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Abstract.  The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the 
dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing 
this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized 
theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid 
compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought 
values are derived from the solution to the corresponding field equations by employing the discrete-analytical 
method. The dispersion equation is obtained using these expressions and boundary and related compatibility 
conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the 
inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As 
a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on 
the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder 
containing the fluid. 
 

Keywords:  compressible inviscid fluid; fluid flow velocity; hydro-elastic system; inhomogeneous initial 

stresses; wave dispersion 

 
 
1. Introduction 
 

Fundamental theoretical investigations on the dynamics of the “hollow cylinder+fluid” system 

are required for liquid transportation in various branches of modern industry. These investigations 

are also required in chemical and nuclear engineering to understand the character of the dynamic 

interaction between the cylinder and the fluid contained in this cylinder. Importantly in these 
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investigations are the studies related to the dispersion of waves propagating in the “hollow 

cylinder+fluid” systems which originate from the work by Lamb (1898), the results of which 

create the theoretical base for non-destructive testing of pipelines transporting fluids. Lamb (1898) 

noted that the first attempt in this field was made by Korteweg in 1878 and he established that the 

elasticity of the cylindrical shell wall causes to decrease the wave propagation velocity in the 

compressible inviscid fluid contained in that shell.  

The subject of the present paper also relates to the problems of the dispersion of the 

axisymmetric longitudinal wave propagation in the hollow cylinder with inhomogeneous initial 

stresses containing an inviscid compressible fluid flowing with constant velocity. It is assumed that 

the inhomogeneous initial stresses (pre-stresses) in the cylinder are caused by the fluid pressure 

contained and transported by the cylinder. In order to indicate the place and significance of the 

present work among other related ones, we briefly review some of them. We begin with the 

aforementioned paper by Lamb (1898) which studies the dispersion of the axisymmetric waves 

propagating in the thin cylindrical shell containing an inviscid compressible fluid. Note that in this 

study, the motion of the shell is described by the Kirchhoff-Love theory and the flexural terms in 

the equation of motion are neglected. 

About 60 years after the appearance of Lamb’s work (Lamb 1898), the paper (Lin and Morgan 

1956) made a new contribution which consisted of the use of the first-order refined shell theory for 

describing the motion of the shell in the foregoing hydro-elastic system. At the same time, in the 

paper by Lin and Morgan (1956), concrete numerical results on the influence of the shear 

deformation and rotary inertia on the corresponding dispersion curves are presented and discussed. 

Later on, researchers in this field focused on the use of more accurate models and equations to 

describe the fluid flow and the motion of the cylinder. A review of these investigations which were 

carried out until the last decade of the last century was made in the papers (Sinha et al.1992) and 

(Plona et al. 1992). Moreover, in the paper (Sinha et al.1992), the dispersion of the axisymmetric 

longitudinal wave propagating in the hollow cylinder containing the incompressible inviscid fluid 

was studied theoretically by employing the exact equations and relations of elastodynamics, the 

experimental testing of which was made in the paper (Plona et al. 1992). The more recent research 

carried out in the papers (Shah 2008, Selvamani 2016, Sandhyarani et al. 2019, Kubenko et 

al.2023) and many others therein should also be noted, in which related studies were made for the 

cases where the cylinder material was a complex one. In the sense of the complexity of the 

material, the papers (Kocal and Akbarov 2017, 2019) can also be added, in which by utilizing the 

exact equations and relations of the three-dimensional theory of viscoelasticity, the axisymmetric 

and flexural waves in the hollow cylinder made of viscoelastic material were investigated.  

We also note a series of investigations on the dynamics related to the hydro-elastic systems 

consisting of the plate and fluid, an example of which are the investigations detailed and made in 

the papers (Akbarov 2018, Bagno 2017, Bagno 2023, Bagno and Guz 1997, Bagno and Guz 2016, 

Guz and Bagno 2018, Guz and Bagno 2019) and many others listed therein. There is also a series 

of investigations such as in the works (Hadzaric et al. 2018, Negin and Akbarov 2019) and others 

listed therein, related to the dynamic problems in the interaction of more complicated flowing 

mediums and elastic structures. 

Now we turn again to the wave dispersion problems in the hydro-elastic systems consisting of 

the hollow cylinder and fluid. Note that in the cases where the cylinders contain or transport fluids 

with high pressure and with a certain flow velocity, the cylinders are exposed to pressures from the 

fluid side. In turn, these pressures cause a stress-strain state in the cylinders which can be taken as 

the initial stress-strain state with respect to that caused by the additional dynamic perturbations 
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induced by the acoustic waves propagating in the hydro-elastic systems after these initial stresses 

appear. When studying the dispersion of the waves propagating in the “cylinder+fluid” systems, 

one of the main issues is the influence of the initial stresses on this dispersion. Note that the first 

valuable attempts in this field were made in the papers (Atabek and Lew 1966, Atabek 1968). In 

the paper (Atabek and Lew 1966), the system is considered which consists of the cylinder made of 

isotropic and physically linear material and an incompressible Newtonian viscous fluid contained 

in this cylinder. It is assumed that the cylinder has homogeneous circumferential and longitudinal 

initial stresses, and how these initial stresses influence the dispersion of the axisymmetric waves 

propagating in the system is investigated. However, the origins causing the initial stresses are not 

specified. The motion of the cylinder is described by the thin momentless shell theory, however, 

the flow of the fluid is described by the linearized Navier-Stokes equations for the incompressible 

Newtonian fluids. Numerical results on the influence of the initial stresses on the wave 

propagation velocity and wave amplitude attenuation versus the Womersley number are presented 

and discussed. 

The paper (Atabek 1968) develops the investigation carried out in the paper (Atabek and Lew 

1966) for the case where the material of the cylindrical shell is an orthotropic one. The motion of 

this shell is simulated by a mechanical model consisting of an additional mass, a dashpot, and a 

spring. The anisotropy of the shell material is taken into consideration only under calculation of 

the initial stresses. Numerical results that illustrate the influence of the shell material anisotropy on 

the wave propagation velocity versus the Womersley number are presented and discussed. 

The case where the material of the cylinder is highly elastic and incompressible and contains 

the incompressible viscous Newtonian fluid is considered in the paper (Rvachev 1978). It is 

assumed that this cylinder has initial homogeneous finite strains in axial and circumferential 

directions. The equations of motion for the cylinder are described within the scope of the 

momentless thin shell theory. However, the flow of the fluid is described within the scope of the 

linearized Navier-Stokes equations. The elasticity relations of the cylinder material are determined 

through the homogeneous quadratic functions of the normal strains containing three constants of 

this material. A longwave approximation for obtaining the numerical results that illustrate the wave 

propagation velocity is also considered, as well as the transmission coefficient versus the square 

root of the Womersley number.  

