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Abstract.  Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or 
polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be 
adequately described, especially the interface between the matrix and fibers that is determined with the ‘bond-slip’ law. 
‘Bond-slip’ law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually 
obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, 
theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get 
pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point 
beam bending with an intention of using experimental data for determination of material parameters. In addition, we 
have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not 
possible to use this ‘forward’ beam model for extraction of material parameters so an inverse model has been devised. 
This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory 
tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known 
and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is 
nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the 
example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from 
measured data. 
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1. Introduction 
 

In our work we are interested in extraction of material parameters from experimental data. 

However, the parameters of interest usually could not be measured directly. A special, inverse 

procedure has to be devised to extract non-measurable data. An inverse procedure can be formulated 

based on a ‘forward’ formulation that connects relevant parameters and available data. 

Our analysis of fiber reinforced concrete (FRC) is based on the fiber bundle model (FBM). This 

is mostly due to stochastic parameters that are comprised in the FBM. One could use deterministic 

material models like Rukavina et al. (2019a, 2019b), Rukavina et al. (2019) but that does not explain 
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variations in experimental data. In order to accommodate variations in experimental results we have 

adopted stochastic model that is based on the ‘fiber bundle representation’. 

In FBM fibers are connected in parallel and have elastic and optionally, plastic properties. After 

reaching the peak load fiber either breaks down or degrades gradually, depending on the adopted 

model. Each fiber has slightly different material or geometric properties according to some 

probabilistic distribution, e.g., normal, uniform, cosine, etc. More details about FBM are given by 

Kožar et al. (2018). In our FBM the fiber peak tension load and the fiber area are described with the 

Gauss (normal) probability distribution. Each fiber has simple multi-linear load-displacement 

relation but observed as a bundle, they present a non-linear stochastic function. Behavior of each 

fiber is essential for material properties or bond-slip relation, as it is concluded by Kožar et al. 

(2019a). However, influence of one fiber is lost when the bundle is observed; bundle preserves initial 

material parameters and has rather permanent behavior regarding the resulting global force-

displacement law. Based on that fact, FBM is generalized into a simpler material model based on an 

exponential formulation with two parameters, which is similar to the microplane material model 

(Ožbolt et al. 2001). It is this material model that is used to formulate a ‘forward’ model for three-

point bending of beams mimicking the experimental three-point bending procedure. The main 

intention is to connect experimental data from laboratory to material parameters, especially 

regarding the fiber bond-slip relation. 

Our ‘forward’ model in the simplest possible way relates local material properties and global 

sample behavior observed in a laboratory, e.g., load-displacement or bond-slip law. We have 

assumed a simple layered beam model that assumes axial forces in each layer but without any shear 

between the layers. Model is formulated from two balance equations: force and moment equilibrium 

in the cross section. The result is a system of two nonlinear algebraic equations that can be solved 

using Newton’s procedure. However, if one is interested in the fracture process, i.e., post-peak 

behavior, then there is more than one pair of solution and the procedure has to choose the one that 

is needed, the pre-peak or the post-peak solution. 

Material parameters could not be extracted from such ‘forward’ model, which besides having 

multiple solutions, is a system of two nonlinear equations with parameters given implicitly. Iterative 

scheme for extraction of implicit parameters would be too cumbersome and sensitive. In order to 

extract relevant material parameters, we have formulated an inverse procedure based on the 

derivative of experimental data. In the novel inverse model, parameters are exposed and an iterative 

scheme, such as Newton scheme, could be used for the extraction of material parameters. 

Once a forward model is known, we could try extracting initial parameters, i.e., global sample 

behavior has been known from the experiments and we would like to determine the local material 

properties. This inverse relation is described as an ‘inverse model’, or ‘inverse stochastic model’ in 

the case of stochastic material properties (e.g., Ibrahimbegović et al. 2020, Sarfaraz et al. 2018). In 

the latter case, we speak about estimation of the local material properties in a form of probability 

function properties, like mean value and variance of parameters. Inverse models for various FBMs 

are described by Kožar et al. (2019a), Kožar et al. (2020), Kožar et al. (2019b, c). 

