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Advanced flutter simulation of flexible bridge decks

Gergely Szabó*1, József Györgyi1 and Gergely Kristóf2

1Department of Structural Mechanics, Budapest University of Technology and Economics, Hungary
2Department of Fluid Mechanics, Budapest University of Technology and Economics, Hungary

(Received May 28, 2012, Revised May 31, 2012, Accepted June 8, 2012)

Abstract. In this paper a bridge flutter prediction is performed by using advanced numerical simulation.
Two novel approaches were developed simultaneously by utilizing the ANSYS v12.1 commercial software
package. The first one is a fluid-structure interaction simulation involving the three-dimensional elastic
motion of a bridge deck and the fluid flow around it. The second one is an updated forced oscillation
technique based on the dynamic mode shapes of the bridge. An aeroelastic wind tunnel model was
constructed in order to validate the numerical results. Good agreement between the numerical results and
the measurements proves the applicability of the novel methods in bridge flutter assessment.
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1. Introduction

In the past decades really slender bridges have been built. Wind sensitivity of such buildings are

well known, therefore their profound dynamic calculation due to wind loading is essential. There

are several methods available in literature to calculate the critical flutter wind speed; basically wind

tunnel test are used (Brownjohn et al. 2001, Gu et al. 2004, Larsen and Wall 2011) but CFD

(Computational Fluid Dynamics) is increasingly taken as a mean in wind engineering (Szabó and

Györgyi 2009, Zhiwen et al. 2008). Such techniques consider a section of the whole bridge deck

only, irrespective of the highly complicated three-dimensional fluid-structure interaction phenomenon,

which can lead to inaccuracies in the calculated critical wind speed. On top of all, the section

modelling needs simplified mathematical models of the bridge deck that are not easy to make in

some cases; there are complex bridge geometries, where the cross section is not constant along the

bridge axis for instance, or a construction stage is to be modelled when the bridge is semi-finished.

In such complicated cases full aeroelastic test are performed (King et al. 2011, Kim et al. 2011, Xu

et al. 2011, Zhu et al. 2011).

The main goal of this paper is to give alternatives to the costly aeroelastic wind tunnel models by

using advanced three-dimensional numerical simulations. In the past decade the fluid-structure

interaction (FSI) simulation became an intensively studied field in engineering, ranging from bio-

mechanical applications to wind engineering (Szabó and Kristóf 2010, Tezduyar et al. 2008). FSI

simulation involving the three-dimensional elastic motion of a bridge deck, however, is rare in
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literature, aircraft wings as elastic beams are studied this way mainly (Cavagna et al. 2007,

Kamakoti et al. 2004, Wand and Lin 2008). Therefore, the authors of this paper have been

developing the methodology of bridge deck flutter calculation with special focus on the three-

dimensional coupling of the elastic mechanical motion and the fluid flow around the bridge deck

(Szabó and Györgyi 2009, Szabó and Kristóf 2010).

In this paper the development of the methodology of an advanced FSI flutter simulation by

utilizing ANSYS v12.1 commercial software will be presented. As a first step an aeroelastic wind

tunnel model setup is introduced especially dedicated to the accurate validation of the FSI

simulation. The ways of setting up the CFD and the mechanical FEM models are detailed that are

necessary for the FSI simulation. Several aspects of the CFD simulation are covered with special

focus on the optimal design of the computational mesh, the choice of the turbulence models as well

as the time steps. As an FSI simulation is computationally expensive yet, the 3D CFD mesh was

optimized in order to reduce the cell number used. 

The FEM model of the bridge was carefully adjusted in order to provide the same structural

properties as the wind tunnel model. The CFD and FEM models are automatically coupled by the

ANSYS multi-field solver. The deformation of the CFD mesh around the deformed bridge deck is

also handled by the dynamic mesh facility of the solver. The development of flutter was accelerated

by using initial perturbation in the numerical solution. The FSI simulation was performed at several

wind speeds until the critical value was found.

As a spin-off of the FSI studies, an elegant new method was also developed for bridge flutter

study, which is based on the classical flutter calculation process. In this new approach the 3D CFD

mesh was used that was applied for the FSI simulations too. The bridge boundary was given a

forced oscillation according to the relevant dynamic mode shapes of the bridge model. The classical

mathematical formulations for bridge flutter prediction were modified in order to be compatible

with this new method.