Note that a model of the highly elastic compressible or incompressible materials for the initially 

pre-stressed cylinder in contact with the viscous or inviscid compressible fluids is also used in the 

papers (Bagno and Guz 1982, Bagno et al. 1994) and in many others listed therein. It should be 

noted that in these papers, the motion of the cylinder is described by employing the so-called 

three-dimensional linearized theory of elastic waves in initially stressed bodies, and numerical 

results on the dispersion curves are obtained not only for the longwave approximations, but also 

for all possible wavelength approximations.  

Note that all the foregoing investigations related to the wave propagation in the “pre-stressed 

cylinder+fluid” systems are carried out within the scope of the following two assumptions: 

“i”) the initial strains (stresses) in the cylinder are homogeneous, and 

“ii”) in the initial state (i.e., before the wave propagation), the fluid contained in the cylinder is 

at rest. 

It is evident that there are a lot of cases where the cylinders contain flowing fluids with high 

pressure and this pressure causes inhomogeneous initial stresses within, especially, in the relatively 

thicker cylinders. At the same time, in the fluid transportation process, this fluid flows with a 

certain velocity in the cylinder, and this flow takes place before the wave propagation in the 
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“cylinder+fluid” system starts. Consequently, the question arises as to how the inhomogeneity of 

the initial stresses in the cylinder are caused by the pressure of the flowing fluid contained in this 

cylinder and how the velocity of this fluid flow acts on the dispersion of the waves propagating in 

the “cylinder+fluid” hydro-elastic systems. This question must be studied not only from the point 

of view of theoretical requirements, but also from the point of view of practical applications. 

However, up to now, there are only a few investigations that are related to some particular cases 

of the formulated question. One of these is made in the paper (Veliyev 2023), in which some 

numerical results on the influence of the fluid flow speed on the dispersion of the axisymmetric 

waves propagating in the cylinder containing this fluid are presented. These results are obtained 

using the exact equations and relations of classic linear elastodynamics, and it was assumed that 

there are no initial stresses in the cylinder. Consequently, in the paper (Veliyev 2023), the above 

condition “ii” is violated. Moreover, the paper (Deng and Yang 2013) also violates condition “ii,” 

and the flexural wave propagation dispersion in the buried cylinder containing the flowing fluid is 

studied. Under this study, it is assumed that the fluid is compressible and inviscid. Fluggle shell 

theory describes the motion of the cylinder, and the surrounding solid soil is modeled as an elastic 

matrix using the Winkler model. This paper presents numerical results on the influence of the fluid 

flow velocity on the wave propagation velocity for the axisymmetric wave propagation case. 

According to the authors’ best knowledge, until very recently, there were no investigations 

related to the dispersion of the waves propagating in a fluid-contained cylinder with 

inhomogeneous initial stresses. The first attempt in this field was made in the paper (Akbarov et 

al. 2021) in which the influence of the inhomogeneous initial stresses in the cylinder caused by the 

internal hydrostatic pressure on the dispersion of the axisymmetric waves propagating in this 

cylinder containing the inviscid compressible fluid, is studied. This study is made by utilizing the 

three-dimensional linearized theory of elastic waves in initially stressed bodies and it is assumed 

that the fluid in the initial state is at rest. In the paper (Akbarov and Veliyev 2023), a parametric 

study is made for the problem considered in the paper (Akbarov et al. 2021). At the same time, the 

work by Akbarov et al. (2024) investigates the dispersion of quasi-Scholte waves in a hollow 

cylinder containing a compressible, inviscid fluid parametrically in detail. Moreover, in the paper 

(Akbarov and Bagirov 2024), dispersion of the axisymmetric waves propagating in the cylinder 

immersed in the compressible inviscid fluid is studied and it is assumed that as a result of the 

fluid’s hydro-elastic pressure, inhomogeneous initial stresses appear in the cylinder.  

However, in the papers (Akbarov et al. 2021, Akbarov and Veliyev 2023), it is assumed that 

the fluid rests in the cylinder. Consequently, in these papers, from the foregoing conditions, only 

“i” is refused. 

Thus, it follows from the above review that there are yet to be investigations that 

simultaneously take into account the influence of the fluid flow and initial inhomogeneous stresses 

in the cylinder containing this fluid on the wave dispersion propagating in this cylinder. Thus, in 

the present paper, attempts are made to study how this flow velocity and flow direction concerning 

the wave propagation direction act on the influence of the initial inhomogeneous stresses in the 

cylinder on the dispersion of the axisymmetric waves propagating in this cylinder which contains 

this flowing fluid. Consequently, the present paper refuses both preceding conditions “i” and “ii”. 

 

 

2. Formulation of the problem 
 

Consider the hydro-elastic system consisting of an infinite hollow cylinder and a compressible  
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Fig. 1 The sketch of the hydro-elastic system under consideration: cylinder containing flowing the fluid flow 

direction of which is opposite (a) (coincides (b)) with the wave propagation direction; initial pressure and 

density of the fluid (c) 

 

 

barotropic inviscid fluid contained in this cylinder. We associate the cylindrical 𝑂𝑟𝜃𝑧  and 

Cartesian 𝑂𝑥1𝑥2𝑥3 (𝑥3 = 𝑧) (Fig. 1) systems of coordinates with the central axis of the cylinder. 

We use the Lagrange and Euler coordinates to describe the motion of the cylinder and fluid, 

respectively. According to the well-known procedure, we distinguish two states, i.e. the initial and 

perturbed states in the hydro-elastic system under consideration. Assume that in the initial state, 

the fluid pressure acts on the interior of the cylinder and this pressure causes a static stress-strain 

state which is called the “initial stress-strain state”. Moreover, assume that in the initial state, the 

fluid flows in the interior of the cylinder with constant velocity 𝑉0  along the cylinder’s axis, 

according to which, in the initial state the fluid velocity vector is presented as follows 

𝑉𝑟
0 = 0, 𝑉𝜃

0 = 0, 𝑉𝑧
0 = 𝑉0 = 𝑐𝑜𝑛𝑠𝑡. (1) 

As in (1), below we use the upper index “0” for indicating the quantities belonging to the initial 

state.  

Note that the cases where 𝑉0 < 0 and 𝑉0 > 0 in (1) relate to the fluid flow directions shown in 

Fig. 1(a) and Fig. 1(b), respectively, i.e., they relate to the cases where the fluid flow direction is 

opposite to the wave propagation direction (because we will assume that the wave will propagate 

in the 𝑂𝑧 axis (Fig. 1) direction), and the fluid flow direction coincides with the wave propagation 

direction. The stresses in the cylinder that appear in this initial state as a result of the action of the 

fluid pressure, according to the monograph (Timoshenko and Goodier 1951), can be presented as 

follows 

𝜎𝑟𝑟
0 =

𝑝0

(1+ℎ/𝑅)2−1
(1 −

𝑅2

𝑟2 (1 +
ℎ

𝑅
)

2
),   𝜎𝜃𝜃

0 =
𝑝0

(1+ℎ/𝑅)2−1
(1 +

𝑅2

𝑟2 (1 +
ℎ

𝑅
)

2
), 

𝜎𝑧𝑧
0 = 𝜈(𝜎𝑟𝑟

0 + 𝜎𝜃𝜃
0 ). 

