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Abstract.  In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of 
porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of 
thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The 
uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to 
be temperature independent and supposed to vary through thickness direction of the constituents according to power-
law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven 
distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are 
derived based on higher order shear deformation plate theory. Influences of several important parameters on the 
critical thermal buckling temperature are investigated and discussed in detail. 
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1. Introduction 
 

Plate-type structural components are extensively used in majority of the engineering structures, 

among them, those employed in aerospace, naval, power plant, mechanical, civil, and ground 
vehicle structures. Due to the optimization targets frequently considered in these components, to 
minimize the costs, weights, fuel consumption, etc., these components maybe vulnerable to sever 
in-plane loads (e.g., compression, shear, thermal, or a combination of them). Therefore, reliability 
of design of such components requires carefully evaluating the buckling loads which can heavily 
limit the allowable bearing capacity. Therefore, it is important to study the buckling and 
postbuckling behaviors of plates under mechanical, thermal and combined thermomechanical 

loads for accurate and reliable design. Some works about the stability of plate relating to present 
study are introduced in the following. For examples, For examples, Reddy (2004), Boley and 
Weiner (1960), Chen et al. (1991), Ganapathi and Touratier (1997), Bouazza et al. (2013, 2017, 
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2023), Becheri et al. (2016). Influence of temperature on the beams behavior strengthened by 

bonded composite plates studied by Bouazza et al. (2019).   

The use of smart materials, as sensors and actuators, for the control of the mechanical behavior 

of smart structural systems, is becoming more prevalent. Some examples of the smart materials 

deployed include piezoelectrics, shape memory alloys and rheological-fluids (Liew et al. 2003). 

Piezoelectric materials are materials that convert electrical current to mechanical force and vice 

versa. Hence, piezoelectric materials are extensively used in sensors and actuators. Because of 

high stress concentrations, laminated piezoelectric materials delaminate and fail. Therefore, it was 

proposed to fabricate a new form of piezoelectric materials with functionally graded distribution of 

material properties which are called functionally graded piezoelectric materials (FGPMs) (Jam and 

Nia 2012). Due to the importance and wide engineering applications of piezoelectric FGMs, the 

behavior of these materials has been addressed by many investigators. For example, Liew et al. 

(2003), Mirzavand and Eslami (2011), Arefi and Rahimi (2012), Nami et al. (2015), 

Ghasemabadian and Kadkhodayan (2016), Amara et al. (2016). 

Recently, Ghasemabadian and Kadkhodayan (2016), Investiged of buckling behavior of 

functionally graded piezoelectric rectangular plates under open and closed circuit conditions. 

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate presented by 

Avsar and Sahin (2016). Krommer et al. (2016) studied the nonlinear buckling and post-buckling 

behaviour of thin piezoelectric plates. Xiong and Tian (2017) studied the thermo-piezo-elastic of 

FGM piezoelectric plate under thermal shock. Buckling analysis of piezoelectric coupled 

transversely isotropic rectangular plates is investigated by Ghasemabadian and Saidi (2017) using 

the first-order shear deformation plate theory. In order to overcome the limitations of traditional 

methods, at recent years the novel and modified methods have been proposed for investigation of 

flexural and buckling behavior of the composite plates (Ellali et al. 2022, 2024, Nazira et al. 2019, 

Ebrahimi et al. 2019, Kar et al. 2015, 2016, 2017, Rathore et al. 2015, Shyam et al. 2023). 

Guessas et al. (2018) investigated the effect of porosity on the buckling behavior of carbon 

nanotube-reinforced composite porous plates using analytical method. Two types of distributions 

of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and 

functionally graded of plates (FG-CNT). Surface and flexoelectricity effects on size-dependent 

thermal stability analysis of smart piezoelectric nanoplates presented by Ebrahimi and Barati 

(2018). Ellali et al. (2018) investigated mechanical buckling analysis of magnetoelectroelastic 

plate resting on Pasternak foundation is based on the third-order shear deformation plate theory. 

Karami et al. (2018) studied thermal buckling of embedded sandwich piezoelectric nanoplates 

with functionally graded core via a nonlocal second-order shear deformation formulation.  

This paper focuses on the thermal buckling of porous functionally graded rectangular plates 

that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of 

thermal loading and constant applied actuator voltage with two different porosity distributions in 

part of FGM. These types of porosity distributions, namely, even and uneven, through the 

thickness directions are considered.  The uniform thermal loading is considered. An analytical 

solution is obtained for porous piezoelectric FGM plates with simple support via higher order 

shear deformation plate theory. The material properties are assumed temperature independent and 

vary continuously through the thickness direction according to modified power-law form. The 

derived equilibrium and buckling equations are then solved analytically for a plate with simply 

supported boundary conditions. These equations are solved by using Navier type method. 
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Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric 

 
(a) Material has a uniform distribution with varied properties 

 
(b) Functionally graded material with varied properties 

Fig. 1 Types of composite materials (Abdul Hussain 2014) 

 

 

 

Fig. 2 (a) Geometry and coordinates of functionally graded material plate integrated with surface-

bonded piezoelectric actuators (b) Cross section area of FGM plate with even and uneven porosities 

 
 
2. Theoretical formulation 

 

Functionally graded materials are composite materials, macroscopically heterogeneous, with 

mechanical properties that vary continuously from one surface to another (Fig. 1). This continuous 

change which leads to graded properties in this type of materials, caused by a function of position 

of chemical composition, microstructure or atomic order. 

