
* n n  it can be concluded that  

 

(15) 

Where h
*
 and R

*
 are the thickness and radius of curved nanobeams without surface properties, 

respectively. It is detected in Table 1, the results are in good agreement with reference (Assadi and 

Farshi 2011). The nanorings with total central angle α and simply-simply supported, the Navier 

solution can be written as 
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Table 1 Geometric comparison of curved beams for the same natural frequency with and without surface 

effects 

 

     

* 4( )R R  * 4( )R R  * 4( )R R  * 4( )R R  * 4( )R R  

Present 
(Assadi and 
Farshi 2011) 

Present 
(Assadi and 
Farshi 2011) 

Present 
(Assadi and 
Farshi 2011) 

Present 
(Assadi and 
Farshi 2011) 

Present 
(Assadi and 
Farshi 2011) 

10 0.6595 0.6595 0.7421 0.7421 0.8297 0.8297 0.9222 0.9222 1.0197 1.0197 

20 0.7272 0.7272 0.8147 0.8147 0.9071 0.9071 1.0045 1.0045 1.1069 1.1069 

30 0.7529 0.7529 0.8420 0.8420 0.9361 0.9361 1.0352 1.0352 1.1393 1.1393 

40 0.7664 0.7664 0.8564 0.8564 0.9513 0.9513 1.0513 1.0513 1.1562 1.1562 

50 0.7748 0.7748 0.8652 0.8652 0.9607 0.9607 1.0611 1.0611 1.1666 1.1666 

60 0.7804 0.7804 0.8712 0.8712 0.9670 0.9670 1.0678 1.0678 1.1736 1.1736 

70 0.7845 0.7845 0.8756 0.8756 0.9716 0.9716 1.0726 1.0726 1.1787 1.1787 

80 0.7876 0.7876 0.8788 0.8788 0.9751 0.9751 1.0763 1.0763 1.1825 1.1825 

90 0.7900 0.7900 0.8814 0.8814 0.9778 0.9778 1.0791 1.0791 1.1855 1.1855 

100 0.7920 0.7920 0.8835 0.8835 0.9800 0.9800 1.0814 1.0814 1.1879 1.1879 

 
Table 2 Radius of curvatures and opening angle effect on first three dimensionless frequency of an S-S curved 

nanobeam with surface effects (h=10 nm) 

R (nm) 

n=1 n=2 n=3 

Opening angle Opening angle Opening angle 

π/4 π/2 π π/4 π/2 π π/4 π/2 π 

10 8.5860 7.9899 10.4824 35.5131 34.3442 31.9595 80.4543 79.1681 75.1266 

20 9.9584 14.5663 33.1482 36.7241 39.8337 58.2651 81.6298 84.1989 98.9823 

30 12.5597 26.0609 70.3180 38.8763 50.2389 104.243 83.6543 93.4159 143.790 

40 16.5435 42.3610 122.245 42.1267 66.1739 169.444 86.6159 107.609 210.267 

50 21.9300 63.3998 188.974 46.6265 87.7200 253.599 90.6203 127.320 297.848 

60 28.6895 89.1502 270.519 52.4893 114.758 356.601 95.7771 152.774 406.031 

70 36.7900 119.601 366.884 59.7808 147.160 478.403 102.187 183.985 534.516 

80 46.2081 154.746 478.071 68.5258 184.833 618.985 109.934 220.873 683.140 

90 56.9286 194.584 604.080 78.7233 227.714 778.334 119.078 263.334 851.811 

100 68.9415 239.111 744.914 90.3584 275.766 956.445 129.660 311.279 1040.47 
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(16) 

By employing Eq. (16) and substituting into Eq. (10), the dimensionless natural frequencies of the 

curved nanobeam with surface properties and elastic foundations determined as 
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Fig. 2 Frequency ratio with and without surface effects versus thickness h for different radius of curvature 

 

 
Fig. 3 Frequency ratio with and without surface effects versus thickness h for different mode numbers 

 

 

The dimensionless natural frequency of curved beam without surface effects and elastic foundation 

can be written as 

 
  

 
46 4 2

2

0 4 2

EI 2
;

1

     


 

 
  



n n n

n n

n

R A n

EIAR

 (18) 

 
3.1 Effect of thickness on frequency ratio with different radius of curvature 

 

In this subsection, the effect of the thickness (h) with various curvature radiuses on frequency ratio 

with and without surface effects is examined. The same material and geometric parameters are 

selected is used for the results by the present model in Fig. 2. In addition the Winkler and Pasternak 

elastic foundation for this case, are 10
10

 N/m
2
 and 10

-6
 N respectively. To highlight the surface 

properties effect, on the natural frequencies of the curved nanobeams, the dispersion curves are 

presented in Fig. 2. It is clearly seen that, at the low values of thickness L, the greater values of curved 

nanobeams with surface effects. Hence, it is shown that by increasing thickness h, the surface effects 

tend to vanished. However, the Fig. 2, reveals that, the surface effects play important role in higher 

curvature radiuses. 