(2) 

In (1) and (2), the conventional notation is used and the geometric parameters 𝑅 and ℎ which 

enter into equation (2) are indicated in Fig. 1(a) and (b), but the hydrostatic pressure 𝑝0 in (2) is 

indicated in Fig. 1(c).  

Note that in the paper (Veliyev 2023), it is assumed that 𝜎𝑟𝑟
0 = 𝜎𝜃𝜃

0 = 𝜎𝑧𝑧
0 = 0, i.e., that there 

are no inhomogeneous initial stresses in the cylinder. However, in the papers (Akbarov et al. 2021, 

Akbarov and Veliyev 2023), it is assumed that the initial inhomogeneous stresses determined in (2) 

exist in the cylinder. However, the fluid contained in this cylinder rests in the initial state, i.e., in 

the papers (Akbarov et al. 2021, Akbarov and Veliyev 2023), it is assumed that 𝑉𝑟
0 = 0V = 𝑉𝑧

0 = 0. 
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The simultaneous satisfaction of the relations (1) and (2) is the main difference between the 

present investigations from the investigations carried out in the papers (Veliyev 2023) (Akbarov et 

al. 2021, Akbarov and Veliyev 2023). Consequently, the novelty of the present paper’s results 

follows this difference. 

Thus, we determine the quantities related to the initial state of the hydro-elastic system under 

consideration through Eqs. (1) and (2). We assume that after the appearance of this initial state, the 

hydro-elastic system gets a certain dynamical perturbation, as a result of which the axisymmetric 

waves propagate therein. It is required to investigate how this initial state influences the dispersion 

of the waves, that is, to determine how the fluid flowing velocity and flowing direction in the 

initial state act on the influence of the inhomogeneous initial stresses in the cylinder determined by 

the relations in (2) on the dispersion of the axisymmetric waves propagating in the cylinder which 

contains this flowing fluid.  

For this investigation, we use the 3D linearized theory of elastic waves in initially stressed 

bodies for describing the motion of the cylinder and the linearized Euler equations for describing 

the flow of the inviscid compressible barotropic fluid. 

According to works (Eringen and Suhubi 1975, Guz 2004, Akbarov 2015), and others listed 

therein, we write the 3D linearized equations and corresponding relations describing the motion of 

the cylinder as follows: 

The equations of motion 

𝜕𝑡𝑟𝑟

𝜕𝑟
+

𝜕𝑡𝑧𝑟

𝜕𝑧
+

1

𝑟
(𝑡𝑟𝑟 − 𝑡𝜃𝜃) = 𝜌

𝜕2𝑢𝑟

𝜕𝑡2 , 
𝜕𝑡𝑟𝑧

𝜕𝑟
+

1

𝑟
𝑡𝑟𝑧 +

𝜕𝑡𝑧𝑧

𝜕𝑧
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2 , (3) 

where 

𝑡𝑟𝑟 = 𝜎𝑟𝑟 + 𝜎𝑟𝑟
0 (𝑟)

𝜕𝑢𝑟

𝜕𝑟
,𝑡𝑟𝑧 = 𝜎𝑟𝑧 + 𝜎𝑟𝑟

0 (𝑟)
𝜕𝑢𝑧

𝜕𝑟
,𝑡𝜃𝜃 = 𝜎𝜃𝜃 + 𝜎𝜃𝜃

0 (𝑟)
𝑢𝑟

𝑟
, 𝑡𝑧𝑟 = 𝜎𝑧𝑟 + 𝜎𝑧𝑧

0 (𝑟)
𝜕𝑢𝑟

𝜕𝑧
, 

𝑡𝑧𝑧 = 𝜎𝑧𝑧 + 𝜎𝑧𝑧
0 (𝑟)

𝜕𝑢𝑧

𝜕𝑧
, 

(4) 

The elasticity relations 

𝜎(𝑗𝑗) = 𝜆 (𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝑧𝑧) + 2𝜇 𝜀(𝑗𝑗),(𝑗𝑗) = 𝑟𝑟; 𝜃𝜃; 𝑧𝑧,  𝜎𝑟𝑧 = 2𝜇 𝜀𝑟𝑧. (5) 

The strain-displacement relations 

𝜀𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
 ,  𝜀𝜃𝜃 =

𝑢𝑟

𝑟
,  𝜀𝑧𝑧 =

𝜕𝑢𝑧

𝜕𝑧
,  𝜀𝑟𝑧 =

1

2
(

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
). (6) 

In (3) and (4), the notation 𝑡𝑟𝑟 , 𝑡𝑟𝑧 , 𝑡𝜃𝜃 , 𝑡𝑧𝑟  and 𝑡𝑧𝑧  shows the components of the non-

symmetric Kirchhoff stress tensor and the other notation used in (3)-(6) is conventional. Thus, Eqs. 

(3)-(6) comprise the complete system of the linearized field equations, in which the wave 

propagation in the inhomogeneously pre-stressed cylinder is described. 

For describing the flow of the fluid, according to the monograph (Guz 2009), we employ the 

following linearized field (or linearized Euler) equations for barotropic compressible inviscid 

fluids. 

The linearized continuity equation 

𝜕𝜌’

𝜕𝑡
+ 𝜌0 (

𝜕𝑉𝑟

𝜕𝑟
+

𝑉𝑟

𝑟
+

𝜕𝑉𝑧

𝜕𝑧
) + 𝑉𝑧

0 𝜕𝜌’

𝜕𝑧
= 0. (7) 

The linearized equations of the fluid flow 
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𝜕𝑉𝑟

𝜕𝑡
+ 𝑉𝑧

0 𝜕𝑉𝑟

𝜕𝑧
= −

1

𝜌0

𝜕𝑝’

𝜕𝑟
, 

𝜕𝑉𝑧

𝜕𝑡
+ 𝑉𝑧

0 𝜕𝑉𝑧

𝜕𝑧
= −

1

𝜌0

𝜕𝑝’

𝜕𝑧
. (8) 

The state equation 

𝑝’ = 𝑎0
2𝜌’ , 𝑎0

2 = (
𝜕𝑝’

𝜕𝜌’
)

0
 (9) 

where 𝑎0 is the sound speed in the fluid. 

Note that Eqs. (7)-(9) are written by the Euler coordinates and these equations compose the 

complete system of equations within the scope of which the flow of the fluid in the perturbed state 

is described.  

Now we add to the foregoing equations the corresponding boundary and compatibility 

conditions. 