The final goal in flutter calculation is the critical wind speed, which was determined by using four

different methods; a wind tunnel test was carried out, the classical theory was applied and two

novel approaches were developed. The first one is an FSI simulation, the second one is an updated

forced oscillation technique, which is referred to as modal derivatives method later. The measured

and calculated critical wind speeds showed good agreement; therefore the novel methods prove to

be appropriate for bridge deck flutter assessment. Although simplified bridge geometry and uniform

airflow were considered only, the newly developed methods can be adequate to handle arbitrary

geometry combined with turbulent flow, provided that the proper computational background is

available.

2. Introduction of the aeroelastic wind tunnel model

2.1 Design and fabrication of the aeroelastic wind tunnel model

In Fig. 1 the fully aeroelastic wind tunnel model is shown that was constructed in order to

validate the numerical solutions. This model is an individual mechanical system for validation only

and is not a scaled model of any real bridge structure. The bridge is made up by using an aluminum

core beam, on which balsa elements are fixed. The cross section can be seen in Fig. 2. The contour

of the model represents an idealized streamlined boxed bridge deck cross section (Larsen 2011).
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This section was chosen because it was believed to be handled properly with simpler turbulence

models and coarse CFD mesh that is important to make the FSI simulation feasible. The core beam

is fully constrained at both ends. There are six steel wires working like stay cables. These wires were

softened by introducing spring elements (stiffness is 230 N/m) in order to make the bridge more

flexible. The model can be seen in Fig. 3. The elastic modulus of the aluminum is 6.90E10 N/m², the

density is 2620 kg/m³. The density of the balsa coating is 123 kg/m³.

At the middle balsa element of the bridge, at both sides of the segment, two piezoelectric

accelerometers were fixed for monitoring the vertical motion. For the wind-off case the natural

frequencies and logarithmic decrement values were measured. The first vibration mode was a

symmetrical heave motion of the bridge deck with a natural frequency of 1.62 Hz. For the flutter

analysis the first torsion mode is dominant, which was the fifth one with a natural frequency of

5.55 Hz. The logarithmic decrement for this mode was δ = 0.02. These parameters were used for

tuning the mechanical FEM model. During the measurement the wind speed was increased step by

step. The high frequency vibrations caused by vortex shedding were ignored and the flutter

phenomenon was only considered. The tests were done under low turbulence level.

Fig. 1 Side view of the aeroelastic wind tunnel model

Fig. 3 The bridge model mounted in the wind tunnel

Fig. 2 Cross section of the aeroelastic model
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3. Aerodynamic models of the bridge

3.1 Two-dimensional mesh of the investigated cross section

In classical flutter calculations the flutter derivatives are to be determined by considering a section

of the bridge deck only (Brownjohn et al. 2001, Gu et al. 2004). These derivatives are found in the

wind excitation forces in Eqs. (1) and (2).

(1)

(2)

In Eqs. (1) and (2) F and M are the lift force and moment respectively. B is the width of the

bridge deck, U is the inflow velocity, ρ is the air density, h and α are the vertical and rotational

motion amplitudes respectively, ω is the oscillating circular frequency. K = (B·ω)/U is the reduced

frequency. Most commonly the reduced velocity (Ured = U/(B·f), f is the frequency) is used. It can be

seen that the forces can be written as a function of the reduced frequency, the oscillating amplitudes

and the H1*-H4* and A1*-A4* flutter derivatives.

Before setting up the three-dimensional coupled simulation, a two-dimensional CFD calculation

was performed in order to determine the flutter derivatives for this cross section. The ANSYS-

FLUENT was utilized in this case. The numerical mesh around the bridge contour can be seen in

Fig. 4. The height of the computational domain is 2.40 m, the velocity inlet boundary was 1.00 m

left from the bridge centre, the outflow boundary was 1.40 m right. At the top and bottom planes

symmetry boundary conditions were used.

The flutter derivatives were extracted by means of forced vibration method (Larsen 2011). The

bridge deck is to be given a vertical and a rotational motion at different reduced wind velocities.

During the simulation the acting lift forces and moments can be recorded from which the flutter

derivatives can be extracted by using Eqs. (1) and (2). The oscillation frequency was constant (6.00

Hz), while the inflow velocity was incrementally increased. The lift motion amplitude was set to

20 mm, the rotation angle amplitude was 0.1744rad. The applied cell number was 12590. The k-ε

turbulence model was chosen, because it is one of the best turbulence model in terms of convergence.