 

2.1 Effective material properties of FGM plates with porosity distributions and 
integrated two perfectly bonded identical piezoelectric layers 

 

Consider an functionally graded rectangular plate with porosities and integrated two perfectly 

bonded identical piezoelectric layers at the top and bottom surfaces as shown in Fig. 2. The width, 
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length and thickness of the FGM plate are represented by 𝑏, 𝑎 and 2ℎ, respectively. In addition, ℎ𝑎  

denotes the thickness of the each piezoelectric layer and the total thickness of the structure is also 

represented by 𝑡 in which 𝑡 = 2(ℎ + ℎ𝑎 ) 

The effective material properties of FGM plates with two kinds of porosity distributions which 

are distributed identically in two phases of ceramic and metal can be expressed by using the 

modified rule of mixture as (Wattanasakulpong and Ungbhakorn 2014) 

𝑃 = 𝑃𝑐 (𝑉𝑐 −
𝑒

2
) + 𝑃𝑚 (𝑉𝑚 −

𝑒

2
) (1) 

Where, 𝑒 is the volume fraction of porosities (𝑒 << 1), for perfect FGM, 𝑒 is set to zero, 𝑃𝑐  

and 𝑃𝑚  are the material properties of ceramic and metal, and 𝑉𝑐 , 𝑉𝑚  are the volume fraction of 

ceramic and metal, respectively; the compositions are represented in relation to 

𝑉𝑐 + 𝑉𝑚 = 1 (2) 

Then, the volume fraction of ceramic 𝑉𝑐  can be written as follows 

𝑉𝑐 = (
𝑧

ℎ
+
1

2
)
𝑘

 (3) 

Here, 𝑧 is the distance from the mid-plane of the FGM plate and 𝑘 is power law exponent the 

nonnegative variable parameter (𝑘 ≥ 0) which determines the material distribution through the 

thickness of the plates. According to this distribution, we have a fully metal plate for large values 

of 𝑘 and fully ceramic plate remains when 𝑘 = 0. In this paper, imperfect FGM has been studied 

with two types of porosity distributions (even and uneven) across the plate thickness due to defect 

during fabrication. 

For the even distribution of porosities (FGM-I), the effective material properties are obtained as 

follows 

𝑃(𝑧) = (𝑃𝑐 − 𝑃𝑚 )𝑉𝑐 + 𝑃𝑚 −
𝑒

2
(𝑃𝑐 + 𝑃𝑚 ) (4) 

where the subscripts of 𝑚, 𝑐  denote the metal and ceramic constituents. For the second type, 

uneven distribution of porosities (defined as FGM-II) the effective material properties are replaced 

by the following form 

𝑃(𝑧) = (𝑃𝑐 − 𝑃𝑚 )𝑉𝑐 + 𝑃𝑚 −
𝑒

2
(𝑃𝑐 + 𝑃𝑚 ) (1 −

2|𝑧|

ℎ
) (5) 

Here, it should be noted that the FGM-I has porosity phases with even distribution of volume 

fraction over the cross section, while the FGM-II has porosity phases spreading frequently nearby 

the middle zone of the cross section and the amount of porosity seems to be linearly decreased to 

zero at the top and bottom of the cross section.  

 

2.2 Displacement field and strains 
 

The classic Reissner-Mindlin model (FSDT, First order Shear Deformation Theory) introduces 

the effect of transverse shear, the kinematic hypothesis Bouazza (2017) is adopted: the normal 

remains straight but not perpendicular to the average surface (because of the effect of transverse 

shear) in the deformed configuration (Fig. 3). while the higher order theory model was proposed is  
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Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric 

 

Fig. 3 Kinematics of first order shear deformation theory (Nguyen et al. 2014) 

 

 

Fig. 4 Kinematics of higher order theory (Nguyen et al. 2014) 

 

 

based on a nonlinear distribution of displacement fields following thickness. (Fig. 4). 

The third-order plate theory of Reddy (2004) is based on the displacement field 

𝑢1   (𝑥, 𝑦, 𝑧) = 𝑢0 (𝑥, 𝑦) + 𝑧𝜑𝑥 (𝑥, 𝑦) − 𝑐1 𝑧
3 (𝜑𝑥 +

𝜕𝑤0
𝜕𝑥

)

𝑢2   (𝑥, 𝑦, 𝑧) = 𝑣0 (𝑥, 𝑦) + 𝑧𝜑𝑦 (𝑥, 𝑦) − 𝑐1 𝑧
3 (𝜑𝑦 +

𝜕𝑤0
𝜕𝑦

)

𝑢3   (𝑥, 𝑦, 𝑧) = 𝑤0   (𝑥, 𝑦)

 (6) 

Where (𝑢0 , 𝑣0 , 𝑤0 )  and (𝜑𝑥 , 𝜑𝑦 )  have the same physical meaning as in the first-order 

theory; they denote the displacements and rotations of transverse normals on the plane 𝑧 = 0, 

respectively. Then the displacement field of FSDT is obtained by setting 𝑐1 = 0, and for the 

Reddy third-order theory, it is equal to 𝑐1 = 4/3ℎ2 . 