The boundary conditions on the external surface of the cylinder are 

𝑡𝑟𝑟|𝑟=𝑅+ℎ = 0,  𝑡𝑟𝑧|𝑟=𝑅+ℎ = 0. (10) 

The compatibility conditions on the interface surface between the fluid and cylinder, i.e., on the 

internal surface of the cylinder are 

𝑡𝑟𝑟|𝑟=𝑅 = −𝑝’,  𝑡𝑟𝑧|𝑟=𝑅 = 0,  
𝜕𝑢𝑟

𝜕𝑡
|

𝑟=𝑅
= 𝑉𝑟|𝑟=𝑅. (11) 

Assuming that the dynamic perturbations are small, underwriting the compatibility conditions 

in (11), the differences between the Lagrange and Euler coordinates are neglected. Finally, we 

write the condition on the boundedness of the quantities related to the fluid at the central axis of 

the cylinder 

{|𝑝’|, |𝜌’|, |𝑉𝑟|, |𝑉𝑧|}|𝑟=0 < ∞. (12) 

This completes the mathematical formulation of the problem under consideration.  

 

 

3. Method of solution to the formulated problem 
 

For the solution to the system of Eqs. (3)-(6), we employ the so-called discrete-analytical 

method developed and employed in the papers (Akbarov and Bagirov 2019a, 2019b, 2021, 2024, 

Veliyev and Ipek 2023, Akbarov et al. 2021). However, for the solution to the system of Eqs. (7)-

(9) related to the fluid flow, we use the presentation presented in the monograph (Guz 2009) for 

the compressible inviscid fluids. 

 

3.1 Solution to the system of Eqs. (3)-(6). 
 

According to the discrete-analytical solution method, the interval [𝑅, 𝑅 + ℎ] is divided into an 

𝑁 number of sub-intervals which are determined through the expression (𝑅 + (𝑛 − 1)ℎ/𝑁) ≤ 𝑟 ≤
(𝑅 + 𝑛ℎ/𝑁), where 1 ≤ 𝑛 ≤ 𝑁. After this discretization, it is assumed that the inhomogeneous 

initial stresses determined by expressions (1) and (2) are homogeneous in each sub-interval and the 

values of these stresses are determined as follows 

𝜎𝑟𝑟
0 (𝑟) ≈ 𝜎𝑟𝑟

0 (𝑟𝑛),𝜎𝜃𝜃
0 (𝑟) ≈ 𝜎𝜃𝜃

0 (𝑟𝑛),𝜎𝑧𝑧
0 (𝑟) ≈ 𝜎𝑧𝑧

0 (𝑟𝑛),𝑟𝑛 = 𝑅 + (𝑛 − 1)ℎ/𝑁 + ℎ/(2𝑁). (13) 

Moreover, after the foregoing discretization, full contact conditions are formulated on the 
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interfaces between the sub-intervals. In other words, we formulate the following conditions instead 

of conditions (10) and (11) 

𝑡𝑟𝑟
1 |𝑟=𝑅 = −𝑝’,  𝑡𝑟𝑧

1 |𝑟=𝑅 = 0,  
𝜕𝑢𝑟

1

𝜕𝑡
|

𝑟=𝑅
= 𝑉𝑟|𝑟=𝑅 ,  𝑡𝑟𝑟

1 |𝑟=𝑅+ℎ/𝑁 = 𝑡𝑟𝑟
2 |𝑟=𝑅+ℎ/𝑁, 

𝑡𝑟𝑧
1 |𝑟=𝑅+ℎ/𝑁 = 𝑡𝑟𝑧

2 |𝑟=𝑅+ℎ/𝑁,  𝑢𝑟
1|𝑟=𝑅+ℎ/𝑁 = 𝑢𝑟

2|𝑟=𝑅+ℎ/𝑁, 

𝑢𝑧
1|𝑟=𝑅+ℎ/𝑁 = 𝑢𝑧

2|𝑟=𝑅+ℎ/𝑁, ..., 

𝑡𝑟𝑟
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑡𝑟𝑟

𝑛 |𝑟=𝑅+(𝑛−1)ℎ/𝑁,  𝑡𝑟𝑧
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑡𝑟𝑧

𝑛 |𝑟=𝑅+(𝑛−1)ℎ/𝑁, 

𝑢𝑟
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑢𝑟

𝑛|𝑟=𝑅+(𝑛−1)ℎ/𝑁’  𝑢𝑧
𝑛−1|𝑟=𝑅+(𝑛−1)ℎ/𝑁 = 𝑢𝑧

𝑛|𝑟=𝑅+(𝑛−1)ℎ/𝑁, ... , 

𝑡𝑟𝑟
𝑁 |𝑟=𝑅+ℎ = 0,  𝑡𝑟𝑧

𝑁 |𝑟=𝑅+ℎ = 0. 

(14) 

In (14) there are 4𝑁 + 1 conditions and the number 𝑁 is determined from the convergence 

requirement of the numerical results. Note that the upper indices in (14) and below indicate the 

number of the corresponding sub-interval. 

Thus, using the relations in (13), we obtain the following equations of motion from Eqs. (3) and 

(4) which are satisfied in each 𝑛𝑡ℎ sub-interval separately 

𝜕𝜎𝑟𝑟
𝑛

𝜕𝑟
+ 𝜎𝑟𝑟

0 (𝑟𝑛)
𝜕2𝑢𝑟

𝑛

𝜕𝑟2 +
𝜕𝜎𝑧𝑟

𝑛

𝜕𝑧
+ 𝜎𝑧𝑧

0 (𝑟𝑛)
𝜕2𝑢𝑟

𝑛

𝜕𝑧2 +
1

𝑟
(𝜎𝑟𝑟

𝑛 − 𝜎𝜃𝜃
𝑛 ) +  

𝜎𝑟𝑟
0 (𝑟𝑛)

1

𝑟

𝜕𝑢𝑟
𝑛

𝜕𝑟
− 𝜎𝜃𝜃

0 (𝑟𝑛)
𝑢𝑟

𝑛

𝑟2 = 𝜌
𝜕2𝑢𝑟

𝑛

𝜕𝑡2 ,  

𝜕𝜎𝑟𝑧
𝑛

𝜕𝑟
+ 𝜎𝑟𝑟

0 (𝑟𝑛)
𝜕2𝑢𝑧

𝑛

𝜕𝑟2 +
1

𝑟
𝜎𝑟𝑧

𝑛 + 𝜎𝑟𝑟
0 (𝑟𝑛)

1

𝑟

𝜕𝑢𝑧
𝑛

𝜕𝑟
+

𝜕𝜎𝑧𝑧
𝑛

𝜕𝑧
+ 𝜎𝑧𝑧

0 (𝑟𝑛)
𝜕2𝑢𝑧

𝑛

𝜕𝑧2 = 𝜌
𝜕2𝑢𝑧

𝑛

𝜕𝑡2 .   

