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Abstract.  This paper presents a mathematical model suitable for the calculation of laminated glass, i.e. glass plates 
combined with an interlayer material. The model is based on a beam differential equation for each glass plate and a 
separate differential equation for the slip in the interlayer. In addition to slip, the model takes into account prestressing 
force in the interlayer. It is possible to combine the two contributions arbitrarily, which is important because the glass 
sheet fabrication process changes the stiffness of the interlayer in ways that are not easily predictable and could 
introduce prestressing of varying magnitude. The model is suitable for reformulation into an inverse procedure for 
calculation of the relevant parameters. Model consisting of a system of differential-algebraic equations, proved too 
stiff for cases with the thin interlayer. This novel approach covers the full range of possible stiffnesses of layered glass 
sheets, i.e., from zero to infinite stiffness of the interlayer. The comparison of numerical and experimental results 
contributes to the validation of the model. 
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1. Introduction 
 

Glass is an extremely important building material for facade construction. Very often it is used 

for glazing in one-, two- or three-layer combinations. Typically (O’Regan 2015), glazing consists 

of glass sheets and a gas in between; sometimes it is ordinary air and sometimes argon or crypton 

gas. We distinguish between the thermal and structural properties of glass sheets. The properties of 

the gas between the glass sheets are important for the thermal (not the structural) behaviour of the 

glass. Regarding the structural behaviour, it can be treated as an ideal gas. 

Moreover, what looks like a single pane of glass is often composed of two or more layers of 

glass with a special folium in between (laminated glass). This interlayer (folium) is between 0.38 

and 6 mm thick and can be made of different materials: Polyester, acrylic, polyvinyl butyral 

(PVB), ethyl vinyl acetate (EVA), thermoplastic polyurethane (TPU), polyester (PET), etc. It is 

obvious that the properties of the interlayers are of great importance for the structural behaviour of 

the glass sheet as a whole. 

In this paper, we present some challenges in modeling layered glass, in particular the influence 
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of the interlayer on the behavior of the glass plate, i.e., how does the processing of layered glass 

change the elastic modulus of a material that binds the glass plates together. At this stage, we 

neglect the viscous properties of the interlayer material, since the coupling with the glass is weak 

and can be accounted for later. Despite this simplification, this is an entry point to develop a model 

capable of fully describing the behavior of layered glass (similar to the approach for fiber 

reinforcement in Rukavina et al. 2019). This means that it is able to mimic the complete absence 

of a bond between the glass plates and also to model the complete bond that joins two materials 

into one. 

The mechanism that binds the two plates consists of at least two parts: the sliding between the 

layers and the pre-stress between the layers. Because of the manufacturing process, which involves 

heating and thus develops a boundary layer between the interlayer and the glass plate, it is difficult 

to determine the exact contribution of each of these factors. The influence of the boundary layer is 

studied in (Challamel and Girhammar 2011), which assume uniformly distributed sliding forces or 

shear stresses between the layers. However, our model assumes a non-uniform distribution of 

strains and stresses. Besides analytical models, e.g., (Hartmann and Dileep 2019), semi-analytical 

models, e.g., (Gahleitner and Schoeftner 2021), there are also various numerical models, e.g., 

(Nikolić et al. 2018). Possible numerical finite element models include the use of flexural elements 

as in the MEPLA software (Bohmann 2015), solid 3D elements as in (Bedon et al. 2023). It is 

possible to use extended elements combining properties of solid and flexural elements as in (Kožar 

et al. 2018). 

Our first numerical model was based on a system of differential equations, one for each 

coupled beam, and was solved using a semi-analytical approach (see, e.g., Hirsh et al. 2004). The 

main advantage of this model is its multilayer nature, the accurate description of the force transfer 

between layers, and the accurate determination of the contribution of each layer to the structural 

stiffness. However, this model was too stiff for thin layers due to the large interlayer stiffness 

required for thin layers (a variety of models usually assume infinite transverse stiffness of the 

layers, e.g., Foraboschi 2009 or Campi and Monetto 2013), so we interrupted the development of 

this model for the time being. 

