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Abstract.  This work is an attempt to design a dynamic model for a non local bio-thermoelastic medium with 
diffusion. The system of governing equations are formulated in terms of displacement vector field, chemical potential 
and the tissue temperature in the context of non local dual phase lag (NL DPL) theories of heat conduction and mass 
diffusion. Based on this considered model, we study the fundamental solution and propagation of plane harmonic 
waves in tissues. In order to analyze the behavior of the NL DPL model, we construct basic theorem in the terms of 
elementary function which determine the existence of three longitudinal and one transverse wave. The effects of 
various parameters on the characteristics of waves i.e., phase velocity and attenuation coefficients are elaborated by 
plotting various figures of physical quantities in the later part of the paper. 
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1. Introduction 
 

The investigation of bioheat transfer is a complicated process because it entails a mixture of many 

mechanisms to take into account, such as thermal conduction in tissues, convection and blood 

perfusion, metabolic heat generation, vascular structure, changing of tissue properties depending on 

physiological condition and so on. This topic has a key role to predict accurately the temperature 

distribution in tissues, especially during biomedical applications. In biomedical applications laser-

tissue interaction is of great interest. Thermal properties of the tissue and the thermal changes caused 

by the interaction of light and tissue are major aspects of the laser-tissue interaction. Lasers are 

widely used in biology and medicine and the majority of the hospitals utilize modern laser systems 

for diagnostic and therapeutic applications. Knowledge of laser-tissue interaction can help doctors 

or surgeons to select the optimal laser systems and to modify the type of their therapy. 

The nonlocal effects arise in far from equilibrium processes, which involve extremely fast heat 

and mass transfer at very small time and length scales. Classical thermoelasticity may not be 

applicable to analyze at the micro or nanoscale as the characteristic length of the structure becomes 

comparable to the internal characteristic length, e.g., the mean free path, the wavelength. 
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Thermoelastic analysis at micro and nanoscale is becoming important along with the miniaturization 

of the device and wide application of ultrafast lasers, although the novel laser burst technology, 

where size effect on heat conduction and elastic deformation increase and classical theory of 

thermoelastic coupling does not hold any more. 

(Guyer and Krumhansl 1966) developed size dependent heat conduction model and solved the 

phonon Boltzmann equation by a linear assumption and formulated a transport model (GK model) 

containing the transient and non local terms. (Sobolew 1994) demonstrated that heat conduction at 

micro/nanoscale is essentially nonlocal, and classical heat conductive law should be modified by 

introducing material’s characteristic length. (Dong et al. 2014) also obtain the similar expression as 

a GK model within thermomass theory and known as a microscopic interpretation of GK model. 

(Eringen 2002) developed the non local elasticity in mechanical prospective by adopting a unified 

foundation for the fundamental field equations of nonlocal continuum field theories.  

(Yu et al. 2013, Yu et al. 2014) extended non local theory into fractional order G-L theory and 

memory dependent based on L-S theory for the investigation of micro/nano scale sudden heating 

problem. (Yu et al. 2016) investigated the size effect of heat conduction where abnormal result 

within thermal wave model is eliminated by introducing spatially size effect. Non local 

thermoelasticity theory based on the non local heat conduction are very well formulated and various 

investigator studied various types of problems (Bachher and Sarkar 2018, Das et al. 2019). (Gupta 

and Mukhopadhyay 2019) investigated a one-dimensional elastic half space problem based on non 

local heat conduction introduced by (Tzou and Guo 2010). (Sarkar 2020) formulated new governing 

equations of thermoelasticity with nonlocal heat conduction. 

Heat conduction in tissues is complicated process. Firstly (Pennes 1948) established the bioheat 

transfer equation and obtained the temperature profile in human forearm (Pennes’ model). Shen et 

al. (2005) used Pennes’ model to study the static thermo-mechanical responses of skin tissue at high 

temperature. (Xu et al. 2008, Xu et al. 2008) investigated the heat transfer, thermal damage and 

heat-induced stress of human skin. (Kim et al. 2016) analyzed the transient thermal-mechanical 

responses of innocuous tactile stimulation induced by laser. Nevertheless, it is found that the 

mechanical behavior has no effect on the distribution of temperature in these studies. 

The concept of biothermomechanical behavior of tissue studied earlier is arose again and (Li. et 

al 2017) analyzed thermal distribution, thermal-induced mechanical deformation and thermal 

mechanical damage of soft tissues under thermal loads. (Li et al. 2018) developed the theory of a 

modified fractional order generalized bio-thermoelasticity with variable thermal material properties. 

Later, (Li et al. 2019) investigated the transient responses in the context of generalized bio-

thermoelastic theories with temperature dependent blood perfusion rate in a triple layered skin tissue. 

(Kumar et al. 2019a) studied the non local heat conduction approach in bi-layer tissue during 

magnetic fluid hyperthermia (MFH). (Kumar et al. 2019a) studied the transient response due to 

three-phase-lag (TPL) model of heat conduction in skin tissues. Recently, (Li et al. 2020) established 

the dual phase lag thermo-viscoelastic model to capture the micro-scale responses of biological 

tissue 

Fundamental solutions play a pivotal role in investigation of various problems of mathematical 

physics and continuum mechanics (Svandze 2018a). (Svanadze 2018b) constructed fundamental 

solutions in the theory of elasticity and thermoelasticity for solids with triple porosity. (Kansal 2019) 

found the fundamental solution of partial differential equations in the generalized theory of 

thermoelastic diffusion materials with double porosity. (Sharma et al. 2013) investigated the plane 

wave and fundamental solution in electro-microstretch elastic. (Sharma and Kumar 2014) 

investigated the temporal fluctuations in tissue by using Laplace and Hankel transforms. Recently, 
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(Kumar et al. 2020) constructed the fundamental solution of the system of equations in the theory 

of bio-thermoelasticity and studied the waves in tissues. 

The introduction of non local factor is significant because the size effects increases at micro-

scopic level. The concept of non-local model along with bio-thermoelasticity theory has not been 

considered so far. In order to analyze the behavior of the NL DPL model, we investigate some basic 

theorem in the form of the fundamental solution and the effect of non local and phase lag parameters 

on phase velocity and attenuation coefficients.  

 

 

2. Governing equations 
 

According to the nonlocal elasticity theory of (Eringen 2002), the stress tensor at arbitrary points 

𝐱 of a nano-material body not only depends on strain tensor at 𝐱 but also depends on all points of 

the body. The stress strain-temperature and chemical potential relations have the form (Xiong et al. 