The von Kármán non-linear strains of TSDT which account for small strains and moderate 

rotations are 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
 

 𝜀𝑥
(0)

𝜀𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 

+ 𝑧

{
 

 𝜀𝑥
(1)

𝜀𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 

+ 𝑧3

{
 

 𝜀𝑥
(3)

𝜀𝑦
(3)

𝛾𝑥𝑦
(3)
}
 

 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = {

𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
0
} + 𝑧2 {

𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
}

 (7) 

Where 

𝜀𝑥
(0)
=

𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)
2
, 𝜀𝑥
(1)
=

𝜕𝜑𝑥

𝜕𝑥
, 𝜀𝑥
(3)
= −𝑐1 (

𝜕𝜑𝑥

𝜕𝑥
+
𝜕2 𝑤0

𝜕𝑥2
)  
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𝜀𝑦
(0)
=

𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝜕𝑦
)
2
, 𝜀𝑦
(1)
=

𝜕𝜑𝑦

𝜕𝑦
  ,   𝜀𝑦

(3)
= −𝑐1 (

𝜕𝜑𝑦

𝜕𝑦
+
𝜕2 𝑤0

𝜕𝑦2
)  

𝛾𝑥𝑦
(0)
=

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦
  , 𝛾𝑥𝑦

(1)
=

𝜕𝜑𝑥

𝜕𝑦
+
𝜕𝜑𝑦

𝜕𝑥
    ,   𝛾𝑥𝑦

(3)
= −𝑐1 (

𝜕𝜑𝑥

𝜕𝑦
+
𝜕𝜑𝑦

𝜕𝑥
+ 2

𝜕2 𝑤0

𝜕𝑥𝜕𝑦
)  

𝛾𝑦𝑧
(0)
= 𝜑𝑦 +

𝜕𝑤0

𝜕𝑦
,    𝛾𝑦𝑧

(2)
= −3𝑐1 (𝜑𝑦 +

𝜕𝑤0

𝜕𝑦
)   ,  𝛾𝑥𝑧

(0)
= 𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
,   

   𝛾𝑥𝑧
(2)
= −3𝑐1 (𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
)  

(8) 

 

2.3 Stresses and force, moment and transverse shear force resultants 
 

The constitutive relationship of Electro-Thermo-Elastic along the material coordinate system is 

given by Eqs. (9) and (10). Eq. (9) corresponds to the in-plane stress-strain relationship; Eq. (10) 

corresponds to the shear stress-strain relationship and constitutive relationship for electric 

displacement due to piezo-electric layers is shown in Eq. (11). 

{

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]    ({

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} − {

𝜀𝑥
𝑇

𝜀𝑦
𝑇

𝛾𝑥𝑦
𝑇

}) − [

0 0 𝑒31

0 0 𝑒32

𝑒15 0 0

] {

𝐸𝑥
𝐸𝑦

𝐸𝑧

} (9) 

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} = [
𝑄44 0
0 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} − [

0 0 0

0 𝑒24 0
] {

𝐸𝑥
𝐸𝑦

𝐸𝑧

} (10) 

𝑒31 = (𝑑31𝑄11
𝑎 + 𝑑32𝑄12

𝑎 )   ,  𝑒32 = (𝑑31𝑄12
𝑎 + 𝑑32𝑄22

𝑎 )   ,  𝑒24 = 𝑑24𝑄44
𝑎    ,   𝑒15 = 𝑑15𝑄55

𝑎  (11) 

Where, {𝜎𝑖𝑗} is the stress vector [𝑄𝑖𝑗 ] is the constitutive matrix, {𝜀𝑖𝑗}  is the strain vector due to 

mechanical loading, {𝜀𝑖𝑗
𝑇 }  is the strain vector due to thermal loading, 𝑒31, 𝑒32, 𝑒15, 𝑒24  is the 

piezoelectric stiffness , 𝑑31, 𝑑32, 𝑑15, 𝑑24 is the dielectric constants  and 𝑄𝑖𝑗
𝑎 (𝑖, 𝑗 = 1,2,4,5,6) is the 

elastic stiffness of the piezoelectric actuator layers. The thermal strain vector is given as 

{

𝜀𝑥
𝑇

𝜀𝑦
𝑇

𝛾𝑥𝑦
𝑇

} = 𝛼(𝑧)Δ𝑇 {
1
1
0
} (12) 

If 𝑉𝑎 is the voltage that is applied to the actuators in the thickness direction and 𝐸𝑧 as 

transverse electric field component is dominant in the plate type piezoelectric material, then the 

electric field vector can be written as 

{

𝐸𝑥
𝐸𝑦

𝐸𝑧

} = {
0
0

1 ℎ𝑎⁄
} 𝑉𝑎  (13) 

The force, moment and transverse shear force resultants per unit length are related to stress 

components as 
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{

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

} =∫ {

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

}𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

+∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑑𝑧   

−ℎ/2

−ℎ/2−ℎ𝑎

+∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑑𝑧   

ℎ/2+ℎ𝑎

ℎ 2⁄

  

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} =∫ {

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

}𝑧  𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

+∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑧  𝑑𝑧   

−ℎ/2

−ℎ/2−ℎ𝑎

+∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑧  𝑑𝑧 

ℎ/2+ℎ𝑎

ℎ 2⁄

  

{

𝑃𝑥

𝑃𝑦

𝑃𝑥𝑦

} =∫ {

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

}𝑧3   𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

   +∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑧3   𝑑𝑧   

−ℎ/2

−ℎ/2−ℎ𝑎

+∫ {

𝜎𝑥
𝑎

𝜎𝑦
𝑎   

𝜎𝑥𝑦
𝑎   

}    𝑧3   𝑑𝑧 

ℎ/2+ℎ𝑎

ℎ 2⁄

  

{
𝑅𝑥

𝑅𝑦
} = ∫ {

𝜎𝑥𝑧

𝜎𝑦𝑧
} 𝑧2 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

     +∫ {
𝜎𝑥𝑧
𝑎

𝜎𝑦𝑧
𝑎 }    𝑧2   𝑑𝑧   

−ℎ/2

−ℎ/2−ℎ𝑎

+∫ {
𝜎𝑥𝑧
𝑎

𝜎𝑦𝑧
𝑎 }    𝑧2   𝑑𝑧 

ℎ/2+ℎ𝑎

ℎ 2⁄

  

