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Abstract.  Thermomechanical loading is considered to examine the non-local and phase-lags effects in a modified 
couple stress thermoelastic (MCT) half space. Governing equations are solved by using Laplace and Fourier transform 
techniques. Concentrated source in time and distributed sources with space variable are taken to demonstrate the 
application. Distributed sources are further classified as uniformly distributed source (UDS) and linearly distributed 
source (LDS) for mechanical, thermal and chemical potential sources. Numerical results are calculated for 
displacements, stresses, temperature distribution and chemical potential and are disucussed by displaying graphically. 
Some particular cases are deduced. 
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1. Introduction 
 

The state of stress at a point is a function of strain of all points in the body for non-local theory 

of elasticity, whereas classical (local) elasticity describes the stress state at a given point by strain 

state at the same point. Non-local theory has been derived by various researchers by adopting 

different assumptions, e.g., Eringen and Edelen (1972), Edelen and Law (1971), Eringen (1972a, 

1972b, 1981, 1991). A comprehensive work on development of non-local theory is given by book 

of Eringen (2002). 

The non-local response and lagging response are same since earlier in space and as later in time. 

Tzou (1992) combined the response of non-local with single phase-lag heat conduction and 

compared it with the model given by Cao and Guo (2007), Guo and Hou (2010). Tzou and Guo 

(2010) demonstrate the union of non-local response with the dual-phase-lag model proposed by 

Tzou (1995a, 1995b) and known as the new theory comprising both effects. 

Sharma (2012) studied reflection of plane waves in thermodiffusive elastic half space with voids. 

Abouelregal and Zenkour (2014) analyzed the effect of phase lags on thermoelastic functionally 

graded microbeams subjected to ramp-type heating. Sharma et al. (2014) investigated the influence 

of heat sources and relaxation time on temperature distribution in tissues. Marin et al. (2014) studied 
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relaxed Saint-Venant principle for thermoelastic micropolar diffusion. Kumar and Abbas (2016) 

studied the disturbance due to thermomechanical sources in porothermoelastic medium. Abbas and 

Marin (2018) investigated analytical solution for two dimensional generalised thermoelastic 

diffusion problem. 

Kumar et al. (2018) investigated transient analysis of non-local microstretch thermoelastic thick 

circular plate with phase-lags. Kumar et al. (2019) studied the effect of thermal and chemical 

potential sources in a thin beam in MCT with three-phase-lag thermoelastic diffusion model. Zhang 

et al. (2020) studied entropy generation on blood flow through anisotropic tapered arteries filled 

with magnetic zinc oxide nanoparticles. Borjalilou et al. (2020) investigated an explicit relation for 

thermoelastic damping in non-local nanobeams considering dual-phase-lag effect. Mashat and 

Zenkour (2020) presented a problem of ramp-type heating to study vibration of a temperature 

dependent nanobeam under multi-dual-phase-lag thermoelastic with non-local. 

In this article, non-local and phase-lags effects are examined due to distributed sources in MCT 

diffusion. Integral transform technique is applied to investigate the problem. Normal load, thermal 

source and chemical potential source are taken to show the approach. Resulting quantities are 

depicted graphically to show non-local and phase-lags effects. This theory can help to capture the 

size effect of elastic deformation and heat conduction of nanoscale structures with thermal lagging 

which can be useful in nanotechnology. 

 

 
2. Basic equations 

 

Following Tzou and Guo (2010), Sherief et al. (2004) and Yu et al. (2016), we have 

(i) Constitutive Relations 

𝑡𝑖𝑗 = 2𝜇𝑒𝑖𝑗 −
1

2
𝑒𝑘𝑖𝑗𝑚𝑙𝑘,𝑙 + 𝛿𝑖𝑗[𝜆0𝑒𝑘𝑘 − 𝛾1𝑇 − 𝛾2𝑃],                   (1) 

𝑚𝑖𝑗 = 2𝛼𝜒𝑖𝑗,                                (2) 

(ii) Equation of motion    

(𝜆0 + 𝜇 +
𝛼

4
Δ)𝛻(𝛻 ⋅ 𝑢⃗ ) + (𝜇 −

𝛼

4
Δ)(Δ𝑢⃗ ) − 𝛾1𝛻𝑇 − 𝛾2𝛻𝑃 = 𝜌(1 − 𝜉2Δ)

𝜕2𝑢⃗⃗ 

𝜕𝑡2 ,     (3) 

(iii) Equation of heat conduction 

(1 − 𝜁2Δ + 𝜏𝑞
𝜕

𝜕𝑡
+

1

2
𝜏𝑞
2 𝜕2

𝜕𝑡2)(𝛾1𝑇0𝑒
•
+ 𝑙1𝑇0𝑇

•

+ 𝑇0𝑑𝑃
•

) = 𝐾(1 + 𝜏𝑡
𝜕

𝜕𝑡
)Δ𝑇,       (4) 

(iv) Equation of mass diffusion  

 (1 − 𝜍2𝛥 + 𝜏𝑢
𝜕

𝜕𝑡
+

1

2
𝜏𝑢
2 𝜕2

𝜕𝑡2)(𝛾2𝑒
•
+ 𝑑𝑇

•

+ 𝑛𝑃
•

) = 𝐷(1 + 𝜏𝑝
𝜕

𝜕𝑡
)𝛥𝑃,         (5) 

Here 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖), 𝜔𝑖 =

1

2
𝑒𝑖𝑝𝑞𝑢𝑞,𝑝 

where 

𝜆𝜊 = 𝜆 −
𝛽2

2

𝑏
, 𝛾1 = 𝛽1 +

𝑎

𝑏
𝛽2, 𝛾2 =

𝛽2

𝑏
, 𝑙1 =

𝜌𝐶𝑒

𝑇𝜊
+

𝑎2

𝑏
, 𝑑 =

𝑎

𝑏
, 𝑛 =

1

𝑏
 . 