 

3.2 Analysis of higher modes on frequency ratio of curved beam with and without surface 
effects and elastic foundation 
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(a) With surface effects (b) Without surface effects 

Fig. 4 Dimensionless natural frequency of curved nanobeam respect to thickness h for various Winkler 

elastic foundation 

 

  
(a) With surface effects (b) Without surface effects 

Fig. 5 Dimensionless natural frequency of curved nanobeam respect to thickness h for various 

Pasternak elastic foundation 

 

 

The frequency ratio with and without surface properties has been illustrated in Fig. 3. In this case, 

the following parameters are selected as, R=30 nm, Kw=10
10

 N/m
2
, Kp=10

-6
 N. he trends of Fig. 3 is 

similar to Fig. 2. It is noted that with an increase of thickness in curved nanobeam h in Fig. 3, the 

frequency ratios tend to one at three natural frequency mode numbers. It is revealed that in high values 

of thickness the influences of surface effects have been diminished in all mode numbers. 

 

3.3 Effect of Winkler foundation on frequency parameter 
 

In this subsection, the effect of the Winkler elastic foundations of curved nanobeams with and 

without surface effects on the vibration frequencies is investigated respect to thickness of curved 

nanobeam with and without surface properties. For this aim, the variation of fundamental 

dimensionless natural frequency respect to thickness with various Winkler elastic foundations is 

considered as shown in Fig. 4. In the case, the Pasternak elastic foundation assume constant and it is 

equal to 10
-6

 N. From Fig. 4, it is seen that the Winkler elastic foundation can significantly influence 

the vibration of curved nanobeam with and without surface effects. It is also observed that as  
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(a) With surface effects (b) Without surface effects 

Fig. 6 Dimensionless natural frequency of curved nanobeam respect to radius of curvature for various 

curvature angles 

 

 

thickness of curved nanobeam heightens, the fundamental frequencies decrease, which indicates that 

the Winkler elastic foundation has an important role in dimensionless frequencies. As it shown in Fig. 

4, as Winkler values increase, the dimensionless natural frequencies also increase. 

 
3.4 Effect of Pasternak foundation on frequency parameter of curved nanobeam 

 

To evaluate the influence of the Pasternak elastic foundation on vibration of curved nanobeam 

with and without surface effects, Fig. 5 presents the natural frequency of the Euler-Bernoulli model 

with respect to different values of Pasternak elastic foundation. For this aim, the variation of 

fundamental dimensionless natural frequency respect to thickness with various Pasternak elastic 

foundations is considered as shown in Fig. 5. In the case, the Winkler elastic foundation assume 

constant and it is equal to 10
10

 N/m
2
. It is seen from Fig. 5 that the dimensionless frequency is more 

sensitive to low thicknesses. As the thickness of curved nanobeam increases, the dimensionless 

frequency decreases. However it is observed from that as Pasternak values increase, the dimensionless 

natural frequencies also increase. 

 
3.5 Effect of radius of curvature with different curvature angle on frequency parameter 

 
To understand the influence of the radius change R on the first dimensionless natural frequency of 

curved nanobeam with and without surface effects Fig. 6. Present the natural frequencies of curved 

nano beam with respect to curvature radius for different angles of curvatures. Effects of the curvature 

radius change on the natural frequencies of curved nanobeams are shown in Fig. 6. In this case, the 

following parameters are selected: h=10 nm, Kw=10
10

 N/m
2
, Kp=10

-6
. In Fig. 6, it is noted that with an 

increase of radius of curvature R, the dimensionless natural frequency increase. Meanwhile, it is also 

found that at the same curvature radius, the frequency at higher angle of curvature is greater than other 

frequencies. According to Table 2, it can be seen that the dimensionless frequency increase with 

increasing radius of curvatures. It is interesting to say that natural frequencies also increase with 

increase opening angles. These observations can be used for the design of curved nanobeams and 

nanorings. 

263



 

 

 

 

 

 

Farzad Ebrahimi and Mohsen Daman 

  

4. Conclusions 
 

Derived herein are the governing equations for the free vibration of circular nanorings/arches 

including surface elasticity, surface density and surface tension. The Winkler and Pasternak elastic 

foundations were considered on vibration behavior of the curve nanobeam. In addition, the simply-

simply boundary conditions were assumed for this case. Hence, the Navier method was employed to 

solve the governing equation to satisfied boundary conditions. The effects of the thickness of curved 

nanobeam, Winkler elastic foundation, Pasternak elastic foundation, opening angle and radius of 

curvature, on the frequency parameters of the circular curved beams were investigated. It is observed 

that by increasing thickness h, the surface effects tend to vanished. Furthermore, it is shown that the 

elastic foundations and surface effects play an important role in dynamics behavior of circular curved 

nanobeams. 
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