{
𝑄𝑥

𝑄𝑦
} = ∫ {

𝜎𝑥𝑧

𝜎𝑦𝑧
} 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

+∫ {
𝜎𝑥𝑧
𝑎

𝜎𝑦𝑧
𝑎 } 𝑑𝑧   

−ℎ/2

−ℎ/2−ℎ𝑎

+∫ {
𝜎𝑥𝑧
𝑎

𝜎𝑦𝑧
𝑎 } 𝑑𝑧 

ℎ/2+ℎ𝑎

ℎ 2⁄

  

(14) 

Substituting Eqs. (9)-(11) and (7) into Eqs. (14) gives 

{

{𝑁}

{𝑀 }

{𝑃}

} =

[
 
 
 [𝐴𝑖𝑗 ] [𝐵𝑖𝑗 ] [𝐸𝑖𝑗 ]

[𝐵𝑖𝑗 ] [𝐷𝑖𝑗 ] [𝐹𝑖𝑗 ]

[𝐸𝑖𝑗 ] [𝐹𝑖𝑗 ] [𝐻𝑖𝑗 ]]
 
 
 

{
 
 

 
 {𝜀

(0)
}

{𝜀
(1)
}

{𝜀
(3)
}}
 
 

 
 

− {

{𝑁𝑇 }

{𝑀𝑇 }

{𝑃𝑇 }

} 

{
{𝑄}

{𝑅}
} = [

[𝐴𝑖𝑗] [𝐷𝑖𝑗 ]

[𝐷𝑖𝑗 ] [𝐹𝑖𝑗 ]
] {
{𝛾

(0)
}

{𝛾
(2)
}
} 

(15) 

where the subscripts ‘𝑇’ and ‘𝑎’ signal the thermal and electric loads, respectively. Here  [𝐴𝑖𝑗] 

denote the stretching stiffness matrix, [𝐷𝑖𝑗 ]  the bending stiffness matrix, [𝐵𝑖𝑗 ]  the stretching-

bending coupling stiffness matrix, and  ([𝐸𝑖𝑗 ], [𝐹𝑖𝑗 ], [𝐻𝑖𝑗 ]) are the higher-order stiffness matrix. 

([𝐴𝑖𝑗], [𝐵𝑖𝑗], [𝐷𝑖𝑗], [𝐸𝑖𝑗 ], [𝐹𝑖𝑗 ], [𝐻𝑖𝑗 ]) = ∫ [𝑄𝑖𝑗](1, 𝑧, 𝑧
2 , 𝑧3 , 𝑧4 , 𝑧6 )

ℎ 2⁄

−ℎ/2

𝑑𝑧 (16) 

Thermal force and piezoelectric resultants are calculated as 

{

𝑁𝑥
𝑇 𝑀𝑥

𝑇

𝑁𝑦
𝑇 𝑀𝑦

𝑇

𝑁𝑥𝑦
𝑇 𝑀𝑥𝑦

𝑇

} = ∫ [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {
𝛼(𝑧)

𝛼(𝑧)
0

} (1, 𝑧)𝛥𝑇𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

+ 
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+∫ [

𝑄11
𝑎 𝑄12

𝑎 0

𝑄12
𝑎 𝑄21

𝑎 0

0 0 𝑄66
𝑎
] {
𝛼11
𝑎

𝛼22
𝑎   

0  

}    (1, 𝑧)𝛥𝑇𝑑𝑧  

−
ℎ

2

−
ℎ

2
−ℎ𝑎

  

+∫ [

𝑄11
𝑎 𝑄12

𝑎 0

𝑄12
𝑎 𝑄21

𝑎 0

0 0 𝑄66

] {
𝛼11
𝑎

𝛼22
𝑎   

0  

}     (1, 𝑧)𝛥𝑇𝑑𝑧   

ℎ/2+ℎ𝑎

ℎ/2

  

(17a) 

and 

{

𝑁𝑥
𝑎 𝑀𝑥

𝑎

𝑁𝑦
𝑎 𝑀𝑦

𝑎

𝑁𝑥𝑦
𝑎 𝑀𝑥𝑦

𝑎
} =∫ {

𝑒31

𝑒32
0

} (1, 𝑧)
𝑉

ℎ𝑎
𝑑𝑧

−ℎ 2⁄

−ℎ/2−ℎ𝑎

 +∫ {
𝑒31

𝑒32
0

} (1, 𝑧)
𝑉

ℎ𝑎
𝑑𝑧

ℎ 2+ℎ𝑎⁄

ℎ 2⁄

  (17b) 

 

2.4 Equations of stability  
 

The stability equations of a piezoelectric FGM rectangular plate by TSDT are  

𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0

  

𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
− 3𝑐1 (

𝜕𝑅𝑥

𝜕𝑥
+
𝜕𝑅𝑦

𝜕𝑦
) + 𝑐1 (

𝜕2 𝑃𝑥

𝜕𝑥2
+ 2

𝜕2 𝑃𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2 𝑃𝑦

𝜕𝑦2
) + �̄� = 0  

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 + 3𝑐1 𝑅𝑥 − 𝑐1 (

𝜕𝑃𝑥

𝜕𝑥
+
𝜕𝑃𝑥𝑦

𝜕𝑦
) = 0  

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦 + 3𝑐1 𝑅𝑦 − 𝑐1 (

𝜕𝑃𝑥𝑦

𝜕𝑥
+
𝜕𝑃𝑦

𝜕𝑦
) = 0  

(18) 