Our novel mathematical model presented here is based on two beams with a common 

intermediate layer that generates only force coupling between the beams. By assuming infinite 

transverse stiffness of the intermediate layer, the equations are decoupled, similar to (Foraboschi 

2009) and (Campi and Monetto 2013). Unlike the examples in the literature, this model includes 

both the sliding effect and the prestressing force in the interlayer and they can be freely mixed. It is 

important to consider variable parts of the influence of slip and prestress because the stiffness 

properties of the interlayer are highly variable and depend on many factors in the manufacture of 

the glass sheets. Once we learn more about the dependence of the structural properties of the 

interlayer on external influences, we will be able to determine the contribution of the two models 

in advance. More about material properties and their dependences on different parameters can be 

found in (Ibrahimbegovic 2009) or (Lemaitre and Chaboche 1994). Previous experience and 

formulation of a multilayer model are described in (Kožar et al. 2021), but this model is currently 

limited to two layers. 

To validate the numerical model in terms of (Kožar et al. 2022), experiments were performed 

with a single plate and a two-layer plate. At this stage of the study, we did not perform a 

parametric analysis of the different thicknesses of the glass plates and the interlayer between them. 

Examples of more detailed experiments with two-layer glass plates can be found in (Araujo 2019). 

The experiments performed are described in Section 2 of the paper, along with some statistical  
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Fig. 1 Experimental set-up with the detail of strain gauges for indirect displacement measurement 

 

 

analyses that provide insight into the reliability of the results. The description of the numerical 

model follows in Section 3 with the formulation of the interlayer slip and the thermal bias resulting 

from the fabrication of the glass sheets. The comparison of the numerical results with the 

experimental results in Section 4 illustrates the properties of the model. Full validation of the 

mathematical model will be performed by parametric analysis with additional experimental tests in 

preparation. 

 

 

2. Experimental analysis 
 

The validation of the model is done by comparing it with the results of experiments carried out 

in two phases: i) bending tests on monolithic glass plates, and ii) bending tests on two-layer glass 

plates. The first group of experiments served to calibrate the measuring equipment. The second 

was used to validate the model for layered glass. We neglected the viscous properties of the 

interlayer. Our experiment is a three-point bending test with steel rollers as supports spaced 1.0 m 

apart and load applied via a steel roller in the centre of the plate (acting as a beam). The bending 

test is performed on two annealed glass plates with a size of 1.1 m×0.2 m and a thickness of 4.88 

mm. The edges are ground smooth and covered with an intermediate layer of Trosifol Clear film of 

0.76 mm initial thickness. The room temperature was 10°C and the loading time was about 10 

minutes. The deformations were determined with a strain gauge. The load is applied via a steel 

roller, so there is no plate effect that would affect the beam model. The tests were performed in the 

KFK laboratory in Dugo Selo-Rugvica and the experimental setup is shown in Fig. 1. 
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(a) (b) 

Fig. 2 Experimental measurements confidence interval and simple model: (a) monolithic glass 

displacements; (b) layered glass displacements 

 

    
(a) (b) 

Fig. 3 Statistics of experimental measurements: (a) monolithic glass variance and difference from simple 

model; (b) layered glass variance and difference from simple model 

 

 

In Fig. 1 we see the loading device, the supports and the device for measuring the 

displacement. The results of the experimental phases are shown in Figs. 2 and 3, i.e., the 

displacements due to self-weight and the displacements due to concentrated force loading. The 

loading is carried out until failure and the glass behaves as expected: brittle. We compare the 

displacements due to self-weight and gradually increasing loads, P={0,25,0,50,1,00,1,25,1,50} 

kN, where the behaviour of the glass remains linear. The experimental results are shown in Fig. 2 

and the basic statistics in Fig. 3. In Fig. 2 we see the comparison of the experimental results with 

the simple model for the deflection of the centre of the beam, 𝛿𝑞 =
5𝑞𝐿4

384𝐸𝐼
 and 𝛿𝑃 =

𝑃𝐿3

48𝐸𝐼
. The 

definition of upper and lower deflection limits is for the orientation. In an example with a thicker 

interlayer, its thickness would be taken into account. The choice of moment of inertia I determines 

the limits of possible deflections. For the monolithic glass plate it is always the plate thickness, but 

for layered glass it can be the thickness of a single or double plate. The first gives the lower limit 

when the glass plates slide perfectly, and the second gives the upper limit when the bond between 

the plates is perfect. Note: The thickness of the layered glass is known (measured), but the 

thickness of the interlayer is not known. We assume that it is very thin, since the total thickness is 

9.76 mm, which corresponds to two single glass plates (2×4.88 mm). 