Moreover turbulence is of minor importance in case of streamlined cross sections in forced

oscillations according to the authors' numerical experiences in this field.
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Fig. 4 Two-dimensional numerical mesh around the bridge deck
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The motion of the wall domain of the bridge needs the deformation of the numerical mesh, which

can be assured by using the dynamic mesh option of the solver. The mesh deformation was relatively

low, so there was no need to implement re-meshing technique, instead a smoothing mesh deformation

was enough to handle the bridge deck motion. The bridge contour is surrounded by a special mesh

region that is rigidly moving with the bridge. Thus, the good mesh quality can be preserved in the

vicinity of the bridge, which is essential for good numerical results. In order to further reduce

numerical errors, rectangular cells are used in this "bubble" region. Outside of the rigid body mesh,

however, triangular cells were applied that are very adequate to handle the motion of the bridge. The

mesh deformation is based on a spring analogy, where the mesh edges work like linear springs. Thus,

the majority of the total cell deformation occurs at the larger triangular cell region where the longest

mesh edges as springs suffer the greatest strain. In Fig. 5 two rotated phases are shown. Apparently

the triangular cells are not distorted unpleasantly.

In the URANS (Unsteady Reynolds-Averaged Navier-Stokes simulation) simulation the time step

was set to 0.00001s. Thus, the Courant-number was set below 1 for the whole computational domain

even at the highest wind velocity (U = 24 m/s), that is the fluid does not move longer than a cell size

in a time step. The end time was 0.5s, the total number of time steps was N = 50.000. By performing

URANS simulation for both vertical and rotational motion, the flutter derivatives were extracted

within a certain reduced velocity range (4, 8, 12, 16 and 20). The belonging wind velocities were

U = 4.80, 9.60, 14.40, 19.60 and 24.00 m/s respectively. The velocity contour plot can be seen in

Fig. 6 in case of rotational motion. The above presented two-dimensional simulation was preformed

by using fine mesh and time stepping, thus accurate flutter derivatives values can be expected.

3.2 CFD model for the three-dimensional fluid-structure interaction simulation

The FSI and the modal derivatives method requires three-dimensional CFD mesh around the

investigated bridge boundary. As the cell number of a 3D mesh with the same density is much larger

than that of a 2D mesh, the computational efforts are also higher. It is essential therefore to reduce the

Fig. 5 Rotated bridge deck at two different phases

Fig. 6 Velocity contour plot around the rotated bridge deck
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number of cells used in order to make the simulations feasible. The ANSYS-CFX was utilized in this

case. In Fig. 7 the applied mesh is shown. It can be seen that much coarser mesh is used than the 2D

mesh (Fig. 4). The total number of cells was reduced to 49.816, therefore the computational time is

acceptable. A time step of 0.0008s was used. The bridge boundary was subdivided into 13 parts along

the bridge axis resulting in 13 parts in accordance with the aeroelastic model (Fig. 1).

In case of two-dimensional meshes an efficient meshing strategy has been worked out that can

provide fine mesh quality throughout the whole unsteady computational process (Fig. 5). At a three-

dimensional mesh a rigid surrounding mesh region cannot be defined as the fully spatial motion

cannot be restrained. This means a little deformation of the boundary layer cells. The deformation of

the cells near the bridge deck boundary can be restricted by applying different spring stiffness for the

mesh smoothing; the spring stiffness is not constant, but increases near the boundary layer region. By

setting the mesh deformation this way, the deformation of the boundary layer cells is insignificant.

The k-ε model was chosen to model turbulence, as in case of the 2D simulations. At the inlet a

velocity inlet, at the outlet the outflow boundary conditions were used. At the top and bottom planes

Fig. 7 3D CFD mesh

Fig. 8 Computational domain and the boundary conditions
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symmetry conditions, at the both sides wall boundary conditions with free slip constraint were

applied. On the whole bridge surface wall boundary was used. The computational domain can be

seen in Fig. 8.

The three-dimensional mesh can be used in the FSI simulation or in the modal derivatives

method, which will be introduced later. It is essential in both cases that the aerodynamic forces are

calculated accurately in order to determine the critical wind speed precisely. Before using the 3D

mesh it was necessary to ascertain about its accuracy, as coarse mesh and large time step were used

in order to reduce the computational time. The ANSYS-CFX enables the user to define arbitrary

motions of the bridge boundary; therefore two types of spatial motions were defined; translational

and rotational ones. In Fig. 9 a rotated geometry is shown. It can be seen that the good mesh quality

is preserved throughout the whole simulation as in case of the 2D simulation.