With 

�̄� = (𝑁𝑥
𝑚 + 𝑁𝑥

𝑎)
𝜕2𝑤

𝜕𝑥2
+ (𝑁𝑦

𝑚 +𝑁𝑦
𝑎)

𝜕2𝑤

𝜕𝑦2
+ 2(𝑁𝑥𝑦

𝑚 + 𝑁𝑥𝑦
𝑎 )

𝜕2𝑤

𝜕𝑥  𝜕𝑦
  (19) 

Where 𝑁𝑥
𝑚  , 𝑁𝑦

𝑚  ,  𝑁𝑥𝑦
𝑚  and 𝑁𝑥

𝑎  , 𝑁𝑦
𝑎  , 𝑁𝑥𝑦

𝑎   are, respectively, the mechanical and constant applied 

actuator voltage forces with 

𝑁𝑥
𝑚    = 𝑁𝑦

𝑚   = −
∫ 𝐸(𝑧)𝛼(𝑧)𝛥𝑇   𝑑𝑧   
ℎ 2⁄

−ℎ/2

1−𝜈
  ;       

𝑁𝑥𝑦
𝑚    = 0

𝑁𝑥
𝑎    = 𝑁𝑦

𝑎   = −2𝑉𝑎 (𝑑31𝑄11
𝑎 + 𝑑32𝑄12

𝑎 )  ;       

𝑁𝑦
𝑎   = −2𝑉𝑎 (𝑑31𝑄12

𝑎 + 𝑑32𝑄22
𝑎 );        

𝑁𝑥𝑦
0    = 0

  (20) 

According to Eqs. (18a), (18e) and equilibrium equations, the governing equations including 
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the effects of thermal environment and piezoelectric layers are expressed as 

𝐴11
𝜕2 𝑢0

𝜕𝑥2
+ 𝐴12

𝜕2 𝑣0

𝜕𝑥𝜕𝑦
+ 𝐵11

𝜕2 𝜑𝑥

𝜕𝑥2
 + 𝐵12

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
  − 𝑐1 𝐸11 (

𝜕2 𝜑𝑥

𝜕𝑥2
+

𝜕3 𝑤0

𝜕𝑥3
) − 𝑐1 𝐸12 (

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
)

+𝐴66 (
𝜕2 𝑢0

𝜕𝑦2
+

𝜕2 𝑣0

𝜕𝑥𝜕𝑦
 )  + 𝐵66 (

𝜕2 𝜑𝑥

𝜕𝑦2
+

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
)     − 𝑐1 𝐸66 (

𝜕2 𝜑𝑥

𝜕𝑦2
+

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+ 2

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
) −

𝜕𝑁𝑥
𝑇

𝜕𝑥
−

𝜕𝑍1
𝑎

𝜕𝑥
= 0

  (21a) 

𝐴66 (
𝜕2 𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2 𝑣0

𝜕𝑥2
 )  + 𝐵66 (

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕2 𝜑𝑦

𝜕𝑥2
) − 𝑐1 𝐸66 (

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕2 𝜑𝑦

𝜕𝑥2
+ 2

𝜕3 𝑤0

𝜕𝑥2 𝜕𝑦
) + 𝐴12

𝜕2 𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2 𝑣0

𝜕𝑦2

+𝐵12
𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
   + 𝐵22

𝜕2 𝜑𝑦

𝜕𝑦2
 − 𝑐1 𝐸12 (

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥2 𝜕𝑦
) − 𝑐1 𝐸22 (

𝜕2 𝜑𝑦

𝜕𝑦2
+

𝜕3 𝑤0

𝜕𝑦3
) −

𝜕𝑁𝑦
𝑇

𝜕𝑥
−

𝜕𝑍4
𝑎

𝜕𝑥
= 0

  (21b) 

𝐴55 (
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2 𝑤0

𝜕𝑥2
) − 6𝑐1 𝐷55 (

𝜕𝜑𝑥

𝜕𝑥
+

𝜕2 𝑤0

𝜕𝑥2
) + 9𝑐1

2𝐹55 (
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2 𝑤0

𝜕𝑥2
) + 𝐴44 (

𝜕2 𝜑𝑦

𝜕𝑦
+

𝜕2 𝑤0

𝜕𝑦2
)

+𝑐1 [𝐸11
𝜕3 𝑢0

𝜕𝑥3
+ 𝐸12 (

𝜕3 𝑢0

𝜕𝑥𝜕𝑦2
+

𝜕3 𝑣0

𝜕𝑥2 𝜕𝑦
) + 𝐸22

𝜕3 𝑣0

𝜕𝑦3
+ 𝐹11

𝜕3 𝜑𝑥

𝜕𝑥3
+ 𝐹12 (

𝜕3 𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3 𝜑𝑦

𝜕𝑥2 𝜕𝑦
) + 𝐹22

𝜕3 𝜑𝑦

𝜕𝑦3
]

−𝑐1
2 [𝐻11 (

𝜕3 𝜑𝑥

𝜕𝑥3
+

𝜕4 𝑤0

𝜕𝑥4
) + 𝐻12 (

𝜕3 𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3 𝜑𝑦

𝜕𝑥2 𝜕𝑦
+ 2

𝜕4 𝑤0

𝜕𝑥2 𝜕𝑦2
) + 𝐻22 (

𝜕3 𝜑𝑦

𝜕𝑦3
+

𝜕4 𝑤0

𝜕𝑦4
)]