In the Eqs. (1)-(5), 𝜉, 𝜁, 𝜍  - non-local parameters, 𝜏𝑞&𝜏𝑡 - thermal relaxation times with 

𝜏𝑞 , 𝜏𝑡 ≥ 0  and 𝜏𝑢&𝜏𝑝  - diffusion relaxation times with 𝜏𝑢, 𝜏𝑝 ≥ 0 . 𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡 , 𝛽2 =
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(3𝜆 + 2𝜇)𝛼𝑐. Here 𝛼𝑡 , 𝛼𝑐 correspond to the coefficient of linear thermal expansion and diffusion 

expansion respectively. Δ is the Laplacian operator, 𝛻 is nabla(gradient) operator. Other symbols 

have their usual meanings. 

 
 
3. Statement of the problem 

 

A homogeneous isotropic non-local MCT diffusive body with dual-phase-lag occupying the 

region 𝑥3 ≥ 0 is taken. A rectangular Cartesian coordinate system (𝑥1, 𝑥2, 𝑥3) having origin on 

𝑥3 = 0  is followed. The half space is subjected to normal load, thermal source and chemical 

potential source on the bounding plane 𝑥3 = 0. 

For the assumed model, we have 

𝑢⃗ = (𝑢1(𝑥1, 𝑥3, 𝑡),0, 𝑢3(𝑥1, 𝑥3, 𝑡)), 𝑇(𝑥1, 𝑥3, 𝑡), 𝑃(𝑥1, 𝑥3, 𝑡).           (6) 

Using Eqs. (6) in (3)-(5), recast the following equations 

(𝜆𝜊 + 𝜇)
𝜕𝑒

𝜕𝑥1
+ 𝜇𝛥𝑢1 +

𝛼

4
𝛥(

𝜕𝑒

𝜕𝑥1
− 𝛥𝑢1) − 𝛾1

𝜕𝑇

𝜕𝑥1
− 𝛾2

𝜕𝑃

𝜕𝑥1
= 𝜌(1 − 𝜉2𝛥)

𝜕2𝑢1

𝜕𝑡2
, (7)

 

(𝜆𝜊 + 𝜇)
𝜕𝑒

𝜕𝑥3
+ 𝜇𝛥𝑢3 +

𝛼

4
𝛥(

𝜕𝑒

𝜕𝑥3
− 𝛥𝑢3) − 𝛾1

𝜕𝑇

𝜕𝑥3
− 𝛾2

𝜕𝑃

𝜕𝑥3
= 𝜌(1 − 𝜉2𝛥)

𝜕2𝑢3

𝜕𝑡2
, (8)

 

(1 − 𝜁2𝛥 + 𝜏𝑞

𝜕

𝜕𝑡
+

1

2
𝜏𝑞
2

𝜕2

𝜕𝑡2
)(𝛾1𝑇𝜊𝑒

•
+ 𝑙1𝑇𝜊𝑇

•

+ 𝑇𝜊𝑑𝑃
•

) = 𝐾(1 + 𝜏𝑡

𝜕

𝜕𝑡
)𝛥𝑇, (9)

 

(1 − 𝜍2𝛥 + 𝜏𝑢

𝜕

𝜕𝑡
+

1

2
𝜏𝑢
2

𝜕2

𝜕𝑡2
)(𝛾2𝑒

•
+ 𝑑𝑇

•

+ 𝑛𝑃
•

) = 𝐷(1 + 𝜏𝑝

𝜕

𝜕𝑡
)𝛥𝑃 (10)

 

Following dimensionless quantities are used 

P
b

PT
c

Tm
cT

mt
T

t

tt

u
c

ux
c

x
ccc

ijijijij

ppuuqqtt

iiii

2

2

1

1

111

11111

1
,,,

1

,,,,,

,,,,,



























====

=====

=====







 (11) 

where 𝜔∗ =
𝜌𝐶𝑒𝑐1

2

𝐾
, 𝑐1

2 =
𝜆𝜊+2𝜇

𝜌
. 

𝜔∗ is the characteristic frequency and 𝑐1 is the longitudinal wave velocity in the media. 