2017)  

𝜏(𝐱) = ∫𝑉
𝛼(|𝐱′ − 𝐱|, 𝜉)𝜎(𝐱)𝑑𝑉(𝐱′),                      (1) 

𝜎(𝐱) = 𝜆0(∇. �̅�)𝐈 + 2𝜇휀 − 𝛾1�̅�𝐈 − 𝛾2�̅�𝐈,                     (2) 

휀 =
1

2
[∇�̅� + ∇�̅�𝐓],                               (3) 

where 𝜏 nonlocal stress tensor, 𝜎 local stress tensor, |𝐱′ − 𝐱| Euclidean distance, 𝛼(|𝐱′ − 𝐱|) 

nonlocal kernal, 𝜉  nonlocal parameter, �̅�  temperature increment, �̅� = Θ − 𝑇0 , 
�̅�

𝑇0
≪ 1  , Θ  

tissue temperature, 𝑇0  reference temperature; �̅�  chemical potential, �̅�  displacement vector, 

(Eringen 2002) replaced the non local constitutive equations given by the integral formulation by 

the gradients. Thus, by applying the differential operator (1 − 𝜉2∇2) to both sides of Eq. (1), we 

get the equivalent differential form of the nonlocal theory as  

 (1 − 𝜉2∇2)𝜏 = 𝜆0(∇. �̅�)𝐈 + 2𝜇휀 − 𝛾1�̅�𝐈 − 𝛾2�̅�𝐈,                   (4) 

which considers the size effect on the response of nano structures, where 𝛾1 = 𝛽1 +
𝑎

𝑏
𝛽2, 𝛾2 =

𝛽2

𝑏
, 

𝜆0 = 𝜆 −
𝛽2

2

𝑏
, and 𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡 , 𝛽2 = (3𝜆 + 2𝜇)𝛼𝑐  𝜆, 𝜇 are Lame’s constants; 𝛼𝑡  is the 

linear diffusion expansion coefficient; 𝛼𝑐 is the linear thermal expansion coefficient; 𝑎 measure 

of the thermodiffusion effect; 𝑏 measure of the diffusive effect; ∇2 Laplacian operator. 

The equations of motion can be written as in the following form  

∇. 𝜏 + 𝜌�̅� = 𝜌�̈̅�,                                 (5) 

where �̅� the body force per unit mass. 

Using Eq. (4) in Eq. (5), the equations of motion in terms of the temperature, displacement and 

chemical potential fields is as follows  

 (𝜆0 + 𝜇)∇(∇. �̅�) + 𝜇∇2�̅� − 𝛾1∇�̅� − 𝛾2∇�̅� + 𝜌(1 − 𝜉2∇2)�̅� = 𝜌(1 − 𝜉2∇2)�̈̅�       (6) 

Heat transfer in living biological tissues is complicated process. The Pennes’ bioheat transfer 

model (Pennes 1948) is used most commonly for the prediction of thermal data. The conduction 

term in this model is based on the classical Fourier’s law  

𝐪(𝐱, 𝑡) = −𝑘∇𝑇(𝐱, 𝑡),                              (7) 
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which implies unphysical infinite propagation speed of thermal disturbance, where 𝐪 heat flux 

vector. Then In order to overcome this unphysical behavior, (Cattaneo 1958) and (Vernotte 1958) 

independently proposed a modified constitutive relation to overcome this phenomena by introducing 

a phase lag time (𝜏𝑞) in Fourier’s law  

𝐪(𝐱, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝐱, 𝑡),                          (8) 

where 𝜏𝑞 captures the micro-scale responses in time. Due to the imperfect of thermal model for 

some situations, (Tzou 1996) established a dual-phase-lag (DPL) constitutive relation, i.e.  

𝐪(𝐱, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝐱, 𝑡 + 𝜏𝑇),                        (9) 

The lagging time 𝜏𝑇  is interpreted the thermalization time caused by micro-structural 

interaction and the lagging time 𝜏𝑞 is relaxation time due to fast transient effect of thermal inertia 

which is called phase-lag of heat flux. 

Later, (Tzou and Guo 2010), proposed non local model which assumes that  

𝐪(𝐱 + 휁, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝐱),                        (10) 

Kumar et al. (2019) reformulated NL DPL model following GK model as follows  

𝐪(𝐱 + 휁, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝐱 + 𝜏𝑇),                      (11) 

where 휁 nonlocal parameter. 

A developed lagging response structure represented by Eq. (11) can be shown by expanding it in 

terms of time and space related expansions of Taylor’s and holding the terms up to particular orders 

in the parameters  

 (1 − 휁2∇2 + 𝜏𝑞
∂

∂𝑡
+

𝜏𝑞
2

2

∂2

∂𝑡2)𝐪 = −𝑘(1 + 𝜏𝑇
∂

∂𝑡
)∇T,                (12) 

where  

∇. 𝐪 = −𝜌𝑇0�̇� + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 − Θ) + 𝑞𝑚 + 𝑞𝑒𝑥𝑡.                 (13) 

Constitutive relation is as follows  

𝜌𝑆 = 𝛾1𝑒𝑘𝑘 + 𝑙1�̅� + 𝑑�̅�,                           (14) 

where 𝑒𝑘𝑘 = �̅�𝑖,𝑖 i= 1,2,3, and 𝑙1 =
𝜌𝑐

𝑇0
+

𝑎2

𝑏
. 

From Eqs. (12)-(14), the non local bio-thermoelastic diffusive equation can be described as  

𝑘 (1 + 𝜏𝑇
∂

∂𝑡
) ∇2�̅� − (1 − 휁2∇2 + 𝜏𝑞

∂

∂𝑡
+

𝜏𝑞
2

2

∂2

∂𝑡2) (𝛾1𝑇0�̇�𝑘𝑘 + 𝑙1𝑇0�̇̅� + 𝑑𝑇0�̇̅� + 𝜔𝑏𝜌𝑏𝑐𝑏�̅�) =  

− (1 − 휁2∇2 + 𝜏𝑞
∂

∂𝑡
+

𝜏𝑞
2

2

∂2

∂𝑡2) (𝑞𝑚 + 𝑞𝑒𝑥𝑡),                    (15) 

where 𝑇𝑏 blood temperature, 𝜌𝑏 blood mass density, 𝜔𝑏 blood perfusion rate, 𝑐𝑏 specific heat 

of blood; 𝜌 tissue mass density; 𝑐 tissue specific heat. In Eq. (15), it is assumed that 𝑇𝑏 = 𝑇0. 