−2𝑐1
2𝐻66 (

𝜕3 𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3 𝜑𝑦

𝜕𝑥2 𝜕𝑦
+ 2

𝜕4 𝑤0

𝜕𝑥2 𝜕𝑦2
) + 𝑐1 [2𝐸66 (

𝜕3 𝑢

𝜕𝑥𝜕𝑦2
+

𝜕3 𝑣

𝜕𝑥2 𝜕𝑦
) + 2𝐹66 (

𝜕3 𝜑𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3 𝜑𝑦

𝜕𝑥2 𝜕𝑦
)]

  (21c) 

−𝐴55 (𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
) + 6𝑐1 𝐷55 (𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
) − 9𝑐1

2𝐹55 (𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
) + 𝐵11

𝜕2 𝑢0

𝜕𝑥2
+ 𝐵12

𝜕2 𝑣0

𝜕𝑥𝜕𝑦
+ 𝐷11

𝜕2 𝜑𝑥

𝜕𝑥2

𝐷12
𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
− 𝑐1 𝐹11 (2

𝜕2 𝜑𝑥

𝜕𝑥2
+

𝜕3 𝑤0

𝜕𝑥3
) − 𝑐1 𝐹12 (2

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
)

−𝑐1 [𝐸11
𝜕2 𝑢0

𝜕𝑥2
+ 𝐸12

𝜕3 𝑣0

𝜕𝑥𝜕𝑦
] + 𝑐1

2 [𝐻11 (
𝜕2 𝜑𝑥

𝜕𝑥2
+

𝜕3 𝑤0

𝜕𝑥3
) + 𝐻12 (

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
)]

+𝐵66 (
𝜕2 𝑢0

𝜕𝑦2
+

𝜕2 𝑣0

𝜕𝑥𝜕𝑦
) + 𝐷66 (

𝜕2 𝜑𝑥

𝜕𝑦2
+

𝜕2 𝜑𝑦

𝜕𝑥2 𝜕𝑦
) − 2𝑐1 𝐹66 (

𝜕2 𝜑𝑥

𝜕𝑦2
+

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
)

−𝑐1 𝐸66 (
𝜕2 𝑢0

𝜕𝑦2
+

𝜕𝑣0

𝜕𝑥𝜕𝑦
) + 𝑐1

2𝐻66 (
𝜕2 𝜑𝑥

𝜕𝑦2
+

𝜕2 𝜑𝑦

𝜕𝑥𝜕𝑦
+ 2

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
) −

𝜕𝑀𝑥
𝑇

𝜕𝑥
−

𝜕𝑍2
𝑎

𝜕𝑥
+ 𝑐1

𝜕𝑃𝑥
𝑇

𝜕𝑥
−

𝜕𝑍3
𝑎

𝜕𝑥
= 0

  (21d) 

−𝐴44 (𝜑𝑦 +
𝜕𝑤0

𝜕𝑦
) + 6𝑐1 𝐷44 (𝜑𝑦 +

𝜕𝑤0

𝜕𝑦
) − 9𝑐1

2𝐹44 (𝜑𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐵12

𝜕2 𝑢0

𝜕𝑥 𝜕𝑦
+ 𝐵22

𝜕2 𝑣0

𝜕𝑦2
+ 𝐷12

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦

+𝐷22
𝜕2 𝜑𝑦

𝜕𝑦2
− 𝑐1 [𝐹12 (2

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
) + 𝐹22 (2

𝜕2 𝜑𝑦

𝜕𝑦2
+

𝜕3 𝑤0

𝜕𝑦3
) + 2𝐹66 (

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕2 𝜑𝑦

𝜕𝑥2
+

𝜕3 𝑤0

𝜕𝑥𝜕𝑦2
)]

−𝑐1 [𝐸12
𝜕2 𝑢0

𝜕𝑥𝜕𝑦
+ 𝐸22

𝜕2 𝑣0

𝜕𝑦2
+ 𝐸66 (

𝜕2 𝑢0

𝜕𝑥𝜕𝑦
+

𝜕𝑣0

𝜕𝑥2
)] + 𝑐1

2 [𝐻12 (
𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕3 𝑤0

𝜕𝑥2 𝜕𝑦
) + 𝐻22 (

𝜕2 𝜑𝑦

𝜕𝑦2
+

𝜕3 𝑤0

𝜕𝑦3
)]

+𝐵66 (
𝜕2 𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2 𝑣0

𝜕𝑥2
) + 𝐷66 (

𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕2 𝜑𝑦

𝜕𝑥2
) + 𝑐1

2𝐻66 (
𝜕2 𝜑𝑥

𝜕𝑥𝜕𝑦
+

𝜕2 𝜑𝑦

𝜕𝑥2
+ 2

𝜕3 𝑤0

𝜕𝑥2 𝜕𝑦
)

−
𝜕𝑀𝑦

𝑇

𝜕𝑦
−

𝜕𝑍5
𝑎

𝜕𝑦
+ 𝑐1

𝜕𝑃𝑦
𝑇

𝜕𝑦
−

𝜕𝑍6
𝑎

𝜕𝑦
= 0

  (21e) 

The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions 

{
 
 

 
 
𝑢0
𝑣0
𝑤0
𝜑𝑥
𝜑𝑦 }

 
 

 
 

=∑
∞

𝑚=1
∑

{
 
 

 
 
𝑈𝑚𝑛cos𝜆𝑥sin𝜇𝑦

𝑉𝑚𝑛sin𝜆𝑥cos𝜇𝑦

𝑊𝑚𝑛sin𝜆𝑥sin𝜇𝑦

𝑋𝑚𝑛cos𝜆𝑥sin𝜇𝑦

𝑌𝑚𝑛sin𝜆𝑥cos𝜇𝑦}
 
 