Our layered model is a basis for the formulation of an inverse model that could be used in 

parameter extraction from laboratory tests. The moment balance equation connects external moment 

on the beam and curvature of the cross section. This equation could be related to experimental 

results comprising external force and displacement. The main difficulty in formulation is contained 

in axial layer forces being multiplied by a distance of a layer. We have assumed that distances could 

be treated as a known function and have reformulated the balance equation. Mathematical 

formulation of our problem is expressed as an exponential function multiplied with square of a  
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(b) Testing sample for fiber 

pullout test 

 
(a) Testing setup for the vertical displacement measurement during the 

three-point bending test 
(c) Testing setup for pullout test 

Fig. 1 Testing setups 
 

 

known function. Material parameters are still implicitly present. This reformulated equation is 

further treated as a measurement equation, i.e., known, measured values are dependent from 

unknown parameters; this is the key assumption in the development of an inverse solution procedure. 

After we take the derivation of the equation and rearrange, parameters are exposed and an iterative 

scheme could be formulated. The procedure includes measured data and their derivative, the 

formulation is nonlinear and solution is obtained from an iterative procedure. There are multiple 

solutions to the parameter extraction problem and one has to choose the physically correct one. With 

small number of parameters, it can be done by inspection but we have provided another possibility, 

solution of the equation on the layer level. Layers have different solutions but all the layers comprise 

the correct solution, so the solution present in all the layers is the correct one; this is more practical 

for greater number of parameters. 

In the present work, we are validating our novel inverse model for parameter extraction (in the 

sense described by Thacker 2004). Numerical example validates the novel iterative formulation that 

successfully recovered initial material parameters. 

 

 

2. Laboratory testing 
 

We have performed three-point bending laboratory tests with beams of different sizes and with 

different fibers. Fig. 1 presents several experimental setups for displacement measurement during 

loading. Fig. 1(a) presents the three-point bending test where we measure beam deflection and 

CMOD (Crack Mouth Opening Displacement), Fig. 1(b) is a specimen for the pullout test and    

Fig. 1(c) presents the pullout test as we conduct it. Experimental setup has to be meticulously 

prepared since measured data is the only source of information for the inverse model and parameter 
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estimation. 

The main goal of our research is to relate the pullout and three-point bending tests. That would 

enable us to replace one type of test with the other and to achieve greater data redundancy that is 

important in parameter estimation and inverse modeling. 

 

 
3. Material model 

 

The simplest fiber bundle model consists of only elastic fibers with stochastic cross-section area 

that break at tension force ‘Ft’. The fiber bundle model relating the total force ‘F’ and displacement 

‘δ’ reads 

𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝑖𝑓
(𝛿, 𝐹𝑡 , 𝑝(𝜇𝐴, 𝜎𝐴))

𝑛𝑓

𝑖𝑓=1
   (1) 

Here, ‘p(μA,σA)’ is (normal) probability distribution function with mean ‘μA’ and variance ‘σA’. 

We could assume e.g., that variance ‘σA’ is constant in the model so that ‘μA’, ‘δ’ and ‘Ft’ remain 

the only parameters. Note that Kožar et al. (2019a) have presented the total force equation in the 

usual formulation with hidden stochastic properties although they are present in the model. This 

somewhat novel formulation for the FBM is required for better understanding of the inverse model 

(to be introduced later). 

The problem is that the parameters we would like to estimate are within a function ‘p’ that is 

within a function ‘Fif’. Solution of such a problem could be very difficult or even impossible, 

depending on the actual formulation of functions. 