Also the non local mass diffusion law in the context of dual phase lag model is expressed as 

follows  

 (1 − 𝜍∇2 + 𝜏𝑣
∂

∂𝑡
+

𝜏𝑣
2

2

∂2

∂𝑡2)휂 = −𝐷(1 + 𝜏𝜌
∂

∂𝑡
)∇𝐏,              (16) 
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where  

−∇. 휂 = �̇� − 𝑀.                              (17) 

Constitutive relation is  

𝐶 = 𝛾2𝑒𝑘𝑘 + 𝑑�̅� + 𝑛�̅�.                           (18) 

From Eqs. (16)-(18), the mass diffusion equation can be described as  

𝐷 (1 + 𝜏𝜌
∂

∂𝑡
) ∇2�̅� − (1 − 𝜍2∇2 + 𝜏𝜈

∂

∂𝑡
+

𝜏𝜈
2

2

∂2

∂𝑡2) (𝛾2�̇�𝑘𝑘 + 𝑑�̇̅� + 휂�̇̅�) =  

−(1 − 𝜍2∇2 + 𝜏𝜈
∂

∂𝑡
+

𝜏𝜈
2

2

∂2

∂𝑡2)𝑀,                      (19) 

where 𝐷 thermoelastic diffusion constant, 휂 mass diffusing vector, 𝐶 concentration of diffusive 

materials, 𝑀 mass diffusion source, 𝑑 =
𝑎

𝑏
, 𝑛 =

1

𝑏
, 𝜍 non local parameter and 𝜏𝑣, 𝜏𝑃 are phase 

lag parameters. 

For simplicity, we invoke the following dimensionless variables  

𝑥𝑖′ =
𝜔∗

𝑐1
𝑥𝑖, �̅�𝑖′ =

𝜔∗

𝑐1
�̅�𝑖, 𝜉′ =

𝜔∗

𝑐1
𝜉, 휁′ =

𝜔∗

𝑐1
휁, 𝜍′ =

𝜔∗

𝑐1
𝜍,

𝑡′ = 𝜔∗𝑡, 𝜏𝑞′ = 𝜔∗𝜏𝑞 , 𝜏𝜌′ = 𝜔∗𝜏𝜌, 𝜏𝑇′ = 𝜔∗𝜏𝑇 , 𝜏𝜈′ = 𝜔∗𝜏𝜈 ,

�̅�′ =
𝛾1�̅�

𝜌𝑐1
2 , �̅�′ =

�̅�

𝑏𝛾2
, 𝑀′ =

𝜔∗

𝛾2
𝑀, �̅�′ =

𝜌𝑐1

𝜇𝜔∗ 𝐅, 𝑞𝑚′ =
1

𝛾1𝑇0𝜔∗ 𝑞𝑚,

𝑞𝑒𝑥𝑡′ =
1

𝛾1𝑇0𝜔∗ 𝑞𝑒𝑥𝑡,

          (20) 

where  𝑐1
2 =

𝜆+2𝜇

𝜌
, 𝜔∗ =

𝜌𝑐𝑐1
2

𝑘
, 𝜔∗ and 𝑐1 are characteristics frequency and longitudinal wave 

velocity in the medium, respectively. 

Using dimensionless variables given by Eq. (20) in Eqs. (6), (15) and (19), after suppressing the 

primes, we have 

𝑎1∇(∇. �̅�) + 𝑎2∇2�̅� − ∇�̅� − 𝑎3∇�̅� − (1 − 𝜉2∇2)�̈̅� = −𝑎2(1 − ∇2𝜉2)�̅�,

𝜏10∇2�̅� − 𝜏20(𝑎4∇̇. �̅� + 𝑎5�̇̅� + 𝑎6�̇̅� − 𝑎7�̅�) = �̅�4,

𝜏30∇2�̅� − 𝜏40(𝑎9∇̇. �̅� + 𝑎10�̇̅� + 𝑎11�̇̅�) = �̅�5,

         (21) 

where 𝑎𝑖 for 𝑖 = 1. . .12, 𝜏𝑖0 for 𝑖 = 1,2,3,4 and �̅�, �̅�4, �̅�5 are given as follows 

𝑎1 =
𝜆0 + 𝜇

𝜌𝑐1
2 , 𝑎2 =

𝜇

𝜌𝑐1
2 , 𝑎3 =

𝑏𝛾2
2

𝜌𝑐1
2 , 𝑎4 =

𝛾1
2𝑇0

𝑘𝜌𝜔∗
, 

𝑎5 =
𝑙1𝑇0𝑐1

2

𝑘𝜔∗
, 𝑎6 =

𝑑𝑏𝑇0𝛾1𝛾2

𝑘𝜌𝜔∗
, 𝑎7 =

𝜔𝑏𝜌𝑏𝑐𝑏𝑐1
2

𝑘𝜔 ∗2
, 𝑎8 =

𝛾1
2𝑇0

𝑘𝜌𝜔∗
, 

𝑎9 =
𝑐1

2

𝐷𝑏𝜔∗
, 𝑎10 =

𝑑𝜌𝑐1
2𝜔∗

𝐷𝑏𝛾1𝛾2
, 𝑎11 =

𝑛𝑐1
2

𝐷𝜔∗
, 𝑎12 =

𝑐1
2

𝐷𝑏𝜔∗
, 

𝜏10 = 1 + 𝜏𝑇

∂

∂𝑡
, 𝜏20 = 1 − 𝜉2∇2 + 𝜏𝑞

∂

∂𝑡
+

𝜏𝑞
2

2

∂2

∂𝑡2
, 

𝜏30 = 1 + 𝜏𝑃

∂

∂𝑡
, 𝜏40 = 1 − 𝜍2∇2 + 𝜏𝑣

∂

∂𝑡
+

𝜏𝑣
2

2

∂2

∂𝑡2
, 
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𝐅(𝟏) = −𝑎2(1 − ∇2𝜉2)�̅�, �̅�4 = −𝜏21𝑎8(𝑞𝑚 + 𝑞𝑒𝑥𝑡), �̅�5 = −𝜏41𝑎12𝑀, 
 

2.1 Steady oscillation 
 

Taking harmonic variation of �̅�, �̅�, �̅� as  

 (�̅�𝑖, �̅�, �̅�, �̅�𝑗)(𝐱, 𝑡) = 𝑅𝑒[(𝑢𝑖, 𝑇, 𝑃, 𝐹𝑗)(𝐱)𝑒−𝑖𝜔𝑡],                 (22) 

where 𝑖 = 1,2,3 and 𝑗 = 1,2,3,4,5. 
Let us take the second order matrix differential operator with constant coefficients as  