Eqs. (7)-(10) with the aid of Eq. (11), reduce to the following equations after suppressing the 

primes 

𝑎1
𝜕𝑒

𝜕𝑥1
+ 𝑎2𝛥𝑢1 + 𝑎3𝛥(

𝜕𝑒

𝜕𝑥1
− 𝛥𝑢1) −

𝜕𝑇

𝜕𝑥1
− 𝑎4

𝜕𝑃

𝜕𝑥1
= (1 − 𝜉2𝛥)

𝜕2𝑢1

𝜕𝑡2 ,            (12) 

𝑎1
𝜕𝑒

𝜕𝑥3
+ 𝑎2𝛥𝑢3 + 𝑎3𝛥(

𝜕𝑒

𝜕𝑥3
− 𝛥𝑢3) −

𝜕𝑇

𝜕𝑥3
− 𝑎4

𝜕𝑃

𝜕𝑥3
= (1 − 𝜉2𝛥)

𝜕2𝑢3

𝜕𝑡2 ,           (13) 
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(1 − 𝜁2Δ + 𝜏𝑞
𝜕

𝜕𝑡
+

1

2
𝜏𝑞
2 𝜕2

𝜕𝑡2)(𝑎5𝑒
•
+ 𝑎6𝑇

•

+ 𝑎7𝑃
•

) = (1 + 𝜏𝑡
𝜕

𝜕𝑡
)Δ𝑇,            (14) 

(1 − 𝜍2Δ + 𝜏𝑢
𝜕

𝜕𝑡
+

1

2
𝜏𝑢
2 𝜕2

𝜕𝑡2)(𝑎8𝑒
•
+ 𝑎9𝑇

•

+ 𝑎10𝑃
•

) = (1 + 𝜏𝑝
𝜕

𝜕𝑡
)Δ𝑃 .           (15) 

where  

.,,,,,

,,,,
4

,,
)(

3

3

1

1

2

3

2

2

1

22

1
10

21

4

1
9

2

1
8

12

7

2

11
6

2

1
52

1

2

2
44

1

32

1

22

1

1

2

x

u

x

u
e

xxD

nc
a

Db

dc
a

Db

c
a

K

dTb
a

T
K

cl
aT

K
a

c

b
a

c
a

c
a

c
a




+




=




+




==


===

=====
+

=








































 

 
 
4. Solution procedure 

 
Following Helmholtz’s decomposition, the displacement components 𝑢1(𝑥1, 𝑥3, 𝑡)  and 

𝑢3(𝑥1, 𝑥3, 𝑡) relate to scalar potentials 𝜑(𝑥1, 𝑥3, 𝑡) and 𝜓(𝑥1, 𝑥3, 𝑡) in dimensionless form as 

𝑢1 =
𝜕𝜑

𝜕𝑥1
+

𝜕𝜓

𝜕𝑥3
, 𝑢3 =

𝜕𝜑

𝜕𝑥3
−

𝜕𝜓

𝜕𝑥1
.                        (16) 

With the aid of Eq. (16), Eqs. (12)-(15) yield 

(𝑎1 + 𝑎2)Δ𝜑 − 𝑇 − 𝑎4𝑃 − (1 − 𝜉2Δ)
𝜕2𝜑

𝜕𝑡2 = 0,                   (17) 

(𝑎2 − 𝑎3Δ)Δ𝜓 − (1 − 𝜉2Δ)
𝜕2𝜓

𝜕𝑡2 = 0,                     (18) 

(1 − 𝜁2Δ + 𝜏𝑞
𝜕

𝜕𝑡
+

1

2
𝜏𝑞
2 𝜕2

𝜕𝑡2)(𝑎5Δ𝜑
•
+ 𝑎6𝑇

•

+ 𝑎7𝑃
•

) = (1 + 𝜏𝑡
𝜕

𝜕𝑡
)Δ𝑇,         (19) 

(1 − 𝜍2Δ + 𝜏𝑢
𝜕

𝜕𝑡
+

1

2
𝜏𝑢
2 𝜕2

𝜕𝑡2)(𝑎8Δ𝜑
•
+ 𝑎9𝑇

•

+ 𝑎10𝑃
•

) = (1 + 𝜏𝑝
𝜕

𝜕𝑡
)Δ𝑃,        (20) 

We define Laplace and Fourier transforms as 

𝑓(𝑥1,𝑥3, 𝑠) = ∫ 𝑓(𝑥1, 𝑥3, 𝑡)𝑒
−𝑠𝑡𝑑𝑡,

∞

0

 

𝑓̑(𝜉1,𝑥3, 𝑠) = ∫ 𝑓(𝑥1, 𝑥3, 𝑠)𝑒
𝑖𝜉1𝑥1𝑑𝑥1

∞

−∞
.                     (21) 

Using Eq. (21) on Eqs. (17)-(20), determines following after simplification 

(𝑊1𝐷1
6 + 𝑊2𝐷1

4 + 𝑊3𝐷1
2 + 𝑊4)(𝜑̑, 𝑇̑, 𝑃̑) = 0,                   (22) 