In Fig. 2(a) the model represents the displacement of a single plate and in Fig. 2(b) the model 

represents the lower bound, i.e., the displacement of two plates with perfect bond. Nevertheless, 

we see that the confidence line of the measurement is below the possible theoretical limit. The 

confidence interval in Fig. 2 is calculated with the equation 𝑧 ≤ ቚ
𝑥−𝜇

𝜎
ቚ ξ𝑁, where 𝑥 is the sample 

mean,  𝜇is the unknown true mean, 𝜎 is the sample standard deviation, N is the number of samples 

and z=1.96 for the 95% confidence interval. 
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Calculation model for layered glass 

In Fig. 3 we see the simple statistics of the experimental measurements, Fig. 3(a) for the 

monolithic glass plate and Fig. 3(b) for the layered glass plate. The first bar graph shows the 

measurement reliability, i.e., the variation of the results for individual loads (from the smallest to 

the largest load). For both the monolithic plate and the layered glass plate, it is clear that the 

reliability increases with increasing load, i.e., a smaller force leads to less reliable measurement 

results. The second bar graph (with negative values) shows the discrepancy with the model 

predictions. For the monolithic plate, as the force increases, the results agree better and better with 

the model and are satisfactory for the self-weight. For the layered plate, the results deviate more 

from the model as the load increases and are particularly poor for the self-weight load (which is a 

rather small load). It could be said that the bond between the layers becomes weaker with 

increasing load, but the results for dead weight do not allow such a general conclusion. Definitely, 

the behaviour of interlayer bonding should be further investigated in a series of carefully planned 

experiments. 

 

 

3. Mathematical model 
 

Our mathematical model is presented using an example of two beams coupled with an 

intermediate layer. In addition to the coupling due to the interlayer, there is also a prestress 

coupling due to thermal effects that occur during the manufacture of the laminated glass plate. 

Each of the models alone is capable of mimicking both displacement limits, the lower one for the 

case where there is no coupling and the upper one for the case where the interlayer is perfectly 

coupled. In order to use realistic material parameters, we must use both models simultaneously. At 

this stage of the study, the plates are simply supported and treated mathematically as beams. This 

simplifies the study of the behaviour of the intermediate layers. We have also assumed small 

displacements and strains. 

 

3.1 Air coupled glass model 
 

For the sake of completeness, we will mention only the air-coupled glass model. If we have two 

glass plates with a gas (e.g., air) between them, the displacements of the plates are coupled to the 

gas pressure acting on both. The ideal gas equation acting on the volume (between the 

beams/plates) is the coupling equation. The normalised system of equations is 

𝑑4𝑦1(𝑥)

𝑑𝑥4
+ (𝑦1(𝑥) − 𝑦2(𝑥))𝑃𝑡 = 𝑝(𝑥)  

𝑑4𝑦2(𝑥)

𝑑𝑥4
− (𝑦1(𝑥) − 𝑦2(𝑥))𝑃𝑡 = 0  

𝑃0𝑉0𝑇 = 𝑃𝑡𝑉𝑡𝑇   ,   𝑉𝑡 = 𝑉0 − ∫ 𝑦1 + ∫ 𝑦2 

(1) 

The above equation represents two glass plates treated as beams coupled with the ideal gas 

equation, where yi is the beam displacement, Pt is the gas pressure after loading, P0 is the initial 

gas pressure, V0 and Vt represent the gas volume before and after the loading. 

We have not yet studied this type of glass experimentally and a study is planned for future 

development. 

 

3.2 Model of interlayer slip 
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In the layered glass model, the glass plates are strongly coupled and their behaviour could not 

be modelled by pressure transfer (at high pressure values, the system of equations becomes stiff). 

The basic assumptions of layered coupling (see, e.g., Foraboschi 2009) are that each layer is elastic 

and the Bernoulli-Navier hypothesis is satisfied and that the vertical layer displacements are the 

same for each layer (and consequently the curvatures are the same), there is only the shear stress in 

the interlayer (except for the axial stress from the eventual prestress, i.e., from the axial thermal 

stress). This assumption is equivalent to the hypothesis that the longitudinal modulus of elasticity 

is zero and the transverse modulus of elasticity is infinite. 