𝐴𝑚𝑛(𝐷𝑥) = (𝑎2∇2 + 𝜔2(1 − 𝜉2∇2))𝛿𝑚𝑛 + 𝑎1
∂2

∂𝑥𝑚 ∂𝑥𝑛
, 𝐴𝑚4(𝐷𝑥) = −

∂

∂𝑥𝑚
, 𝐴𝑚5(𝐷𝑥) = −𝑎3

∂

∂𝑥𝑚
,  

𝐴4𝑛(𝐷𝑥) = 𝜏21𝑎4(𝑖𝜔), 𝐴44(𝐷𝑥) = 𝜏11∇2 + 𝜏21(𝑖𝜔)(𝑎6 + 𝑎7), 𝐴45(𝐷𝑥) = 𝜏21𝑎6(𝑖𝜔), 

𝐴5𝑛(𝐷𝑥) = 𝜏41𝑎9(𝑖𝜔)
∂

∂𝑥𝑛
, 𝐴54 = 𝜏41𝑎10(𝑖𝜔), 𝐴55(𝐷𝑥) = 𝜏31∇2 + 𝜏41𝑎11(𝑖𝜔),  

𝐷𝑥 = (
∂

∂𝑥1
,

∂

∂𝑥2
,

∂

∂𝑥3
), 𝑚, 𝑛 = 1,2,3, 

where 𝛿𝑚𝑛 is the kronecker delta function and 𝜏1𝑖 for 𝑖 = 1,2,3,4 are given as follows  

𝜏11 = 1 + 𝜏𝑇(−𝑖𝜔), 𝜏21 = 1 − 휁2∇2 + 𝜏𝑞(−𝑖𝜔) +
𝜏𝑞

2

2
(−𝑖𝜔)2, 

𝜏31 = 1 + 𝜏𝑝(−𝑖𝜔), 𝜏41 = 1 − 𝜍2∇2 + 𝜏𝜈(−𝑖𝜔) +
𝜏𝜈

2

2
(−𝑖𝜔)2. 

With these considerations, Eq. (21) can be written as  

𝐀(𝐃𝐱, 𝜔)𝐔(𝐱) = 𝐅(𝐱),                          (23) 

i.e.  

𝐀(𝐃𝐱) =∥ 𝐺𝑔ℎ(𝐷𝑥) ∥5×5,                        (24) 

where, 𝐔 = (𝐮, 𝑇, 𝑃) and 𝐅 = (𝐹1, . . . , 𝐹5) is a five component vector function, 𝐱 ∈ 𝑅3. 

 

 

3. Fundamental solutions 
 

In this section fundamental solutions of the system of Eq. (21) is constructed as follows: 

Definition The fundamental solution of the system of equation (the fundamental matrix of 

operator A) is the matrix 𝐺(𝐱) =∥ 𝐺𝑔ℎ(𝐱) ∥5×5 satisfying the condition  

𝐀(𝐷𝑥)𝐺(𝐱) = 𝛿(𝐱)𝐈(𝐱),                         (25) 

where 𝛿(𝑥) is the Dirac delta, 𝐼 =∥ 𝛿𝑔ℎ ∥5×5 is the unit matrix and 𝐱 ∈ 𝑅3. 

Now, we construct 𝐺(𝐱) in terms of the elementary functions.  

Consider the system of non-homogeneous equations:  

[𝑎2∇2 + 𝜔2(1 − 𝜉2∇2)]𝑢 + 𝑎1∇(∇. 𝐮) + (𝜏21𝑎4(𝑖𝜔))∇𝑇 + 𝜏41𝑎9(𝑖𝜔)∇  �̅� = 𝐅(1),

−∇.  𝐮 + (𝜏11∇2 + 𝜏21𝑖𝜔(𝑎5 + 𝑎7))𝑇 + 𝜏41𝑎10(𝑖𝜔)𝑃 = 𝐹4,

−𝑎3∇. 𝑢 + (𝜏21𝑎6𝑖𝜔)𝑇 + (𝜏31∇2 + 𝜏41𝑎11𝑖𝜔)𝑃 = 𝐹5.

  (26) 

Introducing the matrix differential operator as 
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It can easily verify that the system of Eq. (26) can be written as  

𝐀𝑇(𝐷𝑥)𝐔(𝑥) = 𝐅(𝐱),                           (27) 

where 𝐴𝑇 is the transpose of matrix 𝐴, 𝑈 = (𝐮, 𝑇, 𝑃) and 𝐅 = (𝐅(1), 𝐹4, 𝐹5) is a five component 

vector function and 𝐱 ∈ 𝑅3. 

Applying divergence operator on the first equation of system (26), we obtain  

[(𝑎1 + 𝑎2)∇2 + 𝜔2(1 − 𝜉2∇2)]∇. 𝐮 + (𝜏21𝑎4(𝑖𝜔))∇2𝑇 + 𝜏41𝑎9(𝑖𝜔)∇2𝑃 = ∇. 𝐅(1),

−∇.  𝐮 + (𝜏11∇2 + 𝜏21𝑖𝜔(𝑎5 + 𝑎7))𝑇 + 𝜏41𝑎10(𝑖𝜔)𝑃 = 𝐹4,

−𝑎3∇. 𝑢 + (𝜏21𝑎6𝑖𝜔)𝑇 + (𝜏31∇2 + 𝜏41𝑎11𝑖𝜔)𝑃 = 𝐹5.

  (28) 

From Eq. (28), we have 

𝐁(∇2, 𝜔)𝐕(𝐱) = 𝚽(𝐱),                         (29) 

where 𝐕 = (∇. 𝐮, 𝑇, 𝑃)  and 𝚽 = (𝜙1, 𝜙2, 𝜙3) = (∇. 𝐅(1), 𝐹4, 𝐹5)  are there-component vector 

function, 

𝐵(𝛥, 𝜔) = (𝐵𝑖𝑗(𝛥, 𝜔))3×3, 

𝐵11(𝛥, 𝜔) = (𝑎1 + 𝑎2)∇2 + 𝜔2(1 − 𝜉2∇2), 𝐵12(𝛥, 𝜔) = 𝜏21𝑎4𝑖𝜔, 𝐵13(𝛥, 𝜔) = 𝜏41𝑎9𝑖𝜔 

𝐵21(𝛥, 𝜔) = −1, 𝐵22(𝛥, 𝜔) = 𝜏11∇2 + 𝜏21, 𝑖𝜔(𝑎5 + 𝑎7), 𝐵23(𝛥, 𝜔) = 𝜏41𝑎10𝑖𝜔, 
𝐵31(𝛥, 𝜔) = −𝑎3,32 (𝛥, 𝜔) = 𝜏21𝑎6𝑖𝜔, 𝐵33(𝛥, 𝜔) = 𝜏31∇2 + 𝜏41𝑎11𝑖𝜔, 

We introduce the notation  

Λ1(∇, 𝜔) =
1

[(𝑎1 + 𝑎2 − 𝜔2𝜉2)𝜏11𝜏31]
𝑑𝑒𝑡𝐁(∇, 𝜔). 

It is easily seen that Λ1(−𝛼∗, 𝜔) = 0 is a third degree algebraic equation and there exist three 

roots 𝜆1
2, 𝜆2

2, 𝜆3
2 (w.r.t. 𝛼∗). 

Then we have 

Λ1(∇, 𝜔) = ∏

3

𝑗=1

(∇ + 𝜆𝑗
2). 