(𝐷1
4 + 𝑊5𝐷1

2 + 𝑊6)𝜓̑ = 0.                         (23) 

where 

𝑊1 = 𝑊11𝑊13𝑊15 − 𝑎7𝑎9𝑠
2𝑊11𝜁

2𝜍2 − 𝑎5𝑠𝑊15𝜁
2 + 𝑎7𝑎8𝑠

2𝜁2𝜍2 − 𝑎4𝑎5𝑎9𝑠
2𝜁2𝜍2

+ 𝑎4𝑎8𝑠𝑊13𝜍
2, 

𝑊2 = 𝑊01 − 3𝜉1
2𝑊1,𝑊3 = 3𝜉1

4𝑊1 − 2𝜉1
2𝑊01 + 𝑊02,𝑊4 = 𝑊01𝜉1

4 − 𝑊1𝜉1
6 − 𝑊02𝜉1

2 − 𝑊03, 

𝑊5 = −
𝑎2 + 𝜉2𝑠2 + 2𝜉1

2𝑎3

𝑎3
,𝑊6 =

𝑎3𝜉1
4 + 𝑎2𝜉1

2 + 𝑠2 + 𝜉1
2𝜉2𝑠2

𝑎3
, 
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𝑊01 = −𝑊11𝑊22𝑊15 − 𝑊11𝑊13𝑊26 − 𝑊13𝑊15𝑠
2 + 𝑎7𝑠𝑊11𝑊25𝜁

2 + 𝑎9𝑠𝑊23𝑊11𝜍
2

+ 𝑎7𝑎9𝜁
2𝜍2𝑠4 

+𝑎5𝑠𝑊26𝜁
2 + 𝑊21𝑊15 − 𝑎7𝑠𝑊24𝜁

2 − 𝑎8𝑠𝑊23𝜍
2 + 𝑎5𝑠𝑊24𝑎4𝜁

2 + 𝑎9𝑠𝑊21𝑎4𝜍
2 − 𝑊13𝑊24𝑎4 

−𝑎8𝑠𝑊22𝜍
2𝑎4,𝑊02 = 𝑊11𝑊22𝑊26 + 𝑊13𝑊26𝑠

2 + 𝑊22𝑊15𝑠
2 − 𝑊11𝑊23𝑊25 − 𝑎7𝑊25𝜁

2𝑠3 
−𝑎9𝑊23𝜍

2𝑠3 − 𝑊21𝑊26 + 𝑊23𝑊24 − 𝑊21𝑊25𝑎4 + 𝑊22𝑊24𝑎4,𝑊03

= −𝑠2𝑊26𝑊22 + 𝑠2𝑊23𝑊25, 

𝑊11 = 𝑎1 + 𝑎2 + 𝜉2𝑠2,𝑊12 = 1 + 𝑠𝜏𝑞 +
𝑠2

2
𝜏𝑞
2,𝑊13 = 𝑎6𝑠𝜁

2 + 1 + 𝑠𝜏𝑡 ,𝑊14 = 1 + 𝑠𝜏𝑢 +
𝑠2

2
𝜏𝑢
2, 

𝑊15 = 1 + 𝑠𝜏𝑝 + 𝑠𝜁2𝑎10,𝑊21 = 𝑎5𝑠𝑊12,𝑊22 = 𝑎6𝑠𝑊12,𝑊23 = 𝑎7𝑠𝑊12,𝑊24 = 𝑎8𝑠𝑊14, 

𝑊25 = 𝑎9𝑠𝑊14,𝑊26 = 𝑎10𝑠𝑊14. 

The bounded solution of Eq. (22) and Eq. (23) are 

(𝜑̑, 𝑇̑, 𝑃̑)(𝑥3, 𝜉1, 𝑠) = ∑ (1, 𝑅𝑖
∗, 𝑆𝑖

∗)𝐴𝑖
3
𝑖=1 𝑒−𝑚𝑖𝑥3,                    (24) 

𝜓̑(𝑥3, 𝜉1, 𝑠) = ∑ 𝐴𝑖
5
𝑖=4 𝑒−𝑚𝑖𝑥3.                         (25) 

Here 𝑚𝑖(𝑖 = 1,2, … ,5) are the roots of Eq. (22) and Eq. (23) and the coupling constants are 

given by 

𝑅𝑖
∗ =

(𝑚𝑖
2−𝜉1

2)3(𝑎7𝑠𝑊34𝜁
2𝜍2−𝑎5𝑠𝑊15𝜁

2)+(𝑚𝑖
2−𝜉1

2)2(𝑎5𝑠𝑊26𝜁
2+𝑊21𝑊15

−𝑎7𝑠𝑊24𝜁
2−𝑎9𝑠𝑊21𝜍

2)+(𝑚𝑖
2−𝜉1

2)(𝑊21𝑊25−𝑊23𝑊24)

(𝑚𝑖
2−𝜉1

2)2(𝑊13𝑊15−𝑎7𝑎9𝑠
2𝜁2𝜍2)+(𝑚𝑖

2−𝜉1
2)(−𝑊22𝑊15−𝑊13𝑊26

+𝑎7𝑠𝑊25𝜁
2+𝑎9𝑠𝑊23𝜍

2)+(𝑊22𝑊26−𝑊23𝑊25)

, 

𝑆𝑖
∗ =

(𝑚𝑖
2−𝜉1

2)3(𝑎5𝑎9𝑠
2𝜁2𝜍2−𝑎8𝑠𝑊13𝜍

2)+(𝑚𝑖
2−𝜉1

2)2(𝑎8𝑠𝑊22𝜍
2+𝑊13𝑊24

−𝑎5𝑠𝑊25𝜁
2−𝑎9𝑠𝑊21𝜍

2)+(𝑚𝑖
2−𝜉1

2)(𝑊21𝑊25−𝑊22𝑊24)

(𝑚𝑖
2−𝜉1

2)2(𝑊13𝑊15−𝑎7𝑎9𝑠
2𝜁2𝜍2)+(𝑚𝑖

2−𝜉1
2)(−𝑊22𝑊15−𝑊13𝑊26

+𝑎7𝑠𝑊25𝜁
2+𝑎9𝑠𝑊23𝜍

2)+(𝑊22𝑊26−𝑊23𝑊25)

,      𝑖 = 1,2,3. 