Our model assumes that laminated glass dissipates most of its deformation energy by bending 

the layers, with an intermediate layer serving as a means of redistributing the load among the 

layers. In the interlayer, we assume the existence of an elastic stress tensor ቂ
0 𝜏
𝜏 𝜎

ቃ, where zero 

stress refers to stress perpendicular to the glass plates, 𝜎 is parallel to the glass plates, and 𝜏 is 

shear. The components of the stress tensor are additively decomposed into the shear, which is 

always present, and the axial stress, which we believe is also always present, but without a definite 

cause (at the moment). To explain, let us assume that the upper beam deforms by a certain value 

f(x). In this simple model, the lower beam is offset from the upper beam by a distance h, so its 

deformation is f(x)+h. The lengths of these two beams are not equal. The length of the first beam 

is∫
0

𝑥
𝑓(𝜏)𝑑𝜏 and that of the second ∫

0

𝑥
𝑓(𝜏)𝑑𝜏 +

ℎ𝑥

2
, so that an axial force acts in the intermediate 

layer even without any prestressing. Note that the shear stress contribution 𝜏 “hides” an influence 

of the interlayer thickness h since 𝜏 = 𝛾𝐺𝑆 =
𝜉

ℎ
𝐺𝑆. 

To simplify the problem, we could write the beam equation as a function of the bending 

moment 𝐸𝐼𝑦′′(𝑥) = 𝑀(𝑥) and treat coupled beam equations as separate equations, each with its 

own bending moment. Thus, we have MA(x) acting on the upper beam and MB(x) acting on the 

bottom beam, see Fig.4.b). The assumption that the beams have equal displacements leads to equal 

bending moments, MA(x)=MB(x). This assumption is adopted by many researchers and is discussed 

elsewhere in this paper. 

The interlayer forces resulting from the sliding of the beam act as additional forces in the cross 

section. They can be compared to the prestressing force acting in the interlayer, but in the opposite 

direction for each beam producing opposite prestressing moments. The mechanics of the 

development of the interlayer stresses are shown in Fig. 4(a) and the resulting prestressing force NT 

in Fig. 4(b). Fig. 4(b) also shows possible stress distributions in the beam cross sections. 

 

 

  
(a) (b) 

Fig. 4 (a) Slipping of the upper and lower beams; (b) external moments acting on the cross sections of the 

upper and lower beam 
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The mathematical formulation of the problem is as follows 

𝑀𝐴(𝑥) = 𝑝0(𝑀𝑃(𝑥) + 𝑀𝑞(𝑥) + 𝑀𝑇(𝑥)) 

𝑀𝐵(𝑥) = (1 − 𝑝0)𝑀𝐴(𝑥) 

𝑀𝑇(𝑥) =
𝑏0ℎ𝐴

2
𝐸𝑆∫0

𝑥
𝜉(𝜏)𝑑𝜏  

𝜎𝐴
𝑑(𝑥) =

𝑀𝐴

𝑊𝐴
,     𝜎𝐵

𝑢(𝑥) =
𝑀𝐵

𝑊𝐵
 

𝜉𝑇(𝑥) = 𝜉𝐵(𝑥) − 𝜉𝐴(𝑥) (2) 
𝑑𝜉(𝑥)

𝑑𝑥
= 𝜖(𝑥) =

𝜎(𝑥)

𝐸
  

𝑆(𝑥) =
1

𝐸𝐴

𝑑𝜎𝐴
𝑑(𝑥)

𝑑𝑥
+

1

𝐸𝐵

𝑑𝜎𝐵
𝑢(𝑥)

𝑑𝑥
  

𝑑2𝜉𝑇(𝑥)

𝑑𝑥2
+ 𝑆(𝑥) = 0,     𝜉𝑇

′ (0) = 0,     𝜉𝑇 ቀ
𝐿

2
ቁ = 0 

(2) 

In the above system of Eq. (2), equations are substituted one into another so only the last 

differential equation remains to be solved. The meaning of the symbols is as follows: 

Mp, Mq, MT -respectively, external moment from forces, self-weight and prestress 

𝝃, 𝜀 -respectively, the slip function and the strains 

A, B, d, u -respectively, indices for upper and lower beam, for down and upper side of the 

beams  

σ, W, E -respectively, stresses and the section moduli, material moduli. 

As a consequence of assuming equal beam deflections, p0 is assumed to be 1/2. Using p0 

instead of the constant enables us to enhance the formulation with different assumptions that 

would not result in equal beam deflections. However, that is left for future development. 