(15) 

It is necessary to add to these equations the elasticity relation (5), and the relation between the 

deformations and displacements (6) is rewritten for each subinterval separately. After this addition, 

for solution to the system of Eqs. (15), (5), and (6), we employ the classical Lame decomposition 

(see, for instance, the monograph (Eringen and Suhubi 1975), which for the axisymmetric 

problems can be written as follows 

𝑢𝑟
𝑛 =

𝜕𝛷𝑛

𝜕𝑟
+

𝜕2𝛹𝑛

𝜕𝑟𝜕𝑧
 , 𝑢𝑧

𝑛 =
𝜕𝛷𝑛

𝜕𝑧
−

𝜕2𝛹𝑛

𝜕𝑟2 −
𝜕𝛹𝑛

𝑟𝜕𝑟
.     (16) 

Using the Eqs. (6) and (5), we obtain the following equations for the potentials 𝛷𝑛 and 𝛹𝑛 

from the equations in (15) 

(1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕2𝛷𝑛

𝜕𝑟2 + (1 +
𝜎𝜃𝜃

0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕𝛷𝑛

𝑟𝜕𝑟
+ (1 +

𝜎𝑧𝑧
0 (𝑟𝑛)

𝜆+2𝜇
)

𝜕2𝛷𝑛

𝜕𝑧2 =
1

(𝑐1)2

𝜕2𝛷𝑛

𝜕𝑡2 , 

(1 +
𝜎𝑟𝑟

0 (𝑟𝑛)

𝜇
)

𝜕2𝛹𝑛

𝜕𝑟2 + (1 +
𝜎𝜃𝜃

0 (𝑟𝑛)

𝜇
)

𝜕𝛹𝑛

𝑟𝜕𝑟
+ (1 +

𝜎𝑧𝑧
0 (𝑟𝑛)

𝜇
)

𝜕2𝛹𝑛

𝜕𝑧2 =
1

(𝑐2)2

𝜕2𝛹𝑛

𝜕𝑡2 , 

(17) 

where 𝑐1 = √
(𝜆+2𝜇)

𝜌
  and 𝑐2 = √

𝜇

𝜌
. 

It follows from the equations in (17) that in the cases where the initial stresses are absent, i.e., 

in the cases where  𝜎𝑧𝑧
0 (𝑟𝑛) = 0, 𝜎𝑟𝑟

0 (𝑟𝑛) = 0, and 𝜎𝜃𝜃
0 (𝑟𝑛) = 0, the equations in (17) coincide with 

the corresponding equations of classical elastodynamics (see, for instance the monograph (Eringen 

and Suhubi 1975)).  

Representing the functions 𝛷𝑛, ,n
ru 𝜎𝑟𝑟

𝑛 , 𝜎𝜃𝜃
𝑛  and 𝜎𝑧𝑧

𝑛  with the multiplying sin( 𝑘𝑥 − 𝜔𝑡)  and 

the functions 𝛹𝑛, 𝑢𝑧
𝑛 and 𝜎𝑟𝑧

𝑛  with the multiplying cos( 𝑘𝑥 − 𝜔𝑡), and denoting the amplitudes of 

the corresponding quantities with the same symbols, we obtain the following equations for the 
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amplitudes of the potentials 𝛷𝑛 and 𝛹𝑛 

𝑑2Φ𝑛

𝑑(𝑟2)2 +
𝛼1(𝑟𝑛)

𝑟2

𝑑Φ𝑛

𝑑𝑟2
+ Φ𝑛 = 0,   

𝑑2Ψ𝑛

𝑑(𝑟1)2 +
𝛼(𝑟𝑛)

𝑟1

𝑑Ψ𝑛

𝑑𝑟1
+ Ψ𝑛 = 0, (18) 

where 

𝛼(𝑟𝑛) =
1+𝜎𝜃𝜃

0 (𝑟𝑛)/𝜇

1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇

 ,𝛽(𝑟𝑛) =
1+𝜎𝑧𝑧

0 (𝑟𝑛)/𝜇

1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇

, 𝑟1
𝑛 = 𝑘𝑟√

𝑐2

(𝑐2)2(1+𝜎𝑟𝑟
0 (𝑟𝑛)/𝜇)

− (𝛽(𝑟𝑛))2 , 

 𝑐 = 𝜔/𝜅, 𝛼1(𝑟𝑛) =
1+𝜎𝜃𝜃

0 (𝑟𝑛)/(𝜆+2𝜇)

1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇)

,  𝛽1(𝑟𝑛) =
1+𝜎𝑧𝑧

0 (𝑟𝑛)/(𝜆+2𝜇)

1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇)

 

𝑟2
𝑛 = 𝑘𝑟√

𝑐2

(𝑐1)2(1+𝜎𝑟𝑟
0 (𝑟𝑛)/(𝜆+2𝜇))

− (𝛽1(𝑟𝑛))2. 

(19) 

Thus, according to (Akbarov and Bagirov 2019b, Watson 1966), the solution to the equations in 

(19) are found as follows. 

𝛷𝑛 = 𝐴1
𝑛(𝑟2)𝛾1(𝑟𝑛)𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛𝑖) + 𝐴2
𝑛(𝑟2)𝛾1(𝑟𝑛)𝐹𝛾1(𝑟𝑛)(𝑟2

𝑛) (20) 

𝛹𝑛 = 𝐵1
𝑛(𝑟1)𝛾 (𝑟𝑛)𝐸𝛾 (𝑟𝑛)(𝑟1

𝑛) + 𝐵2
𝑛(𝑟1)𝛾 (𝑟𝑛)𝐹𝛾 (𝑟𝑛)(𝑟1

𝑛) (21) 

where 𝐴1
𝑛, 𝐴2

𝑛, 𝐵1
𝑛 and 𝐵2

𝑛 are unknown constants and 

𝛾1(𝑟𝑛) = (1 − 𝛼1(𝑟𝑛))/2, 𝛾(𝑟𝑛) = (1 − 𝛼(𝑟𝑛))/2, 

𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛) = {

𝐽𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 > 0

𝐼𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 < 0
, 

𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) = {

𝑌𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 > 0

𝐾𝛾1(𝑟𝑛)(𝑟2
𝑛)𝑖𝑓(𝑟2

𝑛)2/𝑟2 < 0
, 

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) = {

𝐽𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛)2/𝑟2 > 0

𝐼𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛)2/𝑟2 < 0
, 

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛𝑖) = {

𝑌𝛾(𝑟𝑛𝑖
)(𝑟1

𝑛)𝑖𝑓(𝑟1
𝑛)2/𝑟2 > 0

𝐾𝛾(𝑟𝑛)(𝑟1
𝑛)𝑖𝑓(𝑟1

𝑛𝑖)2/𝑟2 < 0
 

(22) 

In (22), 𝐽𝛿(𝑥)  and 𝐼𝛿(𝑥)  are the Bessel and modified Bessel functions of the first kind, 

however, 𝑌𝛿(𝑥) and 𝐾𝛿(𝑥) are the Bessel and modified Bessel functions of the second kind.   