 
 

∞

𝑛=1
 (22) 
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Substitution of Eq. (22) into Eqs. (21a)-(21e), we obtain a 5×5 system of the differential 

equations 

[
 
 
 
 
𝑠11 𝑠12 𝑠13 𝑠14 𝑠15
𝑠12 𝑠22 𝑠23 𝑠24 𝑠25
𝑠13 𝑠23 𝑠33 𝑠34 𝑠35
𝑠14 𝑠24 𝑠34 𝑠44 𝑠45
𝑠15 𝑠25 𝑠35 𝑠45 𝑠55]

 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛

 𝑉𝑚𝑛

 𝑊𝑚𝑛  

𝑋𝑚𝑛

𝑌𝑚𝑛 }
 
 

 
 

=

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 (23) 

where 𝑆𝑖𝑗  is defined by 

𝑠11 = 𝐴11𝜆
2 + 𝐴66𝜇

2, 𝑠12 = 𝜆𝜇(𝐴12 + 𝐴66),  

𝑠13 = −𝑐1 𝜆[𝐸11𝜆
2 + (𝐸12 + 2𝐸66)𝜇

2],  

𝑠14 = (𝐵11 − 𝑐1 𝐸11)𝜆
2 + (𝐵66 − 𝑐1 𝐸66)𝜇

2,  

𝑠15 = [(𝐵12 − 𝑐1 𝐸12) + (𝐵66 − 𝑐1 𝐸66)]𝜆𝜇,   

𝑠22 = 𝐴66𝜆
2 + 𝐴22𝜇

2,    

𝑠23 = −𝑐1 𝜇[(𝐸12 + 2𝐸66)𝜆
2 + 𝐸22𝜇

2],  

𝑠24 = 𝑠15,    

𝑠25 = (𝐵66 − 𝑐1 𝐸66)𝜆
2 + (𝐵22 − 𝑐1 𝐸22)𝜇

2  

𝑠33 = (𝐴55 − 6𝑐1 𝐷55)𝜆
2 + (𝐴44 − 6𝑐1 𝐷44)𝜇

2 +𝑁𝑥
0𝜆2 + 𝑁𝑦

0𝜇2

+𝑐1
2[𝐻11𝜆

4 + 2(𝐻12 + 2𝐻66)𝜆
2𝜇2 + 𝐻22𝜇

4 + 9𝐹44𝜇
2 + 9𝐹55𝜆

2]
  

𝑠34 = (𝐴55 − 6𝑐1 𝐷55 + 9𝑐1
2𝐹55)𝜆  

−𝑐1 [(𝐹11 − 𝑐1 𝐻11)𝜆
3 + ((𝐹12 − 𝑐1 𝐻12) + 2(𝐹66 − 𝑐1 𝐻66)) 𝜆𝜇

2 ]  

𝑠35 = (𝐴44 − 6𝑐1 𝐷44 + 9𝑐1
2𝐹44)𝜇  

−𝑐1 [(𝐹22 − 𝑐1 𝐻22)𝜇
3 + ((𝐹12 − 𝑐1 𝐻12) + 2(𝐹66 − 𝑐1 𝐻66)) 𝜆

2 𝜇]  

𝑠44 = 𝐴55 − 6𝑐1 𝐷55 + 9𝑐1
2𝐹55 + (𝐷11 − 2𝑐1 𝐹11 + 𝑐1

2𝐻11)𝜆
2  

+(𝐷66 − 2𝑐1 𝐹66 + 𝑐1
2𝐻66)𝜇

2   

𝑠45 = [(𝐷12 − 2𝑐1 𝐹12 + 𝑐1
2𝐻12) + (𝐷66 − 2𝑐1 𝐹66 + 𝑐1

2𝐻66)]𝜆𝜇  

𝑠55 = 𝐴44 − 6𝑐1 𝐷44 + 9𝑐1
2𝐹44 + (𝐷66 − 2𝑐1 𝐹66 + 𝑐1

2𝐻66)𝜆
2

+(𝐷22 − 2𝑐1 𝐹22 + 𝑐1
2𝐻22)𝜇

2
  

(24) 

 

2.5 Uniform temperature loads rise 
 

The plate initial temperature is assumed to be 𝑇𝑖. The temperature is uniformly raised to a final 

value 𝑇𝑓 in which the piezoelectric porous FGM plate buckles. The temperature change is given by 

(Bouazza et al. 2016, 2019, 2021) 

Δ𝑇 = 𝑇𝑓 − 𝑇𝑖  (25) 
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Table 1 Material properties of FGMs and piezoelectric materials 

Properties Aluminum Alumina G-1195N 

E (GPa) 70 380 63.0 

𝜈 0.3 0.3 0.3 

𝛼(1/°𝐶) 23×10-6 10.4×10-6 1.2×10-6 

k (W/mK) 2.09 204 5.0 

𝑑31(m V⁄ ) -- -- 2.54×10-10 

𝑑31(m V⁄ ) -- -- 2.54×10-10 

 
Table 2 Comparison of critical buckling temperature of simply supported isotropic plates (𝑎/ℎ =  100,     𝜈 =
0.3,    𝛼 = 1.0 × 10−6) 

a/b Chen (1991) Ganapathi (1997) Chun-Sheng (2011) Present Results 

0.25 

0.50 

1.0 

1.50 

2.0 

2.5 

3.0 

0.691 

0.814 

1.319 

2.101 

3.191 

4.601 

6.330 

0.676 

0.789 

1.272 

2.072 

3.176 

4.585 

6.341 

0.672 

0.791 

1.264 

2.054 

3.158 

4.578 

6.306 

0.6720 

0.7905 

1.2646 

2.0543 

3.1589 

4.5775 

6.3089 

 
Table 3 Comparison of critical buckling of simply supported square isotropic plate under 