The system of Eq. (2) is combined with beam differential equation 

𝐸1𝐼1
𝑑2𝑦1

𝑑𝑥2
+𝑀𝐴(𝑥) = 0                                                       (3) 

where index ‘1’ stands for the upper beam and index ‘2’ for the lower one. This equation is later 

used for displacement calculation. 

The system of Eq. (2) is quite large, and although we could substitute individual equations into 

the final differential equation, we have not done so. Instead, WolframMathematica performs the 

substitutions and solves the final system. The advantage is that the intermediate results are 

available for review and one gets a better insight into the solution procedure. Also, solving in 

closed form imposes restrictions on the system that can be solved and makes further extensions 

more difficult. 

 

3.3 Prestressing 
 

In the manufacture of laminated glass, the glass and the interlayer (e.g., polyvinyl butyral) are 

heated and cooled. The elastic moduli and coefficients of thermal expansion of the two materials 

in laminated glass are different, resulting in the development of thermal strains and stresses. The 

evolution of thermal residual stress in a combination of elastic (glass) and viscoelastic materials 

(PVB) is interesting and non-trivial. However, here we will apply the simplest reasonable coupling 

of layers to estimate the residual axial force that affects the deflection of the beam. 

We assume that the two materials are tightly coupled and have equal longitudinal 

displacements, i.e., strains, since their lengths are equal. The equation for the strains is 
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Fig. 5 Assumed thermal prestress behaviour 

 

 
𝜎1

𝐸1
+ 𝛼1Δ𝑇 =

𝜎2

𝐸2
+ 𝛼2Δ𝑇                                                             (4) 

In the above equation ΔT is the temperature difference, σi is the stress, Ei is the modulus and αi 

is the coefficient of thermal expansion of the layer i. The introduction of the force equation 

𝜎1𝐴1 = 𝜎2𝐴2 allows us to find suitable stresses and the corresponding axial force, i.e., the thermal 

prestress. Note: We assume that the heating occurs on a flat surface and that there is no 

contribution from bending. The introduction of bending during heating would extend the possible 

variations of the pre-stress of the layered glass. 

Thermal prestressing is only one example of a possible additional axial force. It is not the only 

possible source of the axial force, i.e., the shrinkage of the interlayer can have various causes, not 

only the thermal change. At this stage, the forces in the interlayer are not our research subject and 

we have not attempted to study the processes in the interlayer because this requires lengthy 

experiments with sophisticated equipment; this is planned for our future research. 

 

 

4. Numerical example 
 

The examples were calculated using differential equations with Wolfram Mathematica. It is 

possible to use numerical methods, but for the proof of concept it was faster to use the methods 

provided by Wolfram. The beams have equal geometrical and material properties, width=0.2 m, 

length=1.0 m, two glass layers with height=4.88 mm each and negligible height of the 

intermediate layer (the exact value after joining the two glass plates could not be determined). The 

modulus of elasticity for glass is 70 GPa, for the interlayer: ES=3 MPa (assumed because it might 

have changed after heating). The load P(x) is the point load at the centre of the upper beam with 

values P={0,0.025,0.05,0.1,0.125,0.15} kN in combination with the self-weight. 

For better illustration and comparison of the results, we have calculated the upper and lower 

limits of the displacement of the layered glass beam. The lower limit is the deflection of two 

uncoupled glass plates (at self-weight equal to the deflection of a single glass plate, since the 

plates slide freely over each other) and the upper limit is the deflection of two perfectly coupled 

(confined) glass plates (equal to the deflection of a single glass plate of double thickness, since the 

plates are coupled so that there is no sliding between them). All of our results should fall between 

these two limits. 
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Fig. 6 Along the half span of the beam, a) interlayer slip and b) the resulting axial force 

 

  

Fig. 7 Comparison of layered glass displacement with interlayer slip and with a) and without b) the 

additional axial force 

 

 

4.1 Interlayer coupling 
 

The contribution of interlayer coupling is described by Eq. (2) and the resulting total slip 

function 𝝃T is presented in Fig. 6(a). It can be seen that the slip is maximum at the edge of the 

beam and zero at the centre. The axial force in the intermediate layer is nonlinear and is shown in 

Fig. 6(b). It is a summation of the contributions along the beam, 𝑁𝑇(𝑥) = 𝐸𝑆∫0
𝑥
𝜉(𝜏)𝑑𝜏, with 

extremes opposite to the slip function: Zero at the edge and maximum at the centre of the bar. 

The exact values in Fig. 6 change with the material parameters and the load. The values shown 

here correspond to the load P=0.1 kN. 