Substituting these solutions into the presentations in (16), we determine the expressions for the 

displacements, and then using the relations in (6) and (5), we obtain the expressions for the 

stresses within each sub-interval. The explicit forms of these expressions for the displacements and 

stresses which enter the contact and compatibility conditions (14) are given in Appendix A through 

the formulae (A1) and (A2), respectively.  

In this way we determine the analytic expressions for the displacements and stresses in each 

sub-interval into which the region [𝑅, 𝑅 + ℎ] is divided. 

 

3.2 Solution to the field equations related to the fluid flow 
 

For solution to equations in (7), according to (Guz 2009), we use following representations. 
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𝜌′ = 𝑎0
−2𝜌0 (−𝑉𝑧

0 𝜕

𝜕𝑧
−

𝜕

𝜕𝑡
) 𝛷𝑓, 𝑝′ = 𝜌0 (−𝑉𝑧

0 𝜕

𝜕𝑧
−

𝜕

𝜕𝑡
) 𝛷𝑓, 𝑉𝑟 =

𝜕

𝜕𝑟
𝛷𝑓 , 𝑉𝑧 =

𝜕

𝜕𝑧
𝛷𝑓 (23) 

where 

[𝛥 −
1

𝑎0
2 (

𝜕

𝜕𝑡
+ 𝑉𝑧

0 𝜕

𝜕𝑧
)

2
] 𝛷𝑓 = 0 , 𝛥 =

𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2. (24) 

Representing the functions 𝑉𝑧, 𝑝’ and 𝜌’ by the multiplying sin( 𝑘𝑧 − 𝜔𝑡), and the functions  𝛷𝑓 

and 𝑉𝑟  by the multiplying cos( 𝑘𝑧 − 𝜔𝑡), we obtain the following equation from (24) for 𝛷𝑓1 

(where 𝛷 = 𝛷𝑓1(𝑟) cos( 𝑘𝑧 − 𝜔𝑡)) 

(
𝑑2

𝑑𝑟3
2 +

1

𝑟3

𝑑

𝑑𝑟3
+ 1) 𝛷𝑓1(𝑟) = 0 , 𝑟3 = 𝑘𝑟√(

𝑐

𝑎0
)

2
− 2

𝑐

𝑎0

𝑉𝑧
0

𝑎0
+ (

𝑉𝑧
0

𝑎0
)

2

− 1. (25) 

According to the conditions in (12), the solution to Eq. (25) is found as follows 

𝛷𝑓1(𝑟) = {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

 (26) 

where 𝐽0(𝑟3) (𝐼0(𝑟3)) is the Bessel (modified Bessel) function of the first kind with the zeroth 

order and 𝐹is an unknown constant.  

Using the expression (26) and substituting 𝛷 = 𝛷𝑓1(𝑟) cos( 𝑘𝑧 − 𝜔𝑡)  into the equations in 

(23), we obtain the following expressions for the sought values related to the fluid 

𝑝′ = 𝜌0(𝑉𝑧
0𝑘 + 𝜔) sin( 𝑘𝑧 − 𝜔𝑡) {

𝐹𝐽0(𝑟3)𝑖𝑓𝑟3
2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

, 

𝜌′ = 𝑎0
−2𝜌0(𝑉𝑧

0𝑘 + 𝜔) sin( 𝑘𝑧 − 𝜔𝑡) {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

, 

𝑉𝑟 = 𝑘
𝑑𝑟3

𝑑𝑟
cos( 𝑘𝑧 − 𝜔𝑡) {

−𝐹𝐽1(𝑟3)𝑖𝑓𝑟3
2 > 0

𝐹𝐼1(𝑟3)𝑖𝑓𝑟3
2 < 0

, 𝑉𝑧 = −𝑘 sin( 𝑘𝑧 − 𝜔𝑡) {
𝐹𝐽0(𝑟3)𝑖𝑓𝑟3

2 > 0

𝐹𝐼0(𝑟3)𝑖𝑓𝑟3
2 < 0

 

(27) 

Note that in (27), 𝜌0 shows the density of the fluid in the initial state. 

This completes the determination of the quantities related to the fluid flow in the perturbed 

state. 

 

3.3 Obtaining the dispersion equation 
 

As follows from the foregoing discussions and solution procedures, the analytical expressions 

of the sought values contain 4𝑁 + 1 number of unknown constants and these constants are 𝐴1
𝑛, 

2 ,nA 𝐵1
𝑛, 𝐵2

𝑛 (𝑛 = 1,2, . . . , 𝑁) and 𝐹. Substituting the expressions in (A1) and (A2), and in (27) into 

the conditions indicated in (14), we obtain the system of homogeneous algebraic equations with 

respect to these unknown constants. According to the well-known procedure, equating to zero the 

determinant of the coefficient matrix of this system, we obtain the dispersion equation. This 

equation can be formally presented as follows 

𝑑𝑒𝑡( 𝑎𝑛𝑚(𝑐/𝑐2, 𝑘𝑅, 𝑉0/𝑎0, 𝑝0/𝜇,
𝜌

𝜌0,ℎ/𝑅
, 𝑎0/𝑐2)) = 0, 𝑛; 𝑚 = 1,2, . . . ,4𝑁 + 1 (28) 
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The explicit expressions of the components 𝑎𝑛𝑚 can be easily determined from the formulae 

(A1) and (A2) in Appendix A and in (27). Therefore, these expressions are not given here. 

The dispersion equation (28) is solved numerically by employing the “bi-section” method.   

 

 

4. Numerical results and discussions 
 

4.1 Selection of the materials and validation of the calculation algorithm 
 

We assume that the material of the cylinder is steel with the Lame constants 𝜆 = 1.075 ×

1011 Pa and 𝜇 = 0.77 × 1011 Pa, the material density is 𝜌 = 7910
kg

m3 , and the fluid is water 

with sound speed 𝑎0 = 1495
m

sec
 and density 𝜌0 = 1000

kg

m3. All numerical results, which will be 

discussed in the present paper, are obtained for these materials. Note that these pairs of materials 

are also selected in the papers (Akbarov et al. 2021, Sinha et al. 1992) for obtaining concrete 

numerical results, which we will also use for validation of the algorithm and PC programs used in 

the present investigation. In obtaining the numerical results, the magnitude of the fluid velocity is 

estimated through the ratio 𝑉0/𝑎0 and the magnitude of the initial inhomogeneous stresses in the 

cylinder is estimated through the ratio 𝑝0/𝜇 . Below, the case where 𝑉0/𝑎0 < 0  (𝑉0/𝑎0 > 0) 

relates to the case where the fluid flow velocity direction is opposite (coincides) with the wave 

propagation direction. 