𝑎/ℎ Matsunaga (2005) Bourada et al. (2012) Kettaf et al. (2013) Fethi (2019) Present 

10 

20 

100 

0,1183×10-1 

0,3109×10-2 

0,1264×10-3 

0,1198×10-1 

0,3119×10-2 

0,1265×10-3 

0,1198×10-1 

0,3119×10-2 

0,1265×10-3 

0,1198×10-1 

0,3119×10-2 

0,1265×10-3 

0,1198×10-1 

0,3119×10-2 

0,1265×10-3 

 

 

3. Numerıcal results and dıscussıon 
 

3.1 Validation of results  
 

FGM with a mixture of aluminum and alumina for the FGM substrate and G-1195N for the 

piezoelectric layers is used for the plate, which is referred to as Al/Al2O3. The actuator layer 

thickness is ha=0.001 m. The material properties for aluminum, alumina, and G-1195N are listed 

in Table 1. 

The comparison is performed for simply supported isotropic plates subjected to under uniform 

temperature rise for different values of aspect ratio (a/b) are shown in Table 2. The thickness ratio 

of the plate is set as (a/h=100). The critical temperature buckling loads of present theory are 

compared with the results of Chen et al. (1991), Ganapathi (1997), Chun-Sheng (2011) results. 

They are in excellent agreement. 

Table 3 presents the critical temperature comparison 𝛼∆𝑇𝑐𝑟  of a simply supported square 

isotropic plate under uniform temperature with (𝐸 = 10−6 N m2⁄  and 𝛼 = 10−6 1 K⁄ ) . The results 

obtained from the present theory are compared to those obtained by Matsunaga (2005), Bourada et 

al. (2012), Kettaf et al. (2013). According to this table, this can be seen as excellent agreement 

with these current results and those given in the literature. 
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Fig. 5 Critical buckling temperature of piezoelectric porous FGM-I plate under uniform 

temperature rise vs of side-to-thickness ratio of the plate (a/h) 
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Fig. 6 Critical buckling temperature of piezoelectric porous FGM-II plate under 

uniform temperature rise vs of side-to-thickness ratio of the plate (a/h) 
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Fig. 7 Critical buckling temperature of piezoelectric porous FGM-I plate under uniform 

temperature rise vs aspect ratio of the plate (a/b) 
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Fig. 8 Critical buckling temperature of piezoelectric porous FGM-I plate under uniform 

temperature rise vs aspect ratio of the plate (a/b) 

 
 
3.2 Parametric studies  
 

Firstly, the influence of side-to-thickness ratio (a/h) on the thermal buckling load with various 

values of porosity coefficient (e) for a simply supported square with even and uneven porosity 

distributions is plotted in Figs. 5 and 6, respectively, at the volume fractions of the constituents 

(k=2), when the applying voltage is (V0=500) and porosity parameters (e=0, 0.1, 0.2). It is clear 

that a perfect piezoelectric FGM plate has higher buckling loads than porous FGM piezoelectric 

plate at a constant electric voltage. Also, it is observable from these Fig. 5 that the effect of 

porosity coefficient is significant when the side-to-thickness ratio value is smaller, but it is 

ignorable at large side-to-thickness ratios. 

Figs. 7 and 8 depict the effect of plate aspect ratio (a/b) on critical buckling temperature for two 

types of porosity distribution called even and uneven, respectively and simply boundary 

conditions. The piezoelectric FGM plate is made of porous functionally graded materials that are 

integrated with surface bonded piezoelectric Layers. The rside-to-thickness ratio of the PFGM 

plate is set as a/h=20, volume fractions of the constituents (k=2), the applying voltage is (V0=500) 

and different values of porosity parameters (e=0, 0.1, 0.2). It is observed that with increasing the 

plate aspect ratio a/b from 0.5 to 3, the critical buckling temperature difference also increases 

steadily, whatever the porosity parameters (e) is. 

  

 

4. Conclusions 
 

The thermal buckling of FG porous layer with integrated with surface-bonded piezoelectric 

actuator layers with simply boundary conditions and two different porosity distributions have been 

investigated. Two kinds of porosity distribution called even and uneven were considered. A 

modified power-law function was employed to describe the graded and porosity-dependent 

material properties. Theoretical formulations are within the framework of third-order shear 

deformation plate theory. Navier method is employed to obtain the thermal critical buckling load. 

The effects of porosity coefficient (e) and thickness ratio (a/h), and aspect ratio (a/b) on the 
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thermal critical buckling load are discussed. Numerical results show that: 

• An increase in the porosity coefficient and side-to-thickness ratio leads to lower thermal 

critical buckling loads of piezoelectric functionally graded porous plates.  

• The critical buckling temperature can be controlled by applying a suitable voltage on the 

actuator layers 

• The critical buckling temperature will increase by increasing the thickness. 

• The porosity distribution has a significant influence on the critical buckling temperature 

behavior of the plate. 

• The critical buckling temperature of the piezoelectric FGM plate is more sensitive when the 

pores are evenly distributed.  

• The plates with uneven distribution usually provide higher critical buckling temperature 

compared with that of FGM-I plates. The trend for variation of critical buckling temperature 

with respect to porosity parameter is dependent upon the value of power law index (k). 
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