Eq. (29) imply that  

Λ1(∇, 𝜔)𝐕 = 𝚽,                             (30) 

where 𝚽 = (Φ1, Φ2, Φ3),  

Φ𝑗 =
1

(𝑎1+𝑎2−𝜔2𝜉2)𝜏11𝜏31
∑3

𝑙=1 𝐵𝑙𝑗
∗ 𝜙𝑙 ,                    (31) 

and 𝐵𝑙𝑗
∗  is the cofactor of elements 𝐵𝑙𝑗 of the matrix 𝐵. Now applying the operator Λ1(∇, 𝜔) to 

the first equation of system (26) and taking into account Eq. (30), we obtain  

Λ2(∇, 𝜔)𝑢 = �̃�,                             (32) 

where Λ2(∇, 𝜔) = Λ1(∇, 𝜔)(∇ + 𝜆4), 𝜆4 =
𝜔2

𝑎2−𝜔2𝜉2 and  

�̃� =
1

𝑎2−𝜔2𝜉2 [Λ1(∇, 𝜔)𝐅(1) − 𝑎1∇Φ1] −
𝑖𝜔

𝑎2−𝜔2𝜉2 [𝜏21𝑎4∇Φ2 + 𝜏41𝑎9∇Φ3].      (33) 

On the basis of Eqs. (30) and (32); we get  

Λ(∇, 𝜔)𝑈(𝑥) = Φ̃(𝑥),                         (34) 
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where Φ̃ = (�̃�, Φ2, Φ3) is a five component vector function and  

Λ(∇, 𝜔) = (Λ𝑖𝑗(∇, 𝜔))5×5, Λ11 = Λ22 = Λ33 = Λ2,               (35) 

Λ44 = Λ55 = Λ1, Λ𝑖𝑗 = 0, 𝑖 ≠ 𝑗.                      (36) 

We introduce the notations  

𝑛11(∇, 𝜔) = −
𝑎1

𝑎2−𝜔2𝜉2 𝐵𝑙1
∗ −

𝑖𝜔

𝑎2−𝜔2𝜉2 [𝜏21𝑎4𝐵𝑙2
∗ + 𝜏41𝑎9𝐵𝑙3

∗ ],

𝑛𝑙𝑚(∇, 𝜔) =
1

𝑘0
𝐵𝑙𝑚

∗ (∇, 𝜔), 𝑙 = 1,2,3, 𝑚 = 2,3.
          (37) 

In view of Eq. (37), from Eqs. (31) and (33) we have  

�̃� = (
1

𝑎2−𝜔2𝜉2 Λ1(𝛥, 𝜔)𝐼 + 𝑛11(𝛥, 𝜔)∇𝑑𝑖𝑣)𝐹(1) + ∑3
𝑙=2 𝑛𝑙1(𝛥, 𝜔)∇𝐹𝑙+2,      (38) 

Φ𝑚 = 𝑛1𝑚(𝛥, 𝜔)𝑑𝑖𝑣𝐹(1) + ∑3
𝑙=2 𝑛𝑙𝑚(𝛥, 𝜔)𝐹𝑙+2,               (39) 

where 𝐼 = (𝛿𝑖𝑗)3×3 is the unit matrix. 

Thus, from Eq. (39) we have  

Φ̃(𝑥) = 𝐿𝑇(𝐷𝑥, 𝜔)𝐹(𝑥),                         (40) 

where  

𝐿(𝐷𝑥, 𝜔) = (𝐿𝑖𝑗(𝐷𝑥, 𝜔))5×5,

𝐿𝑖𝑗(𝐷𝑥, 𝜔) =
1

𝜇
Γ1(∇, 𝜔)𝛿𝑖𝑗 + 𝑛11(∇, 𝜔)

∂2

∂𝑥𝑖 ∂𝑥𝑗
,

𝐿𝑖𝑟(𝐷𝑥, 𝜔) = 𝑛1;𝑟−2(∇, 𝜔)
∂

∂𝑥𝑖
, 𝐿𝑟𝑖(𝐷𝑥, 𝜔) = 𝑛𝑟−2;1(∇, 𝜔)

∂

∂𝑥𝑖
,

𝐿𝑟𝑚(𝐷𝑥, 𝜔) = 𝑛𝑟−2;𝑚−2(∇, 𝜔), 𝑖, 𝑗 = 1,2,3, 𝑟, 𝑚 = 4,5.

        (41) 

By virtue of Eqs. (27) and (40) from (34), it follows that Λ𝑈 = 𝐿𝑇𝐴𝑇𝑈. It follows that 𝐿𝑇𝐴𝑇 =
Λ and hence 

𝐴(𝐷𝑥, 𝜔)𝐿(𝐷𝑥, 𝜔) = Λ(∇, 𝜔).                        (42) 

We assume that 𝜆𝑙
2 ≠ 𝜆𝑗

2, where 𝑙, 𝑗 = 1,2,3,4 and 𝑙 ≠ 𝑗. Let 

𝑌(𝐱, 𝜔) = (𝑌𝑙𝑗(𝐱, 𝜔))5×5,

𝑌11(𝐱, 𝜔) = 𝑌22(𝐱, 𝜔) = 𝑌33(𝐱, 𝜔) = ∑4
𝑗=1 휂2𝑗𝛾(𝑗)(𝐱, 𝜔),

𝑌44(𝐱, 𝜔) = 𝑌55(𝐱, 𝜔) = ∑3
𝑗=1 휂1𝑗𝛾(𝑗)(𝐱, 𝜔),

𝑌𝑙𝑗(𝐱, 𝜔) = 0, 𝑙, 𝑗 = 1,2, . . . ,5,

           (43) 

where 

𝛾(𝑗)(𝐱, 𝜔) = −
𝑒

𝑖𝜆𝑗|𝑥|

4𝜋|𝐱|
                             (44) 

is the fundamental solution of Helmoholtz’s equation, i.e. (∇ + 𝜆𝑗
2)𝛾(𝑗)(𝐱, 𝜔) = 𝛿(𝐱) and  

휂𝑙𝑚 = ∏3
𝑙=1,𝑙≠𝑚 (𝜆𝑖

2 − 𝜆𝑚
2 )−1, 휂2𝑗 = ∏4

𝑙=1,𝑙≠𝑚 (𝜆𝑖
2 − 𝜆𝑚

2 )−1,

𝑚 = 1,2,3, 𝑗 = 1,2,3,4.
            (45) 

Lamma: The matrix 𝑌(𝑥, 𝜔) is the fundamental solution of the operator Λ(𝛥, 𝜔), that is 
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Λ(𝛥, 𝜔)𝑌(𝑥, 𝜔) = 𝛿(𝑥)𝐽,      (46) 

where 𝑥 ∈ 𝑅3. 