 

 
5. Thermomechanical conditions 

 

Boundary conditions for plane boundary 𝑥3 = 0 subjected to normal force, thermal source and 

chemical potential source are 

𝑡33 = −𝐹1(𝑥1)𝛿(𝑡), 𝑡31 = 0,𝑚32 = 0, 𝑇 = 𝐹2(𝑥1)𝛿(𝑡), 𝑃 = 𝐹3(𝑥1)𝛿(𝑡).        (26) 

Non dimensional stress components are given by 

𝑡33 = 2𝑟1(
𝜕𝑢3

𝜕𝑥3
) + 𝑟2(

𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢3

𝜕𝑥3
) − 𝑟3𝑇 − 𝑟4𝑃,                    (27) 

𝑡31 = 𝑟1(
𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
) − 𝑟5𝛥(

𝜕𝑢1

𝜕𝑥3
−

𝜕𝑢3

𝜕𝑥1
),                      (28) 

𝑚32 = 2𝑟5
𝜕

𝜕𝑥3
(
𝜕𝑢1

𝜕𝑥3
−

𝜕𝑢3

𝜕𝑥1
).                          (29) 

Using Eq. (21) on Eq. (26), we get 

𝑡̑33 = −𝐹̑1(𝜉1), 𝑡̑31 = 0, 𝑚̑32 = 0, 𝑇̑ = 𝐹̑2(𝜉1), 𝑃̑ = 𝐹̑3(𝜉1).              (30) 

Making use of Eq. (24) and Eq. (25) in Eq. (30) along with Eq. (16), Eq. (21) and Eqs. (27)-(29) 

we get 
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Here, 

𝛥 = (𝑆2
∗𝑅1

∗ − 𝑆1
∗𝑅2

∗)𝑛1 + (𝑆1
∗𝑅3

∗ − 𝑆3
∗𝑅1

∗)𝑛2 + (𝑆3
∗𝑅2

∗ − 𝑆2
∗𝑅3

∗)𝑛3, 

𝑛1 = 𝑎13𝑎24𝑎35 − 𝑎13𝑎34𝑎25 − 𝑎14𝑎23𝑎35 + 𝑎14𝑎33𝑎25 + 𝑎15𝑎23𝑎34 − 𝑎15𝑎33𝑎24, 
𝑛2 = 𝑎12𝑎24𝑎35 − 𝑎12𝑎34𝑎25 − 𝑎14𝑎22𝑎35 + 𝑎14𝑎32𝑎25 + 𝑎15𝑎22𝑎34 − 𝑎15𝑎32𝑎24, 
𝑛3 = 𝑎11𝑎24𝑎35 − 𝑎11𝑎32𝑎25 − 𝑎14𝑎21𝑎35 + 𝑎14𝑎31𝑎25 + 𝑎15𝑎21𝑎34 − 𝑎15𝑎31𝑎24, 

𝑎1𝑖 = (2𝑟1 + 𝑟2)𝑚𝑖
2 − 𝜉1

2𝑟2 − 𝑟3𝑅𝑖
∗ − 𝑟4𝑆𝑖

∗, 𝑎1𝑗 = 2𝑖𝜉1𝑟1𝑚𝑗 , 𝑎2𝑖

= 2𝑖𝜉1(−𝑟5𝑚𝑖
3 + 𝑟1𝑚𝑖 + 𝑟5𝜉1

2𝑚𝑖), 

𝑎2𝑗 = 𝑟5𝑚𝑗
4 − 𝑟1𝑚𝑗

2 − 𝑟1𝜉1
2 − 𝑟5𝜉1

4, 𝑎3𝑖 = 4𝑖𝜉1𝑟5𝑚𝑖 , 𝑎3𝑗 = −2𝑟5(𝑚𝑗
2 + 𝜉1

2), 𝑟1 =
𝜇

𝛾1𝑇𝜊
, 𝑟2 =

𝜆𝜊

𝛾1𝑇𝜊
,  

𝑟3 =
𝜌𝑐1

2

𝛾1𝑇𝜊
, 𝑟4 =

𝛾2
2𝑏

𝛾1𝑇𝜊
, 𝑟5 =

𝛼

4

𝜔∗2

𝛾1𝑇𝜊𝑐1
2 , 𝑖 = 1,2,3, 𝑗 = 4,5.  

Putting [−𝐹̑1(𝜉1),0,0, 𝐹̑2(𝜉1), 𝐹̑3(𝜉1)]
𝑡𝑟 in 𝑖𝑡ℎ  column of 𝛥  respectively determine Δ𝑖(𝑖 =

1,2, … 5). 
 