Unfortunately, except for a few numerical results presented in the paper (Veliyev 2023) and the 

investigations carried out in the paper (Deng and Yang 2013), we have not found any concrete 

investigations related to the influence of the fluid flow velocity on the wave propagation velocity 

in the cylinder containing this fluid. Note that the numerical results which will be presented and 

discussed below in particular cases, i.e., where { 𝑝0/𝜇 = 0 ; 𝑉0/𝑎0 ≠ 0} coincide with the 

corresponding results obtained in the paper (Veliyev 2023). Therefore, here we do not consider 

testing the PC programs and calculation algorithm used with the results obtained in the paper 

(Veliyev 2023). Moreover, the results presented in the paper (Deng and Yang 2013) are obtained 

within the framework of the approximate shell theory in the case where {𝑝0/𝜇 = 0;𝑉0/𝑎0 > 0}.  

Therefore, comparison of the present results with the results obtained in the paper (Deng and 

Yang 2013) can be made only in the qualitative sense, which also will be made below under 

discussion of the numerical results related to the case where 𝑉0/𝑎0 > 0 . Based on these 

statements, for illustration of the aforementioned validation, we use the results obtained in the 

paper (Sinha et al. 1992) which corresponds to the case where 𝑝0/𝜇 = 0 and 𝑉0/𝑎0 = 0. 
Thus, for validation of the PC programs and solution method used in the present investigation, 

we consider the dispersion diagrams illustrated in Fig. 2 which are obtained in the case where 

ℎ/𝑅 = 0.2 and 𝑝0/𝜇 = 0 for the zeroth, first, and second modes under 𝑉0/𝑎0 = 0.0; - 0.05; - 0.10 

and - 0.15. Note that the results regarding the case where 𝑉0/𝑎0 = 0.0 are also obtained in the 

paper (Sinha et al. 1992) and coincide completely with the present ones. At the same time, the 

results shown in Fig. 2 are obtained with the same PC programs which are used in the case where 

𝑉0/𝑎0 = 0.0 and 𝑝0/𝜇 > 0, which are discussed in the paper (Akbarov et al. 2021). We note that 

all the numerical results in the present paper, as in the paper (Akbarov et al. 2021), are obtained in 

the case where 𝑁 = 54, i.e., in the case where the number of sub-intervals into which the region 

[𝑅, 𝑅 + ℎ] is divided is equal to 54. 
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Fig. 2 Dispersion diagrams obtained for the zeroth, first, and second modes for various 

values of the ratio 𝑉0/𝑎0 in the case where 𝑝0/𝜇 = 0 

 

 

Thus, it follows from the results illustrated in Fig. 2 that an increase in the absolute values of 

𝑉0/𝑎0  causes the values of the wave propagation velocity to decrease. We attempt to explain this 

character of the influence of the fluid flow on the wave propagation velocity and consider the 

dispersion curves illustrated in Fig. 3. These relate to the axisymmetric longitudinal waves 

propagating in the 𝑂𝑧 axis direction in the fluid, which is in the absolutely rigid hollow cylinder 

with internal radius 𝑅 in the cases where the fluid in the initial state flows with constant velocity 

𝑉0  in the direction which is opposite the wave propagation direction (Fig. 3(a)), and in the 

direction which coincides with the wave propagation direction (Fig. 3b). Note that under obtaining 

these results, the condition 𝑉𝑟 = 0 is assumed at 𝑟 = 𝑅. Thus, it follows from Fig. 3 that if, in the 

initial state, the fluid flow direction is opposite (Fig. 3(a)) (coincides with (Fig. 3(b))) the wave 

propagation direction, then the fluid flow in the initial state leads to a decrease (an increase) in the 

wave propagation velocity in the fluid which is in the absolute rigid cylinder. Moreover, the 

magnitudes of this “decrease” and “increase” grow monotonically with the fluid flow velocity 𝑉0 

in the initial state. This property of the fluid flow in the initial state also decreases or increases in 

the wave propagation velocity in the elastic cylinder containing this fluid. Therefore, the results 

illustrated in Fig. 2 can be explained, with the “increase” or “decrease” of the wave propagation 

velocity in the fluid. However, in the case where the fluid is in the elastic cylinder, the influence of 

the fluid flow velocity on the wave propagation velocity is more complicated than in the case 

where the flowing fluid is in the rigid hollow cylinder. 

The results illustrated in Fig. 3 can be explained by “slowing down” (“increasing”) the motion 

speed of the wave front in the excited state, i.e., under the wave propagation process in the wave 

propagation direction, i.e., in the 𝑂𝑧 axis direction, because the direction of the fluid flow in the 

initial state is opposite (coincides with) the direction of the wave propagation. This explanation of 

the numerical results illustrated in Fig. 3 agrees with well-known physico-mechanical 

considerations. 
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(a) (b) 

Fig. 3 Dispersion curves of the waves propagating in the fluid which is in the absolutely rigid hollow 

cylinder with an internal radius R 

 

 

Note that numerical examples illustrating the increased wave propagation velocity in the fluid 

which is in an elastic hollow cylinder in the case where 𝑉0/𝑎0 > 0, with increases in the values of 

𝑉0/𝑎0, will be illustrated below. 

In this way, we validate the reliability of the algorithm and PC programs used in the present 

investigations. 

 

4.2 Numerical results obtained in the case where 𝑉0/𝑎0 < 0 
 

First, we consider the dispersion curves, i.e., the graphs of the dependence between the ratio 

𝑐/𝑐2 and dimensionless wavenumber 𝑘𝑅 (where 𝑘 is the wavenumber) obtained for the so-called 

zeroth mode. Recall that this mode is also called the quasi-Scholte waves mode and appears as a 

result of the fluid–solid dynamic interaction. The graphs are given in Fig. 4, and the results 

grouped by the letters a, b, and c, relate to the cases where ℎ/𝑅 = 0.1, 0.2 and 0.3, respectively. 

The results for each selected value of the ratio ℎ/𝑅 in Fig. 4 are obtained for various values of the 

fluid flowing velocity in the initial state, i.e., for various minus values of 𝑉0/𝑎0 and for various 

values of the ratio 𝑝0/𝜇 which characterizes the magnitude of the initial inhomogeneous stresses in 

the cylinder. 

Analysis of the numerical results illustrated in Fig. 4 allows us to write the following relations, 

where for each selected value of the ratio 𝑝0/𝜇, take place 

0 0
0 0

2 2/ 0.00 / 0.05
/ /

V a V a
c c c c

= =−
  𝑐/𝑐2|𝑉0/𝑎0=−0.10 > 𝑐/𝑐2|𝑉0/𝑎0=−0.15 (29) 

There exists such a value of 𝑘𝑅 (denote it by (𝑘𝑅) ∗ ) after which, i.e., in the cases where  

𝑘𝑅 > (𝑘𝑅) ∗ for each fixed value of the ratio 𝑉0/𝑎0, the following relations take place 

𝑐/𝑐2|106𝑝0/𝜇=0.0 < 𝑐/𝑐2|106𝑝0/𝜇=1.0 < 6 6
0 0

2 210 / 5.0 10 / 10.0
/ /

p p
c c c c

 = =
  𝑐/

𝑐2|106𝑝0/𝜇=30.0< 𝑐/𝑐2|106𝑝0/𝜇=50.0 
(30) 
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(a) (b) 

 
(c) 

Fig. 4 Dispersion curves in the zeroth mode under  ℎ/𝑅 = 0.1(a), 0.2(b) and 0.3(c) 

 

 

However, in the cases where 𝑘𝑅 < (𝑘𝑅) ∗, the relations (30) become the opposite, i.e. 