The maximal amplitudes at the middle of the bridge deck are the same as in case of the 2D

simulations. The same reduced velocity range (4, 8, 12, 16 and 20) was considered. The lift force

and moment signals on the middle 20 cm long section were used to extract the flutter derivatives. In

Fig. 10 the flutter derivatives extracted from the 2D and 3D models are shown. The analytical results

for the ideal flat plate case are also illustrated (Theodorsen 1935). It can be seen that the numerical

results are close together indicating that the 3D model can be used for the FSI and the modal

derivatives method. In case of the most important H3*, A2* and A3* derivatives, the coincidence is

excellent.

The flutter derivatives give a good understanding of the flutter performance of bridge decks by

purely observing their shape, especially that of the A2* derivative. As the A2* is the multiplier of

the angular velocity of the bridge deck in Eq. (2), it has a major role in the flutter equation. If A2*

is negative, the torsion motion gives a positive damping to the structure in the fluid flow,

consequently hinders the development of flutter. If it turns to be positive, the damping of the torsion

mode is negative, which decreases dramatically the flutter speed. In the case of the investigated

cross section the A2* is negative at all reduced wind speed, therefore it is considered to be a

streamlined cross section. As a consequence, the flutter derivatives of streamlined bridge decks are

close to that of a flat plate (Fig. 10).

In this chapter the methodology of constructing a 3D CFD mesh for bridge flutter simulation was

shown. It was highlighted that the cell number is important to be kept low; therefore a comparison

with the results of a 2D CFD model was made. By using this optimization, the 3D mesh can be

accurate and contain low number of cells in the same time.

Fig. 9 Mesh deformation in rotational case
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4. Mechanical models of the bridge

4.1 Three-dimensional beam model

In order to perform a fluid-structure interaction simulation the structural dynamics model of the

bride is also necessary to make. The mechanical model is made up by using the ANSYS mechanical

classic module that can be seen in Fig. 11. The aluminium beam and the balsa elements are modelled

with BEAM4 spatial beam elements with 6DOFs per each of the two nodes. The cable elements are

modelled with LINK8 spatial link element that is capable of handling tension-compression forces

only. The ends of the aluminium beam and the cables are fully fixed. The dynamical mode shapes

and natural frequencies are shown in Fig. 12.

Fig. 10 Flutter derivatives
Circle: Flat plate theory, Rectangle: CFD_2D, Triangle: CFD_3D
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4.2 3D shell model

For the traditional flutter calculation a beam model may provide accurate results as to the mode

shapes and natural frequencies. In case of an advanced three-dimensional coupled fluid-structure

simulation an FEM model by using shell element is essential. In ANSYS 12.1 the coupling of

structural mechanics and fluid mechanics is handled automatically. The most important step is the

definition of an interaction interface on which the communication between the FEM mesh and the

CFD mesh is done. It was obvious that this surface was the boundary of the bridge. In Fig. 13 the

FEM model can be seen. The main difficulty was the determination of the mechanical properties;

the shell model has to behave as the aeroelastic wind tunnel model, though there is no core beam

Fig. 11 Mechanical beam model of the aeroelastic wind tunnel model

Fig. 12 Dynamic mode shapes and natural frequencies of the beam model (measured values in parenthesis)
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and cross balsa beams in this case, as it is a continuum. To overcome this problem, the surface

elements were given proper thickness and elastic modulus in order to provide the same stiffness as

the beam model. At first the torsion rigidity was tuned by using the expression below Eq. (3).

(3)

In Eq. (3) It is the torsion inertia, G is the shear modulus, A and K are the area and the perimeter

of the cross section, respectively, E is the elastic modulus, ν is the Poisson-ratio. The t thickness of

the boundary shell elements was set to 0.004 m. E and ν values were fixed so as to obtain the same

torsion frequency as the beam model. After that E and ν were changed slightly in order to

approximate the first natural frequency of the beam model. The final parameters are E = 3.874E6 N/

m² and ν = 0.31.

It is obvious that the shell element cannot have real material properties as a large boxed section

has to provide same stiffness as an aluminium core beam. As a consequence the flexural stiffness of

the boundary is really low, therefore extremely vulnerable to normal forces due to the airflow

pressure. To overcome this problem, volume elements were introduced to fill the boxed tube. The

mechanical properties were chosen in order not to affect the longitudinal behaviour; these volume

elements have stiffness normal to the surface only. By using this technique the surface was stiffened

properly, preventing it from being deformed locally.