Proof. It suffices to show that 𝑌11 and 𝑌44 are the fundamental solutions of operators Λ2(𝛥) 

and Λ1(𝛥), respectively, i.e.  

Λ2(𝛥)𝑌11(𝑥, 𝜔) = 𝛿(𝑥),                        (47) 

 Λ1(𝛥)𝑌44(𝑥, 𝜔) = 𝛿(𝑥).                        (48) 

Taking into account the equalities  

∑3
𝑗=1 휂1𝑗 = 0, ∑3

𝑗=2 휂1𝑗(𝜆1
2 − 𝜆𝑗

2) = 0, 휂13(𝜆1
2 − 𝜆𝑗

2)(𝜆2
2 − 𝜆3

2) = 0,  

 (∇2 + 𝜆𝑙
2)𝛾(𝑗)(𝑥, 𝜔) = 𝛿(𝑥) + (𝜆𝑙

2 − 𝜆𝑗
2)𝛾(𝑗)(𝑥, 𝜔), 

𝑙, 𝑗 = 1,2,3, 𝑥 ∈ 𝑅3 

we have  

Γ1(∇, 𝜔)𝑌44(𝑥, 𝜔) = ∏3
𝑙=2 (∇ + 𝜆𝑙

2) ∑3
𝑗=1 휂1𝑗(𝛿(𝑥) + (𝜆1

2 − 𝜆𝑗
2)𝛾(𝑗)(𝑥, 𝜔))

= ∏3
𝑙=2 (∇ + 𝜆𝑙

2) ∑3
𝑗=2 휂1𝑗(𝜆1

2 − 𝜆𝑗
2)𝛾(𝑗)(𝑥, 𝜔)

= (∇ + 𝜆3
2)𝛾(3)(𝑥, 𝜔) = 𝛿(𝑥).

   (49) 

Similarly we can prove Eq. (47). Introducing the following matrix  

𝐺(𝑥, 𝜔) = 𝐿(𝐷𝑥, 𝜔)𝑌(𝑥, 𝜔).                         (50) 

Using Eqs. (42) and (46) from (50), we get the required results. 

Theorem The matrix 𝐺(𝐱, 𝜔) defined by Eq. (50) is the fundamental solution of Eq. (23), where 

the matrix 𝐿(𝐷𝑥, 𝜔) and 𝑌(𝐱, 𝜔) are given by formula (41) and (43), respectively. 

Each element Γ𝑖𝑗(𝐱, 𝜔) of the matrix Γ(𝐱, 𝜔) is represented in the following form 

Γ𝑖𝑗(𝐱, 𝜔) = 𝐿𝑖𝑗(𝐷𝑥, 𝜔)𝑌11(𝐱, 𝜔),

Γ𝑙𝑚(𝐱, 𝜔) = 𝐿𝑙𝑚(𝐷𝑥, 𝜔)𝑌44(𝐱, 𝜔),
𝑙 = 1,2, . . . ,5, 𝑗 = 1,2,3, 𝑚 = 4,5.

                     (51) 

 

3.1 Special case: Influence of heat source 
 

Here we take the following special type of external heat source (Cheng and Kar 1997) 

𝑞𝑒𝑥𝑡 =
2𝐴𝑃

𝜋𝑟0
2 exp[−2(

𝑥1
2+𝑥2

2+𝑥3
2

𝑟0
2 )]𝑒−𝑖𝜔𝑡,                    (52) 

where P is the total power of the incident laser beam, A is the absorptivity of the workpiece, 𝑟0 is 

the spot radius of the laser beam at 
1

𝑒2  point, and 𝑥1 , 𝑥2  and 𝑥3  are distances measured in 

Cartesian coordinates from the center of the laser beam. 

Incorporating the considered heat source in the above basic theorem on fundamental solution, we 

will obtain the corresponding result due to external laser heat source. 

 

 

4. Plane waves 
 

In this section, we examine the behavior of plane waves in a homogeneous, isotropic, non local 

bio-themoelasic diffusive medium with phase lag. For this a two dimensional problem is considered 
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for which the displacements, temperature and chemical potential are taken as  

𝒖 = (𝑢1(𝑥1, 𝑥3, 𝑡), 0, 𝑢3(𝑥1, 𝑥3, 𝑡)), T = 𝑇(𝑥1, 𝑥3, 𝑡), P = 𝑃(𝑥1, 𝑥3, 𝑡),       (53) 

The relation between the displacement components and the potential functions is taken as  

𝑢1 =
∂𝜙

∂𝑥1
−

∂𝜓

∂𝑥3
, 𝑢3 =

∂𝜙

∂𝑥3
+

∂𝜓

∂𝑥1
.                         (54) 

Using Eq. (54) to the system of Eq. (21) in the absence of body force, metabolic source, external 

heat source and mass diffusion source, we have  

 ((𝑎1 + 𝑎2)∇2 − (1 − 𝜉2∇2)
∂2

∂𝑡2)𝜙 − 𝑇 − 𝑎3𝑃 = 0,                  (55) 

 (𝑎2 − (1 − 𝜉2∇2)
∂2

∂𝑡2)𝜓 = 0,                          (56) 

 (−𝑎4𝜏21
∂

∂𝑡
∇2)𝜙 + (𝜏11∇2 − 𝜏21𝑎5

∂

∂𝑡
+ 𝜏21𝑎7)𝑇 + 𝜏21𝑎6

∂

∂𝑡
𝑃 = 0,           (57) 

 (−𝜏41𝑎9
∂

∂𝑡
∇2)𝜙 − 𝜏41𝑎10

∂

∂𝑡
𝑇 + (𝜏31∇2 − 𝑎11𝜏41

∂

∂𝑡
)𝑃 = 0.              (58) 

where ∇2=
∂2

∂𝑥1
2 +

∂2

∂𝑥3
2. 

We assume the solution of the form  

 (𝜙, 𝑇, 𝑃, 𝜓) = (�̃�, �̃�, �̃�, �̃�)𝑒𝑖𝜉1(𝑙1𝑥1+𝑙3𝑥3−𝜔𝑡)                   (59) 

where 𝜔(= 𝜉1𝑐) is the frequency; 𝜉1 is the value number and 𝑐 is the phase velocity; �̃�, �̃�, �̃�, �̃� 

are undetermined amplitudes depending on time 𝑡 and coordinate 𝑥𝑚(𝑚 = 1,3); 𝑙1 and 𝑙3 are 

the direction cosines of the wave normal to the 𝑥1 − 𝑥3 plane with the property 𝑙1
2 + 𝑙3

2 = 1. 