It is important to somehow simplify the above function and we introduce the approximation 

‘H(μA)’ of the probability function ‘p(μA)’ where ‘H(μA)’ is the histogram function from the known 

data. In that case, new force - displacement relation for a fiber bundle model reads 

𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐻(𝜇𝐴𝑖𝑏
, 𝛿) ∙ 𝐹𝑖𝑏

(𝛿, 𝐹𝑡)𝑛𝑏𝑖𝑛
𝑖𝑏=1   

     𝐻(𝜇𝐴𝑖𝑏
, 𝛿) = 𝑛𝑓 ∙ 𝜇𝐴 ∙ 𝑝(𝜇𝐴, 𝜎𝐴, 𝛿)        (2) 

This problem is much easier to solve, especially since ‘H(μA, δ)’ could be pre-computed for 

assumed parameter value ‘μA’ and chosen values ‘δ’ (points of the load-displacement curve where 

‘δ’ and ‘Ft‘ are measured). This model could be made more elaborate by adding additional 

parameters, like plastic and unloading behavior of each fiber. The more elaborate model with 6 

stochastic parameters proved to be successful in estimation of stochastic parameters from tension 

experiments where we were pulling-out fibers from a concrete block, (Kožar et al. 2018, Kožar et 

al. 2019a, Kožar et al. 2020). 

It is evident from (Kožar et al. 2018, Kožar et al. 2019a, Kožar et al. 2020) that contribution of 

individual fibers results in the global force-displacement relation that represents the behavior of one 

specific volume of material. The global force-displacement relation could further be represented 

with one equation and contribution of individual fibers could be neglected. In our work, we chose 

microplane-like material model described with an exponential equation, (Kožar et al. 2019c, Kožar 

and Ožbolt 2010). Simplified microplane material model equation has only two parameters and reads 

𝑓(𝑥, 𝐴, 𝐵) = 𝐴 ∙ 𝑥 ∙ 𝐸𝑥𝑝(−𝐵 ∙ 𝑥)          (3) 

where ‘x’ is a displacement, in our case it could be the deflection ‘δ’ or the CMOD, etc. Significance 

of parameters ‘A’ and ‘B’ is best seen from Fig. 2. 
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(a) A (b) B 

Fig. 2 Significance of parameters in the microplane material model 

 

 

Fig. 3 Load-displacement diagram for the concrete matrix and for the fiber 

 

 

Fig. 2 presents only the tension part of the load-displacement diagram and the compression part 

is similar but with different parameters. With only two parameters it is no possible to accommodate 

both curves, so we use different parameters for the compression behavior and do not have the 

common tangent at the zero displacement; this confirms to the fact that the tension and the 

compression moduli are different for concrete. The final equation is 

 
(4) 

Graphical representation is in Fig. 3 

This exponential material model is further used for description of the all load - displacement 

relations. 

 

 
3. Three-point beam bending model 
 

A more complex problem emerged during experimentation with three-point bending of beams. 

Namely, we wanted to perform test of pull out of fibers in bending, not only in tension, since 

bending is the most common loading for fiber-reinforced beams. Moreover, direct tension 

experiments are very sensitive regarding the inclination, depth and the insertion procedure of fibers  
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Fig. 4 Schematic representation of the layered beam model in three-point bending test 

 

 

and we would prefer to replace them with bending experiments. 

The first step in connecting experiments and material parameters is development of a model 

capable of reproducing experimental results up to the required degree. Numerical model for bending 

of beams assumed layered approach: beam is divided through height into layers where some layers 

could represent fibers and the other represent concrete. Each layer has a predefined force- 

displacement behavior based on the simplified fiber bundle model, as in the model above. Schematic 

representation of the layered model under the three-point bending test is given in Fig. 4. 

The beam model is described with a system of two nonlinear equations (see Kožar et al. 2021 for 

layered model or Ibrahimbegović and Mejia-Nava (2021), Kožar et al. (2018) for a more complex 

model) 

𝐹(𝜀, 𝜅) = 𝛥ℎ ∑ 𝑓𝑐[(ℎ𝑖 − 𝜀 ℎ) ∙ 𝑡𝑎𝑛 𝜅]𝑙𝑎𝑦𝑒𝑟𝑠
𝑖 = 𝐹𝑙𝑜𝑎𝑑  

𝑀(𝜀, 𝜅) = 𝛥ℎ ∑ (ℎ𝑖 − 𝜀 ℎ) ∙ 𝑓𝑐[(ℎ𝑖 − 𝜀 ℎ) ∙ 𝑡𝑎𝑛 𝜅]𝑙𝑎𝑦𝑒𝑟𝑠
𝑖 = 𝑀𝑙𝑜𝑎𝑑       (5) 

Here, ‘Δh’ is layer height (equal for all layers), ‘hi’ is the position of layer ‘i’, ‘h’ is the total beam 

height, ‘(ε,κ)’ are the neutral axis position and the curvature, respectively, and ‘fc’ is concrete force-

displacement behavior in tension or compression. ‘Fload’ and ‘Mload’ represent external beam loading. 