The axial force is calculated from strain as 𝑁𝑇 = 𝐸𝑆∫0
𝑥
𝜉(𝜏)𝑑𝜏, so that its value is zero at the 

end. This is consistent with the fact that the internal forces cannot exert an external force on free 

parts of the structure. 

 

4.2 Axial stress 
 

The production of the layered glass in this example involved heating to 60 degrees Celsius (on 

a flat surface), after which the two glass plates were firmly bonded together. The exact material 

parameters after heating are not known, so we assume data from literature/the Internet: 

αglass=5.9E-6, αPVB=139E-6, Eglass=70 GPa, EPVB=3 MPa and ΔT=-40℃. With these data, Eq. (4) 

gives NT=2.444 kN. This axial force is constant along the beam and visibly reduces the 

displacement of the layered glass for all loading cases. 
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Fig. 8 Comparison of the experimental results and model calculation with various parameters 

 

 

The comparison of the displacements with respect to the lower and upper limits is shown in 

Fig. 7. It is obvious that either the intermediate layer with sufficient stiffness or the axial force 

sufficiently large can reproduce any value within the indicated limits. However, the internal forces 

corresponding to the cases in Fig. 7 are not identical, as will be explained (see Fig. 9). 

The displacements in Fig. 7 are generated using Eq. (3) and Eq. (2). It is interesting to note that 

the relationship of the displacements (with respect to the limits) is approximately preserved for the 

chosen ES and NT with respect to the load; this remains to be investigated. 

 

4.3 Resulting displacements and stresses 
 

The validation of our mathematical model is done by comparing the calculated displacements 

with the experimental results. In Fig. 8 we show this comparison for different model parameters 

together with the confidence limits for the experimental results. The term “beam” represents the 

displacements of the monolithic glass plate and is the minimum displacement theoretically 

possible. The term “Model1” stands for our model with ES=3 MPa and NT=3 kN, which shows 

excellent agreement with the experimental results. The term “Model2” stands for our model with 

ES=70 GPa and NT=0 kN, whose results are too large. However, with a further increase of ES, 

which is not physically justified, it is possible to obtain a very good agreement as well. 

In both models, the axial force is always present due to slip, while “Model 1” has an additional 

preloaded axial force NT. At the moment, the values of ES and NT are assumed, but since this model 

is suitable for formulating the inverse problem (that is the only purpose of this model), they will be 

determined from the experiments in the future. 

The displacements are the only measured quantities we could compare, but it is instructive to 

show some other results as well. In Fig. 9 we present internal parameters: the stress distribution in 

the centre of the upper and lower glass plates. Fig. 9(a) shows the distribution for the “Model1” 

from Fig. 8 and Fig. 9(b) for the “Model2”. 

It is interesting to note that the shape of stresses remains approximately the same as we increase 

the parameter value in the model. In other words, with physically unjustified parameters, even 

with “Model2”, which has the stress distribution from Fig. 9(b), we could obtain excellent results 

of “Model1” that has the stress distribution from Fig. 9(a). The two models are mixed in reality but  
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Calculation model for layered glass 

 

Fig. 9 Comparison of the stress profile for the model displacement equal to the experimental: (a) large 

interlayer modulus and axial force NP=0 kN, (b) small interlayer modulus and axial force NP=3 kN 

 

 

the “correct” ratio of the mixture could be known only from experiments. Therefore, we plan 

additional experiments in which the stress distribution is evaluated in some way, perhaps by 

observing the displacement of the plate edges, if nothing else. Subsequently, the mixing ratio 

could be determined as a parameter of the model, similar to (Kožar et al. 2018). 

 

 

5. Conclusions 
 

In our analysis, we have identified two key parameters, the interlayer stress and the axial 

preload force, which determine the displacement of the layered glass sheet. Their influence is most 

easily explained by the change in moments acting on the beam. In this approach, the analysis of 

layered glass is divided among the contributions of each layer in conjunction with the interlayer 

that connects them. This approach simplifies the mathematical model and an eventual formulation 

of the optimization procedure for parameter estimation, which is planned as a future development. 

We also plan to use plate equations instead of beam equations for modelling glass layers in future 

work. 

However, determining the exact behaviour of the interlayer, its real elastic modulus when 

compressed in a thin layer between two glass plates, and its behaviour during heating would 

require additional, more detailed and accurate measurements. 
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