Using Eqs. (59) in (55)-(59), we obtain  

 (−(𝑎1 + 𝑎2)𝜉1
2 + (1 + 𝜉2𝜉1

2)𝜔2)�̃� − �̃� − 𝑎3�̃� = 0,                (60) 

 (−𝑖𝑎4𝜏21
0 𝜔𝜉1

2)�̃� + (𝜏11𝜉1
2 − 𝜏21

0 𝑎5𝑖𝜔 + 𝜏21
0 𝑎7)�̃� + (−𝑖𝜔𝜏21

0 𝑎6)�̃� = 0,        (61) 

 (−𝑖𝜔𝜉1
2𝜏41

0 𝑎7)�̃� + 𝑖𝜔𝑎10𝜏41
0 �̃� + (−𝜏31𝜉1

2 + 𝑖𝜔𝑎11𝜏41
0 )�̃� = 0             (62) 

 (𝑎2 + (1 + 𝜉2𝜉1
2)𝜔2)�̃� = 0                         (63) 

For the non trivial solution of the system of Eqs. (60)-(62) can be obtained by equating the 

determinant of following matrix B. This yields a polynomial characteristics equation in 𝜉1
2.  

𝐵 = (

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

), 

where matrix entries are as follows 

𝑐11 = −(𝑎1 + 𝑎2)𝜉1
2 + (1 + 𝜉2𝜉1

2)𝜔2, 𝑐12 = −1, 𝑐13 = −𝑎3, 
𝑐21 = −𝑖𝑎4𝜔𝜉1

2𝜏21
0 , 𝑐22 = 𝜏11𝜉1

2 + 𝜏21
0 (−𝑎5𝜔 + 𝑎7), 𝑐23 = −𝑖𝜔𝜏21

0 𝑎6, 
𝑐31 = −𝑖𝜔𝑎9𝜉1

2𝜏41
0 ,32 = 𝑖𝜔𝑎10𝜏41

0 , 𝑐33 = (−𝜏31𝜉1
2 + 𝑎11𝑖𝜔𝜏41

0 ), 

𝜏21
0 = 1 + 휁2𝜉1

2 + 𝜏𝑞(−𝑖𝜔) +
𝜏𝑞

2

2
(−𝑖𝜔)2, 𝜏41

0 = 1 + 𝜍2𝜉1
2 + 𝜏𝑣(−𝑖𝜔) +

𝜏𝑣
2

2
(−𝑖𝜔)2.  

Solving the polynomial, we obtain six roots of 𝜉1, in which three roots 𝜉11, 𝜉12 and 𝜉13 

correspond to positive 𝑥3 direction and other three roots −𝜉11, −𝜉12 and −𝜉13 correspond to 

negative 𝑥3 direction. Corresponding to roots 𝜉11, 𝜉12 and 𝜉13 there exist three longitudinal 

waves in descending order of their velocities, namely longitudinal wave (P-wave), thermal wave  
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Table 1 Thermophysical parameters (Li et al. 2018) 

Parameters Units Values 

𝜌 𝑘𝑔𝑚−3 1190 

𝑐 𝐽𝑘𝑔−1𝐾−1 4196 

𝜌𝑏 𝑘𝑔𝑚−3 1060 

𝑐𝑏 𝐽𝑘𝑔−1𝐾−1 3600 

𝑘 𝑊𝑚−1𝐾−1 0.613 

𝜔𝑏 𝑠−1 1.87 × 10−3 

𝜏𝑞 𝑠 8 

𝜏𝑇 𝑠 16 

 
Table 2 Diffusion parameters (Xiong and Guo 2017) 

Parameter Units Values 

𝐷 𝑘𝑔𝑠𝑚−3 0.85 × 10−8 

𝑎 𝑚2𝑠−2𝐾−1 1.2 × 104 

𝑏 𝑘𝑔−1𝑚5 9 × 105 

𝜏𝑃 𝑠 8 

𝜏𝜂 𝑠 16 

 

 

(T-wave) and mass diffusive wave (MD-wave). From Eq. (63), we obtain roots of 𝜉1 as ±𝜉14 and 

corresponding to this root there exists a transverse wave (𝑆𝑉) which is unaffected by the thermal 

and diffusive properties of tissues. 

 

(i) Phase velocity 

The Phase velocities is given by  

𝑃𝑉𝑖 =
𝜔

𝑟𝑒𝑎𝑙(𝜉1𝑖)
, 𝑖 = 1,2,3. 

where 𝑃𝑉1, 𝑃𝑉2, 𝑃𝑉3 are the phase velocities of P, T and MD waves respectively. 

 

(ii) Attenuation coefficients 

𝐴𝑄𝑖 = 𝑖𝑚(𝜉1𝑖), 𝑖 = 1,2,3, 
where 𝐴𝑄1, 𝐴𝑄2, 𝐴𝑄3 are attenuation coefficients of P, T and MD waves respectively. 

 

 

5. Results and discussion 
 

The plane waves are useful idealization and practical reality. The considered model gives four 

conceptually distinct waves. Out of which three are longitudinal and fast waves and one is transverse 

and much slower than the longitudinal waves. The wave distorts the tissue in two ways. Elements 

of the medium change shape (transverse, shear strain) and they are rotated. Furthermore, the shear 

strains are orders of magnitude greater than the bulk strain for a given applied stress. The 

longitudinal shear strains near bubbles in tissue are perhaps the primary concern for safety in the use 

of diagnostic ultrasound. 

In this work, the wave characteristics (phase velocity and attenuation coefficients) in living  
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Table 3 Material constants (Li et al. 2018) 

Parameter Units Values 

𝜆 𝑘𝑔𝑚−1𝑠−2 8.27 × 108 

𝜇 𝑘𝑔𝑚−1𝑠−2 3.446 × 107 

𝛼𝑡 𝐾−1 1 × 10−4 

𝛼𝑐 𝐾−1 1.98 × 10−4 

 
Table 4 Non local parameters (Kumar et al., 2019a) 

Parameter Units Values 

𝜉 𝑚 0,0.02,0.04 

휁 𝑚 0,0.02,0.04 

𝜗 𝑚 0,0.02,0.04 

 

  
(a) (b) 

 
(c) 

Fig. 1 Effect of non local parameters (𝜉, 휁  and  𝜍) on phase velocities (𝑃𝑉1, 𝑃𝑉2, and  𝑃𝑉3) of longitudinal 

waves 
 

(a) 
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biological tissues obtained from NL DPL bio-thermoelastic diffusion model of bio-heat transfer is 

studied. The computation has been made by using the MATLAB-2019 software and results are 

presented in the figures. These graphical representations show the effects of non local and phase lag 

parameters on wave characteristics with frequency. The selected reference value of material 

constants and thermophysical, diffusion, non local, phase lag parameters to compute the profile of 

wave characteristics in living biological tissue in infinite domain are given in the Table 1, Table 2, 

Table 3 and Table 4.  