The filling volume elements were given the density of the balsa elements. Additional masses like

the weight of the aluminium core beam and the bolts were taken into account by modifying the

density. The cables were defined the same as in case of the beam model. In dynamic calculation

damping is of primary importance. In the FSI simulation the Raleigh damping can only be used in

ANSYS, which is problematic as the structural damping can be modelled by using frequency-

independent damping precisely. By using the Raleigh constants, however, the required percentage

damping can be approximated. The logarithmic decrement of damping of the torsion vibration mode

was δ = 0.02. The percentage damping is then ξ = δ/2π = 0.0032. This value is targeted by setting α

and β damping constants according the equation α + βω i = 2ω iξ for the desired ith ω i circular

natural frequencies. In Fig. 14 the targeted and the achieved values are shown. The damping of the

model is really close to the designed value in the 4-5 Hz range that is expected to be important for

ItG
4A2t

K
-----------

E

2 1 ν+( )
--------------------=

Fig. 13 Mechanical FEM model of the aeroelastic wind tunnel model
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flutter phenomenon. Below 3 Hz the damping of the model differs from the constant 0.0032 value.

It is important to underline, however, that in case of flutter the role of damping is of minor

importance. In Fig. 15 the calculated mode shapes and natural frequencies are shown.

5. Calculation of the critical wind speed

The final aim in case of a flutter simulation of a bridge structure is the determination of the critical

wind speed. The critical wind speed was calculated by using four different techniques; direct

measurement of the wind tunnel model, three-dimensional FSI simulation, a classical approach by

using the flutter derivatives and a novel approach by using newly developed modal derivatives based

on three-dimensional forced vibration technique with CFD simulation. These four methods are

introduced in the four sections as follows.

Fig. 14 Percentage damping of the wind tunnel model and the shell FEM model

Fig. 15 Dynamic mode shapes and natural frequencies of the shell model (measured values in parenthesis)
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5.5.1 Wind tunnel measurements

The aeroelastic wind tunnel model was equipped with two accelerometers on both sides of the

middle balsa member, therefore vertical and torsion motion accelerations were measured. By filtering

and integrating the acceleration signals the motion amplitudes were determined. The wind speed was

varied from 3 up to 10.4 m/s. The rotation amplitudes versus wind velocity curve can be seen in Fig.

16. It can be seen that the motion amplitude remains moderate below 9 m/s. From 9.5 m/s the

amplitudes are growing rapidly. The wind velocity during the measurement was limited to 10.4 m/s

as the motion amplitudes were extremely high. The critical wind speed was extrapolated at 9.7 m/s

by using the last three data points where the amplitudes are growing definitely (see Fig. 16).

At the speed of 10 m/s the deformed bridge deck is illustrated in Fig. 17. The flutter phenomenon

is fully developed in this case. It can be clearly seen that the bridge deck is in a spatial rotation state.

5.5.2 Three-dimensional FSI simulation

To setup an FSI simulation both fluid and mechanical models are necessary. The CFD and the

FEM models have already been introduced. Once these two models are made, the FSI simulation

can be carried out. The coupling process is completely handled by ANSYS with the built-in multi-

field solver. The solution process is a transient dynamic calculation as to the structural part. The

CFD solver uses an unsteady finite volume method. The global time step is 0.0008s, in accordance

with the CFD model. At each time step the solver does a mapping process that is passing the FEM

node deformation to the CFD mesh and the pressure forces from the CFD simulation to the FEM

model. Then the CFD mesh is deformed and the field variables are calculated. The deformation of

the FEM model is also calculated due to the pressure forces. This process is repeated in a so called

"stagger" iteration until the norm of the interface load change vector is smaller than a tolerance

value. Once convergence is reached, the solver proceeds to the next time step.

The initial condition is a delicate issue in a coupled simulation. In the CFD setup constant wind

Fig. 16 Rotation amplitude as a function of the inflow wind speed

Fig. 17 Deformed bridge deck at the speed of 10 m/s
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speeds were defined at the velocity inlet boundary condition. As in case of the wind tunnel test,

several wind speeds were defined in order to find the critical wind speed. In case of a coupled

simulation the development of flutter needs lot of computational time, therefore it is not feasible to

start from a zero-deformation condition. Instead, in order to fasten the simulation, a constant torsion

moment was given to the bridge deck within the first 20 time steps as a perturbation. The bridge

deck is taking a flutter-like shape until the end of the 20 time steps and then the simulation

continues without additional moment. From the initial 20 time steps the model is deformed enough

to generate self-excited forces on itself. With the increase of the wind speed the damping of the

bridge deck oscillation decreases, and vanishes over 10 m/s (see Figs. 18 and 19).