 
6. Applications 

 

6.1 Uniformly distributed source 
 

[𝑭𝟏(𝒙𝟏), 𝑭𝟐(𝒙𝟏), 𝑭𝟑(𝒙𝟏)] = {
𝟏𝒊𝒇|𝒙𝟏| ≤ 𝒂𝝄

𝟎𝒊𝒇|𝒙𝟏| > 𝒂𝝄
 

Now applying Laplace and Fourier transforms defined by (21) and putting the values 

[𝐹̑1(𝜉1), 𝐹̑2(𝜉1), 𝐹̑3(𝜉1)] =
2𝑆𝑖𝑛(𝜉1𝑎𝜊)

𝜉1
, 𝜉1 ≠ 0,                 (34) 

in Eqs. (31)-(33), resulting expressions are obtained. The geometry of uniformly distributed load is 

given in Fig. 1(a): 

 
6.2 Linearly distributed source 
 

[𝑭𝟏(𝒙𝟏), 𝑭𝟐(𝒙𝟏), 𝑭𝟑(𝒙𝟏)] = {
𝟏 −

|𝒙𝟏|

𝒂𝝄
𝒊𝒇|𝒙𝟏| ≤ 𝒂𝝄

𝟎𝒊𝒇|𝒙𝟏| > 𝒂𝝄

 

Fourier transform in this case applying on the plane boundary 𝑥₃ = 0 in dimensionless form is 

[𝐹̑1(𝜉1), 𝐹̑2(𝜉1), 𝐹̑3(𝜉1)] =
2[1−𝑐𝑜𝑠(𝜉1𝑎𝜊)]

𝜉1
2𝑎𝜊

,                    (35) 

where 2𝑎𝜊 is the non dimensional width of the strip of the source. 
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Distributed loads in modified couple stress thermoelastic diffusion with non-local and phase-lags 

 

Fig. 1(a) Uniformly distributed normal force F1(x1) or uniformly distributed thermal source F2(x1) or 

uniformly distributed chemical potential source F3(x1) acting on plane boundary x3=0 

 

 

Fig. 1(b) Linearly distributed normal force F1(x1) or linearly distributed thermal source F2(x1) 

or linearly distributed chemical potential source F3(x1) acting on plane boundary x3=0 

 

 

Putting the values from Eq. (35) in Eqs. (31)-(33), resulting expressions are obtained. Complete 

geometry of linearly distributed load is in Fig. 1(b). 

 
 
7. Validation 
 

(I) Taking 𝐹2 = 𝐹3 = 0 Eqs. (31)-(33) yield the corresponding quantities for normal force. 

(II) For thermal source we consider 𝐹1 = 𝐹3 = 0 in Eqs. (31)-(33), which in turn yield the 

required quantities. 

(III) Putting 𝐹1 = 𝐹2 = 0  in Eqs. (31)-(33) determine the desired quantities for chemical 
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potential source. 

 
Subcases 

 

(i) Allowing the values of 𝐹̑1(𝜉1), 𝐹̑2(𝜉1), 𝐹̑3(𝜉1) from Eqs. (34) and (35) in Eqs. (31)-(33) gives 

the resulting expressions for uniformly distributed and linearly distributed normal force 

respectively. 

(ii) Using the values of 𝐹̑1(𝜉1), 𝐹̑2(𝜉1), 𝐹̑3(𝜉1) from Eqs. (34) and (35) in Eqs. (31)-(33) yield 

the corresponding expressions for uniformly distributed and linearly distributed thermal source 

respectively. 

(iii) Resulting expressions for uniformly distributed and linearly distributed chemical potential 

source are obtained by substituting the values of 𝐹̑1(𝜉1), 𝐹̑2(𝜉1), 𝐹̑3(𝜉1) from Eqs. (34) and (35) 

in Eqs. (31)-(33).  

 
Special cases 

 

(1) Taking 𝜉 = 𝜁 = 𝜍 = 0 in Eqs. (31)-(33), determine the desired expressions in absence of 

non-local parameters. 

(2) Using 𝜏𝑡 = 𝜏𝑞 = 𝜏𝑢 = 𝜏𝑝 = 0 in Eqs. (31)-(33), determine the desired expressions without 

dual-phase-lag. 

 

 

8. Inversion of the transformation 
 

We invert the transforms in Eqs. (31)-(33), with the help of Kumar et al. (2017). 