Red solid line corresponds to (𝜉 = 0.04, 휁 = 0.04, 𝜍 = 0.04), blue dashed line corresponds to 

(𝜉 = 0.02, 휁 = 0.02, 𝜍 = 0.02) and green dotted line corresponds to (𝜉 = 0, 휁 = 0, 𝜍 = 0) in Fig. 

1 and Fig. 2. Red solid line corresponds to (𝜏𝑇 = 0.25, 𝜏𝑞 = 0.15, 𝜏𝑃 = 0.25, 𝜏𝑣 = 0.15), blue 

dashed line corresponds to ( 𝜏𝑇 = 0, 𝜏𝑞 = 0.15, 𝜏𝑃 = 0, 𝜏𝑣 = 0.15 ) and green dotted line 

corresponds to (𝜏𝑇 = 0, 𝜏𝑞 = 0, 𝜏𝑃 = 0, 𝜏𝑣 = 0) in Fig. 3 and Fig. 4. 

 

 

  
(a) (b) 

 
(c) 

Fig. 2 Effect of non local parameters (𝜉, 휁  and  𝜍) on attenuation coefficients (𝐴𝑄1, 𝐴𝑄2, and  𝐴𝑄3) of 

longitudinal waves 
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(a) (b) 

 
(c) 

Fig. 3 Effect of phase lag parameters (𝜏𝑞 , 𝜏𝑇 , 𝜏𝑃   and  𝜏𝑣 ) on phase velovities (𝑃𝑉1, 𝑃𝑉2, and  𝑃𝑉3 ) of 

longitudinal waves 

 

 

Fig. 1 shows the effect of non local parameters on phase velocities 𝑃𝑉1 , 𝑃𝑉2  and 𝑃𝑉3  of 

longitudinal waves. The variation and behavior of 𝑃𝑉1  wave with non local parameters ( 𝜉,
휁  and  𝜍) increases monotonically with frequency. As the value of non-local parameter increases 

the value of 𝑃𝑉1 also increases. Also the value of 𝑃𝑉1 in the absence of non local parameters 

denoted by green dotted line (....) gets decreased in comparison with three non local parameters (in 

the absence). The velocity 𝑃𝑉2 display the similar behavior and variation in absence and presence 

of non local parameters as shown in Fig. 1(a). However, the magnitude of 𝑃𝑉1  and 𝑃𝑉2  are 

distinct. These variations are depicted in Fig. 1(b). Fig. 1(c) displays the variation in phase velocity 

𝑃𝑉3 along the frequency (𝜔) and it is seen that its value gets increased exponentially as frequency 

increases also the magnitude of 𝑃𝑉3 increases as the value of non local parameters increases. From 

Fig. 1(b) and 1(c) it is commonly seen that although the behavior appears to be similar but the 

magnitude value are distinct with the increase in the frequency (𝜔). 

Fig. 2 shows the effect of non local parameters on attenuation coefficients 𝐴𝑄1, 𝐴𝑄2 and 𝐴𝑄3  
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(a) (b) 

 
(c) 

Fig. 4 Effect of phase lag parameters (𝜏𝑞 , 𝜏𝑇 , 𝜏𝑃   and  𝜏𝑣) on attenuation coefficients (𝐴𝑄1, 𝐴𝑄2, and  𝐴𝑄3) 

of longitudinal waves 

 

 

of longitudinal waves. Fig. 2(a) shows that the attenuation coefficient 𝐴𝑄1. It is seen that in the 

absence of non local parameters the value gets sharply decreased. Although with the increase of 

three non local parameters the value of coefficient decrease with a lesser magnitude. Fig. 2(b) 

displays the trend of 𝐴𝑄2 with frequency (𝜔). It appears that the trend is similar to 𝐴𝑄1 but the 

magnitude value are quite distinct. Fig. 2(c) display a contrast behavior of oscillation to 𝐴𝑄1. The 

value of 𝐴𝑄3 gets decreased as the value of non local parameters increases and there is contrast 

difference in the magnitude value of 𝐴𝑄3 in absence and presence of non local parameters.  

Fig. 3 shows the effect of phase lag parameters (𝜏𝑞, 𝜏𝑇, 𝜏𝑣, and 𝜏𝑃) on phase velocities 𝑃𝑉1, 

𝑃𝑉2 and 𝑃𝑉3 of longitudinal waves. Due to all phase lag parameters the magnitude of 𝑃𝑉1 and 

𝑃𝑉2 get decreased in contrast to single phase lag and without phase lag parameters. Not much effect 

is noticed on 𝑃𝑉3.  
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Fig. 4 shows the effect of phase lag parameters on attenuation coefficients 𝐴𝑄1, 𝐴𝑄2 and 𝐴𝑄3. 

It is seen that in Fig. 4(a) and 4(b) the magnitude of 𝐴𝑄1 and 𝐴𝑄2 get decreased for all phase 

parameters in contrast to the single and with phase lag parameters, whereas 𝐴𝑄3 shows oscillatory 

variation.  

 

 

6. Conclusions 
 

In order to analyze the behavior of the NL DPL model, we investigated basic theorem in the form 

of the fundamental solution. Also the effects are examined on the basic characteristics of the wave, 

i.e., on phase velocity and attenuation coefficients. The problem has significant and practical 

meaning for structure or device with micro-scale subjected to transient response. On the basis of the 

above study it is possible: 

1. to construct the surface and volume potentials in the considered theory and to establish their 

basic properties; 

2. to investigate 3D boundary value problems (BVPs) of the linear theory of bio-thermoelasticity 

by means of the potential method (boundary integral equation method) and the theory of 2D 

singular integral equations;  

3. to obtain the numerical solutions of the BVPs by using the boundary element method and the 

method of fundamental solutions; and  

4. to construct the explicit solutions of the BVPs for the special cases of 3D domains (sphere, 

halfspace, etc.) 

5. Phase velocity and attenuation quality factor with local phase remain smaller in comparison to 

the increase of non local parameters depicting the effect of non local parameter on the physical 

characteristics of wave.  

6. Phase velocity 𝑃𝑉1, 𝑃𝑉2 and attenuation quality factor 𝐴𝑄1, 𝐴𝑄2 in case of single phase 

lag remains between the range of without and dual phase lag which shows the impact of dual 

phase lag.  

7. Magnitude values of 𝑃𝑉1, 𝑃𝑉2 remains more in case of without phase lag in comparison 

with single phase and dual phase lag parameters whereas for 𝑃𝑉3 negligible effect is noticed 

while depicting the response of phase lag parameters on the velocities.  

8. The values of 𝐴𝑄1, 𝐴𝑄2 and 𝐴𝑄3 for single phase lag are in the intermediate range of 

without phase lag. It is also apparent for 𝐴𝑄1 and 𝐴𝑄2 the values are similar in case of without 

phase lag whereas for 𝐴𝑄3 the value is more.  
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