The rotation amplitude decreases at the wind speed of 9 m/s (Fig. 18). At 12 m/s already slightly

grows and at 15 m/s the growth is remarkable. As in case of the wind tunnel measurement, the

critical wind speed is approximated by interpolation (see Fig. 19). The critical wind speed by using

the FSI simulation is 10.2 m/s. The deformed bridge deck with the streamlines around it can be seen

in Fig. 20 at four different time steps. The bridge deck has a typical spatial deformation that is usual

in case of the so-called coupled flutter; the presence of the torsion and a heave motion is dominant.

In this case the fourth (torsion) and the first (heave) mode shapes can be recognized. These two

modes are coupled in a flutter motion. The motion of the bridge deck dominates the flow-field

around it, and the flow field generates unsteady forces on the bridge deck as a consequence. This

mutual interaction is responsible for the flutter phenomenon. In Fig. 21 the deformed FEM mesh can

be seen without the CFD results. A simulation belonging to a certain wind speed required about 8

days computational time [Intel Quad Q6600 2.40 GHz, four core, RAM: 8Gb]. The time step was

0.0008s, and the end time was 0.8s. This is the reason for performing as few wind speed cases as

possible.

Fig. 18 Rotation of the middle section of the bridge at different wind speeds

Fig. 19 Interpolation of the critical wind speed
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5.5.3 Classical approach

In traditional flutter prediction techniques the flutter derivatives are calculated by using either

wind tunnel tests or CFD simulations. These procedures consider a section of the whole bridge deck

only. The mathematical formulations are presented according to Starossek (1997). This method was

worked out for a 2DOF dynamic system with translational and rotational degrees of freedoms. On

the right side of Eq. (4) the wind generated force vector appears. In Eq. (4) M: mass matrix, C:

damping matrix, K: stiffness matrix, x: displacement vector that contains the vertical and torsion

motions. Q load vector contains the lift force and moment that are detailed in Eqs. (1) and (2).

(4)

By using the formula Eq. (5) below, the Q vector can be rewritten as Eqs. (6) and (7). In Eq. (5)

ω is the unknown circular frequency,  is the complex unit. 

(5)

Mx·· Cx· Kx+ + Q
F

M
= =

i 1–=

x x̃eiω t
h̃

α̃
e iω t= =

Fig. 21 Deformed FEM shell model

Fig. 20 Streamlines around the deformed bridge deck at four different time steps
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 (6)

(7)

The flutter derivatives constitute the following terms Eq. (8). These terms are used by Starossek

(1997). As the flutter derivatives are functions of the reduced frequency or the reduced velocity, the

cii expressions will also be functions.

(8)

By using Eqs. (8), (6) and (7) yields Eqs. (9) and (10), and finally providing L force matrix Eq. (11).

(9)

(10)

(11)

By assuming the damping matrix as below Eq. (12), the Eq. (4) matrix differential-equation yields

Eq. (13). The q load vector includes the L matrix, and the unknown oscillating frequency. In Eq.

(12) γ = 2ξ is the damping parameter.

(12)

(13)

(14)

Finally, the Eq. (15) equation has to be investigated in terms of stability. The nontrivial solution

can be found according to the Eq. (16) eigenvalue problem.
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The solution procedure is as follows; the Ured value is varied increasingly. At every single Ured

value the Eq. (8) terms can be interpolated, and the complex ω frequency can be found, from which

the logarithmic decrement of the system oscillating in airflow can be evaluated. If the damping

vanishes, the critical Ured value is found, from which the critical U wind speed can be obtained.

This method requires a 2DOF model of an ordinary structure, which is not necessarily easy to

construct. By using the dynamic properties of the bridge deck of the 2DOF method can be

developed. Consider the whole aeroelastic model as a set of 2DOF systems in Fig. 22.

The aeroelastic wind tunnel model can be regarded as a system with 13 nodes, as 13 balsa

segments that are attached to the main beam. The Eq. (11) load matrix is rewritten as Eq. (17). 

(17)

In Eq. (17) the aeroelastic bridge is considered as a bridge deck with 13 nodes, with a lift force

and a moment at each node. Therefore the size of the L matrix is 26 × 26 in this case. By seeking

the solution in the form Eq. (18), and using expressions in Eq. (19), the Eq. (20) eigenproblem is to

be solved now. The mode shapes and natural frequencies of the bridge deck are similarly exploited

by Mishra et al. (2006) but instead of the frequency domain the time domain approach was applied

by using rational functions. Starossek (1997), however, proposed the FEM approach without

applying modal analysis.