Observe the additional function ‘(hi-ε h)’ describing the layer position in the moment balance 

equation. Multiplication with this additional function prevents us from using the same approach as 

before. The above equations could be presented graphically where we see existence of multiple 

solutions of the nonlinear system of equations, Fig. 5. 
Fig. 5 represents the solution path of the two equilibrium equations for same loading level: red 

is the force balance, dashed-blue is the moment balance; intersection of the two curves is the 

equilibrium position where both equations are satisfied for the given loading level. Fig. 5(a) 

represents the case of bending of the concrete beam without any fiber, i.e., all layer forces have the 

same load-displacement law, in which case we see two possible solutions for the same loading level.  
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(a) without the fiber ‘fa’ (b) with fiber ‘fa’ 

Fig. 5 Graphical representation of the equilibrium equations for beam in Fig. 3 

 

 

On the other hand, Fig. 5(b) represents the case of bending of the beam with fibers, i.e., the layer 

with a fiber has different load-displacement law, in which case there are three possible solutions for 

the same loading level. From Fig. 5, it is evident that there are areas where the two equilibrium 

curves come close to each other making convergence of the numerical solution procedure difficult. 

Moreover, the number of solutions depends on the relation of the stiffness of concrete and 

reinforcement fibers. 

Moreover, Fig. 5 shows the dependence between parameters of our layered beam model: the 

neutral axes position ‘ε’, the cross-section curvature ‘κ’ and the external loading ‘M’. The external 

loading is assumed to be known and the model results in ‘(ε,κ)’ values. The relation between the 

three-point bending tests is clear; during the test, we are recording the loading value, the vertical 

displacement and the CMOD (Crack Mouth Opening Displacement). 

Note: both displacements are needed to uniquely identify the beam state because kinematic 

condition allows multiple CMOD for one vertical displacement and vice versa. Although we have 

not elaborated the exact relation, it is reasonable to assume that experimental results could be related 

to the moment-curvature curve ‘(m,κ)’; further on we will assume that experimental results are given 

as a ‘(m,κ)’ curve. 

Fig. 6 graphically presents resulting curves ‘(ε,κ)’ and ‘(m,κ)’ for external moment in the interval 

m=[0,0.04]. 

 

 

4. Inverse model 
 

The purpose of our inverse model is to identify material parameters (as depicted in Fig. 2) from 

experimental results (assumed to be depicted as in Fig. 6(b). In order to formulate the inverse model 

that would rely on measured values, we have to somehow relate experimental values and model 

parameters. When we combine material behavior Eq. (3) and moment balance Eq. (5) we obtain  

𝑀′(𝜀, 𝛯) = ∑ 𝐴 ∙ 𝐶𝑖(𝛯)2 ∙ 𝛯 ∙ 𝐸𝑥𝑝(−𝐵 ∙ 𝐶𝑖(𝛯) ∙ 𝛯)𝑙𝑎𝑦𝑒𝑟
𝑖    (6) 
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(a) Moment-curvature diagram (b) Neutral axis-curvature diagram 

Fig. 6 Resulting curves 

 

 

where 

𝑀′(𝜀, Ξ) =
1

Δℎ
𝑀(𝜀, Ξ) 

𝐶𝑖(Ξ) = (ℎ𝑖 − 𝜀 ℎ) 

Ξ = 𝑡𝑎𝑛(𝜅) 

We should write 𝐶𝑖(Ξ) = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(Ξ)  because 𝜀 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜅)  (see Fig. 6(a)). Moment 

values ‘M’ are recorded in the experiment but not for values of ‘κ ‘. ‘M’ values are taken at ‘m’ 

measuring points and, since ‘M’ is not a function of ‘ε’, we are introducing relation 

Ξ ≅ 𝑋𝑗. 