 

 

9. Numerical implementation and discussion 
 

For numerical computations, following Sherief and Saleh (2005), we take the copper material 

(thermoelastic diffusion solid) as: 

𝜆 = 7.76 × 1010𝐾𝑔𝑚−1𝑠−2, 𝜇 = 3.86 × 1010𝐾𝑔𝑚−1𝑠−2, 𝑇𝜊 = 0.293 × 103𝐾, 𝐶𝑒

= 0.3891 × 103 
𝐽𝐾𝑔−1𝐾−1, 𝛼𝑡 = 1.78 × 10−5𝐾−1, 𝛼𝑐 = 1.98 × 10−4𝑚3𝐾𝑔−1, 𝑎 = 1.02 × 104𝑚2𝑠−2𝐾−1, 

𝑏 = 9 × 105𝐾𝑔−1𝑚5𝑠−2, 𝐷 = 0.85 × 10−8𝐾𝑔𝑚−3𝑠, 𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 𝐾 = 0.386 × 103 
𝑊𝑚−1𝐾−1, 𝛼 = 0.05𝐾𝑔𝑚𝑠−2, 𝑡 = 0.01𝑠, 𝑡𝜊 = 0.2𝑠, 𝜏𝑡 = 0.6𝑠, 𝜏𝑞 = 0.7𝑠, 𝜏𝑝 = 0.8𝑠, 𝜏𝑢 = 0.9𝑠, 

𝜉 = 0.395 × 10−9𝑚, 𝜁 = 0.2 × 10−9𝑚, 𝜍 = 0.15 × 10−9𝑚, 𝑎𝜊 = 1 

The software Matlab (R2016a) is used for computation for the following cases: 

I. MCT diffusion with non-local and dual-phase-lag (MNP).  

II. MCT diffusion with dual-phase-lag (MP).  

III. MCT diffusion with non-local and without diffusion phase-lag (MNWDP). 

IV. MCT diffusion with non-local and without thermal phase-lag (MNWTP).  

V. MCT diffusion with non-local (MN).  

Figs. 2-13 are for UDS and figs. 14-25 are for LDS. 
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Distributed loads in modified couple stress thermoelastic diffusion with non-local and phase-lags 

  

Fig. 2 Profile of t33 vs. x1 Fig. 3 Profile of m32 vs. x1 

 

  

Fig. 4 Profile of T vs. x1 Fig. 5 Profile of P vs. x1 

 

 

9.1 Uniformly distributed normal force 
 

Fig. 2 demonstrates trend of 𝑡33  vs. x1 . 𝑡33  shows decreasing trend for all the cases. 

Magnitude of 𝑡33 for MNP is higher than that for other cases.  

Fig. 3 shows trend of 𝑚32 vs. 𝑥1. Magnitude of 𝑚32 increases near the source and after that 

decreases for MNP. 𝑚32  decrease monotonically for 0 ≤ 𝑥1 < 1.5 and after that increase for 

MNWDP & MN. 𝑚32 shows oscillatory behavior for MP and decreasing trend for MNWTP. 

Fig. 4 depicts trend of T vs. 𝑥1. T shows decreasing trend for all the cases except for MNWTP 

far away from the source where it shows increasing trend. 

Fig. 5 depicts trend of P vs. 𝑥1. Value of P shows increasing trend for MNWTP and decreasing 

trend for all the remaining cases with difference in magnitude values. 

 
9.2 Uniformly distributed thermal source 

 
Fig. 6 demonstrates trend of 𝑡33 vs. 𝑥1. 𝑡33 shows decreasing trend for all the cases except for 

MNWTP for which it shows increasing trend. 

Fig. 7 shows trend of m32 vs. x1. 𝑚32 shows decreasing trend for 0 ≤ 𝑥1 < 1.2 and after 

that increasing trend for MNP, MNWDP and MP. Magnitude of m32 decreases near the source and 

after that fluctuates for MN whereas it decreases monotonically for MNWTP.  

Fig. 8 depicts trend of T vs. 𝑥1. Value of T increases with increasing distance for MNWTP and  

461



 

 

 

 

 

 

Rajneesh Kumar, Sachin Kaushal and Vikram Dahiya 

  

Fig. 6 Profile of t33 vs. x1 Fig. 7 Profile of m33 vs. x1 

 

  

Fig. 8 Profile of T vs. x1 Fig. 9 Profile of P vs. x1 

 

  

Fig. 10 Profile of t33 vs. x1 Fig. 11 Profile of m32 vs. x1 

 

 

decreases for other cases. 

Fig. 9 depicts trend of P vs. x1. Magnitude of P decreases with increasing distance for all the 

cases except for MNWTP for which it increases. 

 
9.3 Uniformly distributed chemical potential source 

 

Fig. 10 demonstrates trend of 𝑡33  vs. 𝑥1 . Variational behavior of 𝑡33  is increasing for 

MNWTP and decreasing for other cases. Behavior of 𝑡33 is similar for MN & MP.  
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Distributed loads in modified couple stress thermoelastic diffusion with non-local and phase-lags 

  

Fig. 12 Profile of T vs. x1 Fig. 13 Profile of P vs. x1 

 

  

Fig. 14 Profile of t33 vs. x1 Fig. 15 Profile of m32 vs. x1 

 

 

Fig. 11 shows trend of 𝑚32 vs. 𝑥1. Magnitude of 𝑚32 decrease monotonically for 0 ≤ 𝑥1 <
1.0 and after that increase for MNP, MNWDP and MN. 𝑚32 shows increasing trend for 0 ≤ 𝑥1 <
1.6 and after that decreasing trend for MNWTP. 𝑚32 shows oscillatory behavior for MP.  

Fig. 12 depicts trend of T vs. 𝑥1. Variational behavior of T is decreasing for all values of x1 for 

all the cases with difference in magnitude values. Magnitude of T for MNWDP is higher than the 

other cases. 