(18)

(19)

(20)

In Eq. (18) V contains two column vectors belonging to the chosen mode shapes. In Eq. (19) E is

the unity matrix, ω0r is the rth natural circular frequency of the bridge structure. The solution process
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Fig. 22 A 200 mm long segment of the aeroelastic bridge model
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of the Eq. (20) system is the same as in case of a 2DOF system. On top of all, the size of the Eq.

(20) in case of two mode shapes is also the same as that of the 2DOF system. It can be seen that if

the flutter derivatives as functions are known for a certain bridge shape, the critical wind speed can

be calculated for the bridge structure. This can be done by reducing the bridge into a 2DOF system

or by using the mode shapes and natural frequencies in the framework of the modal analysis.

The main shortcoming of the above described method is that the three-dimensional flow field is

reduced into a set of two-dimensional flows that is the flow parallel with the bridge axis is neglected.

On top of all if the cross section is not constant along the bridge axis for instance, the flutter

derivatives have to be determined at several cross sections, resulting in a tedious calculation process.

In the next section the modal derivatives method is introduced, which can overcome the above

mentioned shortcomings of the classical methods.

5.5.4 Modal derivatives method

In this section the advantages of the flutter derivatives theory and the three-dimensional CFD

modelling are combined in order to develop a novel technique. The flutter condition is assumed to

show harmonic motion; therefore the analysis is obvious to carry out in the frequency domain as in

case of the classical flutter calculation. In Eq. (19) matrix A can be compiled easily, as L and V

matrices are known for a certain fixed Ured value. In order to replace the two-dimensional CFD

simulations with the advanced three-dimensional simulation, the A matrix should be examined in

detail; after multiplying the L matrix by V matrix, A reads Eq. (21).

(21)

The elements of the A matrix are terms cii Eq. (8) multiplied by the elements of the mode shape

vectors. The main goal is to compile the A matrix based on the result of the three-dimensional CFD

simulation instead of the 2D ones. As mentioned earlier the ANSYS-CFX enables the user to define

arbitrary motion of the bridge deck. The 3D CFD model was tested and the flutter derivatives were

extracted by defining translational and rotational spatial deformation of the bridge boundary (see

Figs. 9 and 10). The ways of prescribing this motion is explained here in detail. Obviously the first

translational and rotational mode shapes were used (Fig. 23), as these contribute to the flutter

motion.
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It is necessary that the bridge boundary is given a predefined motion as a function of time and

space. In Fig. 24 the discrete mode shape values of the FEM model are fitted by analytical functions.

The motion in time is written by using harmonic function. The translational function of the bridge

deck is written in Eq. (22), where the vertical position of every point (h) is defined at location (z)

and at time (t). Likewise the rotation can be written as Eq. (23), from which vertical and horizontal

components can be derived. The maximal translational amplitude at the middle of the deck is

h0 = 20 mm, the maximal rotational amplitude is α0 = 0.1744 (10o), as in case of the 2D model.

(22)

(23)

If the three-dimensional bridge deck is oscillated according to the certain mode shapes, the

aerodynamic forces belonging to the ith segment (see Fig. 22) can be calculated. There are 13

moment and 13 lift force signals at each simulation case. In Fig. 25 the moment signals are shown

(Ured= 8) at i = 1,4 and 7 sections.

Based on the aerodynamic forces and moments in relation with the modal oscillation, Eq. (21)

equation can be rewritten as Eq. (24). The over hat denotes that the  matrix is written by using the

mode shape vectors. The elements of matrix  can be compiled analogously as shown in Eq. (8), but

instead of using the flutter derivatives of a 2D section of the bridge new terms are to be used. In Eq.

(25) these new flutter derivatives are introduced, that are extracted based on the results of the modal

oscillation of the 3D CFD model, therefore can be called as modal (flutter) derivatives. As the 3D

bridge is oscillated according to the selected mode shape vectors, the resulting force and moment

h z t,( ) 1 z2π L⁄( )cos–[ ] h0⋅ 2 ω t( )sin⋅⁄=

α z t,( ) zπ L⁄( )sin[ ] α0⋅ 2 ω t( )sin⋅⁄=

Â

Â

Fig. 24 Heave (UY) and torsion (ROTZ) mode shape values used for the calculation

Fig. 25 Moment signals at deck element 1, 4 and 7 (Ured = 8)
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signals at each ith element of the bridge deck can be assumed to be proportional to the mode shape

values at the same locations. Thus, the force and moment signals are to be multiplied by the mode

shape values only at once, contrary to the case of the A matrix in Eq. (21). The summation in Eq.

(21), thus, can be substituted by summing up the forces and moments multiplied by the relevant

mode shape values at the ith location. 