𝑀′(𝜀, Ξ) ≅ 𝑌𝑗  at measuring points  𝑗 ∈ (1, ⋯ , 𝑚)              (7) 

We note that ‘Ci’ could be tabulated for each layer in the model (note that parameters ‘A’ and ‘B’ 

remain equal for each layer), which enables us to use a data approach, i.e., we could assume some 

values are known from measurements. Equation for parameter identification now becomes (note that 

only one equation is sufficient for the identification procedure) 

𝑌𝑗 = ∑ 𝐴 ∙ 𝐶𝑖
2 ∙ 𝑋𝑗 ∙ 𝐸𝑥𝑝(−𝐵 ∙ 𝐶𝑖 ∙ 𝑋𝑗)

𝑙𝑎𝑦𝑒𝑟𝑠
𝑖         (8) 

Here ‘Yj’ is the measured moment, X𝑗 corresponds to the position where moment is measured 

and parameters ‘A’ and ‘B’ are to be determined (from measurements). Eq. (8) is a nonlinear equation 

regarding the parameter ‘B’ and in that form it is not suitable for determination of the parameter. An 

iterative scheme for calculation of the parameter ‘B’ has to be devised. In our case, the solution 

procedure is based on differentiation since it leads to disappearance of the parameter ‘A’, leaving 

only ‘B’ to in the formulation. The novel formulation requires calculation of derivatives of tabulated 

data, which could in practical realization be obtained through differentiation matrix applied on 

measured data. It is only here important to realize that 𝐶𝑖(Ξ) = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(X) so that the derivative 

𝐶𝑖′(𝑋𝑗) exists! Derivation of Eq. (8) over X𝑗 results in 

𝑌𝑗′ = ∑ [
𝑌𝑗

𝑋𝑗
+ 2

𝑌𝑗

𝐶𝑖
𝐶𝑖′ − 𝐵𝑌𝑗𝐶𝑖 − 𝐵𝑋𝑗𝑌𝑗𝐶𝑖′]𝑖         (9) 

Corresponding derivatives are obtained from measured (tabulated) data by derivation of an 
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interpolation function or by application of the derivation matrix. The only unknown in Eq. (9) is the 

parameter ‘B’, which is calculated first using the least squares (in matrix form); parameter ‘A’ is 

calculated later from Eq. (8). In order to calculate the parameter ‘B’, Eq. (9) is reformulated as a 

measurement problem in matrix notation 

𝒀𝑴 = 𝑯𝑴𝟎(𝐵) − 𝐵 ∙ 𝑯𝑴𝟏(B)        (10) 

where 

𝒀𝑴 = 𝑌𝑗′ − ∑
𝑌𝑗

𝑋𝑗
𝑖 . 

𝑯𝑴𝟎(𝐵) = ∑ [2
𝑌𝑗

𝐶𝑖
𝐶𝑖′]𝑖 . 

𝑯𝑴𝟏(𝐵) = ∑ [−𝑌𝑗𝐶𝑖 − 𝑋𝑗𝑌𝑗𝐶𝑖′]𝑖 . 

Parameter ‘B’ is iteratively calculated from Eq. (10), after that, parameter ‘A’ is calculated from   

Eq. (8). For stable solution, it is important that the number of measure points is equal or greater than 

the number of layers. 

 

 

5. Numerical example 
 

This example represents a verification procedure for our inverse model under development (e.g., 

Thacker et al. 2004). In the example, we are trying to determine parameters for 14 layers (n=14) 

and 20 measuring points (m=20). Known functions ‘Ci’ will be substituted with functions 

interpolated through random points (hopefully, this would confirm general validity of the 

procedure). During the interpolation, we have scaled the domain of interpolated functions so that it 

is in accordance with measured data (note the domain in Fig. 7(a) and Fig. 7(b) is different and in 

Fig. 7(b) and Fig. 8 it is the same). First, we establish the functions as presented in Fig. 7. 

Measurements are simulated using Eq. (8) with parameters ‘A’ and ‘B’ set to ‘A=2.5’ and ‘B=5.0’, 

which we will try to recover using the inverse procedure. 