Fig. 13 depicts the trend of P vs. 𝑥1. P demonstrates decreasing trend for all the cases except for 

MNWTP for which it shows monotonically increasing trend. 

 
9.4 Linearly distributed normal force 

 

Fig. 14 demonstrates trend of 𝑡33 vs. x1. 𝑡33 depicts increasing trend for 0 ≤ 𝑥1 < 1.2 and 

after that increasing trend for MNP. Magnitude of 𝑡33  decreases with increasing distance for 

MNWTP. Magnitude of 𝑡33  decreases for 0 ≤ 𝑥1 < 1.2 and after that increases for remaining 

cases. 

Fig. 15 shows trend of 𝑚32 vs. x1. 𝑚32 demonstrates decreasing trend near the source and 

after that oscillatory behavior for MNP, MP and MNWDP. 𝑚32  shows increasing trend for 

bounded region and after that decreasing trend for MNWTP & MN.  

Fig. 16 depicts trend of T vs. x1. Variational behavior of T is decreasing for all the cases except 

far away from the source for MNWTP where it shows increasing trend. 
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Fig. 16 Profile of T vs. x1 Fig. 17 Profile of P vs. x1 

 

  

Fig. 18 Profile of t33 vs. x1 Fig. 19 Profile of m32 vs. x1 

 

  

Fig. 20 Profile of T vs. x1 Fig. 21 Profile of P vs. x1 

 

 

Fig. 17 depicts trend of P vs. x1. Magnitude of P monotonically increases for MNWTP and 

decreases monotonically for all the remaining cases. 

 
9.5 Linearly distributed thermal source 
 

Fig. 18 demonstrates trend of 𝑡33 vs. 𝑥1. Magnitude of 𝑡33 increases monotonically for 0 ≤
𝑥1 < 1.0 and after that decreases for MNP. Variational behavior of 𝑡33 is decreasing for all the 

remaining cases.  
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Distributed loads in modified couple stress thermoelastic diffusion with non-local and phase-lags 

Fig. 19 shows the trend of 𝑚32 vs. 𝑥1. Variational behavior of m32 is similar for MNP, MN 

and MN. Values of m32 decrease near the source and increase away from the source for MNWDP. 

Trend of m32 is decreasing for MNWTP. 

Fig. 20 depicts trend of T vs. x1. T demonstrates decreasing trend for all the cases except for 

MNWTP for 𝑥1 > 1.8 where it shows increasing trend. 

Fig. 21 depicts trend of P vs. 𝑥1. Trend of P is increasing for MNWTP. Magnitude of P decreases 

with increasing distance for other cases.  

 

9.6 Lineraly distributed chemial potential source 
 

Fig. 22 demonstrates trend of 𝑡33 vs. 𝑥1. Value of 𝑡33 increases monotonically for 0 ≤ 𝑥1 <
1.0 and after that decreases for MNP. Variational behavior of 𝑡33  is decreasing for remaining 

cases. 

Fig. 23 shows the trend of 𝑚32 vs. 𝑥1. Value of m32 is decreasing monotonically for 0 ≤
𝑥1 < 1.0  and after that increasing for MNP & MNWTP. Magnitude of 𝑚32  is increasing 

monotonically except far away from the source where it decreases for MNWDP. 𝑚32  shows 

oscillatory behavior for MP & MN. 

Fig. 24 depicts trend of T vs. x1. T demonstrates decreasing trend with increasing distance for 

all the cases with difference in magnitude values. 

Fig. 25 depicts the trend of P vs. 𝑥1. P shows decreasing trend for 𝑥1 < 1.0 and increasing 

trend after that for MNWDP. Magnitude of P decreases monotonically for the remaining cases. 

 

 

  

Fig. 22 Profile of t33 vs. x1 Fig. 23 Profile of m32 vs. x1 

 

  

Fig. 24 Profile of T vs. x1 Fig. 25 Profile of P vs. x1 
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10. Conclusions 
 

In this problem, thermomechanical load is taken to study the non-local and phase-lags effects in 

a MCT half space. Laplace transform with respect to time and Fourier transform with respect to 

space variable are employed to investigate the problem. Thermomechanical loading is classified as 

UDS and LDS. Inconsistent/non-uniform pattern of curves is followed by the resulting quantities 

for uniformly distributed normal force. For uniformly distributed thermal source irregular behavior 

is shown by the resulting quantities. Tangential couple stress shows oscillatory behavior and other 

quantities show decreasing trend except for MNWTP for normal force and chemical potential for 

which increasing trend is observed for uniformly distributed chemical potential source.   

Fluctuations in the magnitude values of stress components are observed while temperature 

distribution and chemical potential except for MNWTP show decreasing trend with increasing 

distance for linearly distributed normal force. Inconsistent/non-uniform pattern of curves is followed 

by resulting quantities for linearly distributed thermal source. Stress components and temperature 

follow oscillatory path while temperature distribution and chemical potential shows decreasing trend 

except for MNWTP for linearly distributed chemical potential source. It is observed that magnitude 

values of resulting quantities are high in case of UDS in comparison to LDS. The present work is 

useful for researchers working in modified couple stress thermoelastic with non-local and mass 

diffusion. 
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