(24)

 

  

(25)

Finally, the maximum values of these functions are considered, as in case of the extraction of the

classical flutter derivatives. If necessary, the summed force and moment functions can be filtered in

order to remove the high frequency components that are irrelevant in flutter analysis. In Eq. (25) 

and  are the maximum values of the mode shape vectors (Figs. 23 and 24), respectively, β is the

phase shift between the force or moment functions and the translational or rotational oscillations,

q = 0.5 ρU2 is the dynamic pressure, where U is the flow speed, ρ is the air density. In Fig. 26 the

streamlines around the rotated bridge deck are shown at two different time steps at U = 9.60 m/s.

Once the Eq. (25) modal derivatives are extracted in a necessary Ured range, the Eq. (24) (Ured)

matrix is given as a function of the reduced velocity, and can be used instead of the A matrix in Eq.
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 *
Ured

2

–

max vhi F
α i t( )⋅

i

∑

q B 2π( )
2

α0 α̂⁄( )⋅ ⋅ ⋅
---------------------------------------------------- β( )sin⋅=

Ĥ3
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Â1

 *
Ured

2

–

max v
αi Mhi t( )⋅

i

∑

q B
2

2π( )
2
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Fig. 26 Streamlines around the rotated bridge deck at U = 9.60 m/s
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(20), therefore the solution of the eigenproblem does not need more computational efforts. In Fig.

27 the damping of the rotation mode can be seen as a function of the reduced velocity by using the

flutter derivatives and the modal derivatives method. The critical wind speed can be evaluated from

the critical reduced wind speed. The critical wind speed is 9.2 m/s by using the  matrix in the

modal derivatives method, and 8.7 m/s by using the A matrix based on the 2D flutter derivatives and

the mode shape vectors. The modal derivatives were extracted at five Ured values resulting in 10

simulation cases, which require approximately 10 days computational time (same computer as in case

of the FSI).

6. Conclusions

The conclusions of this paper are drawn as follows:

· It was found that bridge flutter assessment by using three-dimensional coupled simulation is

missing from literature, which would be desirable, as in case of long-span bridges or special

structural systems precisely designed full aeroelastic wind tunnel models are performed that are

costly, nevertheless.

· The methodology of performing a three-dimensional FSI simulation for bridge flutter study by

utilizing ANSYS v12.1 commercial software package was presented. The challenges of

constructing the CFD and FEM models as well as optimizing the meshes and time stepping

were introduced. It was shown that even a coarse CFD mesh can be adequate to give accurate

aerodynamic forces for a streamlined bridge deck, which is essential to make the FSI simulation

feasible. The simulation was accelerated by introducing an initial geometrical perturbation. The

FSI simulation provided realistic three-dimensional flutter-deformation of the bridge deck,

which was a great achievement as it can not be found in literature yet.

· As an alternative to the FSI simulation an elegant new method was also developed. The CFD

mesh and the dynamic properties of the bridge were necessary. The CFD mesh was given a 3D

forced oscillation according to the relevant mode shapes of the bridge deck. The classical flutter

derivatives theory was modified and new terms, the modal derivatives are proposed instead. The

critical wind speed calculation can be simply performed as in case of the classical method.

· The two novel approaches were validated by using a full-aeroelastic wind tunnel model. The

measured critical wind speed was 9.7 m/s. The FSI and the modal derivatives method gave a

critical wind speed of 10.2 m/s and 9.2 m/s, respectively, which is considered to be excellent

Â

Fig. 27 Logarithmic decrement of damping versus reduced wind speed
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agreement, proving their applicability in flutter prediction. The classical method based on the 2D

flutter derivatives gave a value of 8.7 m/s, which is the lowest among all the presented methods.

· Comparing the two novel approaches both can be proposed to flutter prediction, but they are

different in manner. The FSI simulation is a coupled fluid-structure interaction simulation that

models the free oscillation vibration of the bridge deck in fluid flow, involving the dynamic

properties of the bridge. The critical wind speed can be then established by analysing the motion

at different wind speeds. To the contrary, the modal derivatives method assumes harmonic motion

that simplifies the problem as it can be handled in the frequency domain. The FSI simulation is

more universal, it can be used for many kinds of wind loading problems, such as buffeting, vortex

shedding or galloping as well. Even more, structural nonlinearities can also be included in the

simulation. If the flutter prediction of a linear structure is to be investigated, however, the modal

derivatives method is proposed, as requires less computational time. Although the proposed

methods were developed considering simplified bridge geometry and flow field, they can be

extended to complex bridge geometries and turbulent wind flow conditions.
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