The inverse procedure described with Eq. (10) represents the least square procedure whose 

solution is the optimum value of the parameter ‘B’. It is a nonlinear equation with more than one 

solution and is solved using the Newton’s procedure. Plotting the residual, as in Fig. 9, we could see 

the existence of multiple solutions. 

 

 

  

(a) 14 sets of 5 random points used for generation of 

‘Ci’ 

(b) the first 4 of 14 functions ‘Ci’ interpolated 

through random points 

Fig. 7 Functions multiplying data 
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(a) Simulation of measurement by Eq. (8) (b) Derivation of data-vector Yj in measuring 

points 

Fig. 8 Experimental data 

 

 

Fig 9 Parameter ‘B’ vs. the residual of Eq. (10) 

 

  
(a) for the first 10 X𝑗  coordinates (b) for the last 10 X𝑗  coordinates 

Fig. 10 Residues of Eq. (9) for values of parameter 𝐵 ∈ [1.0 ⋯ 40.0] 

 

 

It is visible from Fig. 9 that there is more than one solution and care is needed in choosing the 

physically right one. However, there is an approach that could be helpful in selecting an appropriate 

solution: one could depict the residual for various measuring points of the Eq. (9); the solution that 

is comprised in all (or in the most) point residuals is the right one, as depicted in Fig. 10. 

From Fig. 10 we could see that all out of 20 X𝑗 coordinates residue is zero for the same value  

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8
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Table 1 Results for various measuring points ‘r’ for the initial value ‘B0=2.0’ 

Meas.point ‘r’ Iter.1 Iter.3 Iter.10 Iter.20 Iter.25 Iter.33 Iter.40 

2 1.00000 4.78327 4.99998 5.00000 5.00000 5.00000 5.00000 

7 1.00000 4.81377 4.99987 5.00000 5.00000 5.00000 5.00000 

12 1.00000 3.52255 4.74245 4.96487 4.98656 4.99709 4.99937 

18 1.00000 5.64509 5.00526 5.00001 5.00000 5.00000 5.00000 

 
Table 2 Convergence of the Eq. (9) 

Initial value Iter.1 Iter.3 Iter.10 Iter.20 Iter.25 Iter.33 Iter.40 

1.0 0.66667 0.964786 3.75145 4.27067 4.42349 4.61102 4.70863 

2.0 1.33333 2.9739 4.3052 4.77562 4.86631 4.94016 4.97282 

3.0 2.00000 3.92501 4.8798 4.99234 4.99804 4.99978 4.99997 

6.0 4.00000 4.41325 5.11918 4.98655 5.00733 5.00098 4.99976 

 

 

of the parameter ‘B’ (besides occasional zeros for other values of the parameter ‘B’). Now it is easy 

to find good initial value for Newton’s procedure and the exact ‘B’ is calculated; the convergence of 

the Eq. (9) for several measuring points is given in Table 1. 

The convergence of the Eq. (10), where we calculate the parameter ‘B’ for all the measuring 

points at once is somewhat different. Table 2 shows the convergence of Eq. (10) for various initial 

values of ‘B’. 

We see that the parameter ‘B’ is successfully recovered and the parameter ‘A’ is calculated from   

Eq. (8); the result is 𝐴 ∈ [2.479,2.5008] for 𝐵 ∈ [4.973,5.001]. In the given intervals, error in 

the parameter ‘B’ is [0.54%, -0.02%] and error in the parameter ‘A’ is [0.85%, -0.03%] so there is 

no unacceptable amplification of the error. 

 

 
5. Conclusions 
 

Simple model of three-point beam bending is described with two nonlinear equations where 

material model for concrete is described with two-parameter exponential model. Model is compared 

with laboratory experimental results hoping that material parameters could be extracted from 

experimental data. Recovery of material parameters is not possible directly from the model equations 

so an inverse procedure has been derived. The novel inverse model based on the derivative of 

experimental data enabled successful recovery of material parameters. 

Moreover, an inverse model based on integration of experimental data is under development. 
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