𝑐/𝑐2|106𝑝0/𝜇=0.0 > 𝑐/𝑐2|106𝑝0/𝜇=1.0 > 6 6
0 0

2 210 / 5.0 10 / 10.0
/ /

p p
c c c c

 = =
  𝑐/

𝑐2|106𝑝0/𝜇=30.0> 𝑐/𝑐2|106𝑝0/𝜇=50.0 
(31) 

Note that in the case where 𝑘𝑅 = (𝑘𝑅) ∗, the initial stresses in the cylinder do not influence the 

propagation velocity of the quasi-Scholte waves.  

If we compare the graphs shown in Fig. 4 (a), (b), and (c), we can see that the size of the 

difference between the minimum velocity of the quasi-Scholte waves and the velocity of the 

corresponding Scholte waves decreases with ℎ/𝑅. Additionally, this comparison shows that the 

graphs of the dispersion curves obtained for the concrete selected value of 𝑉0/𝑎0  are clearly 

separate from the graphs obtained for the other values of 𝑉0/𝑎0, i.e., the graphs related to each 

selected 𝑉0/𝑎0 shift completely “down” with ℎ/𝑅.  
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 5 Dispersion curves for the first mode obtained under ℎ/𝑅 = 0.1 
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At the same time, the graphs given in Fig. 4 show that the velocity of the Scholte waves 

propagating near the interface plane between the flowing fluid and elastic half-spaces decreases 

with the absolute values of the fluid flowing velocity 𝑉0/𝑎0. 

It also follows from the graphs given in Fig. 4 that the length of the region 0 < 𝑘𝑅 < (𝑘𝑅)1 

into which the influence of the initial stresses, i.e., 𝑝0/𝜇 on the dispersion curves on the velocity of 

the wave propagation is significant, decreases with the ratio ℎ/𝑅.  

Furthermore, it follows from the analyses of the results given in Fig. 4, that an increase in the 

absolute values of 𝑉0/𝑎0 causes a monotonic decrease in the magnitude of the influence of the 

ratio 𝑝0/𝜇 on the wave propagation velocity. This is the main qualitative effect of the action of the 

fluid flow velocity in the case where 𝑉0/𝑎0 < 0 on the influence of the ratio 𝑝0/𝜇 on the wave 

propagation velocity in the zeroth mode. 

Moreover, the numerical results obtained for all the selected values of the ratio ℎ/𝑅 under 

𝑉0/𝑎0 = −0.5 show that the dispersion curve related to the zeroth mode becomes non-dispersive. 

The wave propagation velocity on this curve is equal to the corresponding velocity of the non-

dispersive wave propagating in the fluid in the rigid cylinder (Fig. 3(a)). Consequently, under 

relatively great values of the fluid flow velocity in the direction that is opposite to the direction of 

the wave propagation direction, the fluid flow leads to the dispersive character of the zeroth mode 

disappearing. Note that this is observed in all the values of the ratio 𝑝0/𝜇, and the propagation 

velocity of the non-dispersive wave does not depend on this ratio. In connection with this, in Fig. 

4, the dispersion curves related to the case where 𝑉0/𝑎0 = −0.5 are not shown.  

This completes the analyses of the results related to the zeroth mode. 

Now we consider the dispersion curves related to the first mode. The graphs of the this mode 

are given in Figs. 5, 6 and 7 in the cases where ℎ/𝑅 = 0.10, 0.20, and 0.30, respectively. These 

graphs are constructed for various values of 𝑝0/𝜇 under 𝑉0/𝑎0 = 0.0; -0.05; -0.10, -0.15, -0.30 

and -0.50. Note that in the figures indicated by the letter “a”, the general presentation of the 

corresponding dispersion curves constructed for various minus values of the fluid flow velocity 

𝑉0/𝑎0  and the various values of the ratio 𝑝0/𝜇 in the case where 0 < 𝑘𝑅 ≤ 20 as well as the 

parts of these dispersion curves on which the influence of the initial inhomogeneous stresses is 

considerable, are shown. However, in the figures indicated by letters “b”, “c”, “d”, and “e”, these 

parts of the dispersion curves are shown in the cases where 𝑉0/𝑎0 = 0.0, -0.15, -0.30, and -0.50, 

respectively. These illustrations show more precisely the influence of the ratio 𝑝0/𝜇 on the parts of 

the dispersion curves. Consequently, comparison of the results given in the figures indicated by the 

letters “b”, “c”, “d”, and “e” may allow us to make some conclusions on the magnitude of the 

influence of the initial inhomogeneous stresses in the cylinder depending on the initial fluid 

velocity.  

According to Figs. 5, 6, and 7, in the first mode, the aforementioned parts in which the 

magnitude of the influence of the ratio 𝑝0/𝜇 on the dispersion curves is considerable, relate to the 

cases where 2.0 < 𝑘𝑅 ≤ (𝑘𝑅)’. In these relations, the values of (𝑘𝑅)’ depend on the ratio ℎ/𝑅, 

i.e., the value of (𝑘𝑅)’ decreases with ℎ/𝑅. With respect to the cases under consideration, in the 

first mode, it can be concluded that (𝑘𝑅)’ = 14, 10 and 6 for the cases where ℎ/𝑅 = 0.1, 0.2 and 

0.3, respectively.  

Comparison of the graphs obtained for the first mode and grouped by the letters “b”, “c”, “d”, 

and “e” with each other shows that in the first mode, an increase in the absolute values of the fluid 

flow velocity leads to a decrease in the magnitude of the influence of the inhomogeneous initial 

stresses in the cylinder on the wave propagation velocity. The values of (𝑘𝑅)’ depend on the ratio  
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 6 Dispersion curves for the first mode obtained under ℎ/𝑅 = 0.2 
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 7 Dispersion curves for the first mode obtained under ℎ/𝑅 = 0.3 
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ℎ/𝑅  and the absolute values of the minus dimensionless velocity 𝑉0/𝑎0. An increase in the values 

of the ratio ℎ/𝑅 causes a decrease in the values of  (𝑘𝑅)’. At the same time, in the first mode, an 

increase in the absolute values of the ratio 𝑉0/𝑎0 leads not only to a decrease in the values of 

(𝑘𝑅)’, but also to a decrease in the magnitude of the influence of 𝑝0/𝜇 on the wave propagation 

velocity. 

Now we attempt to explain the character of the dispersion curves related to the first mode. It 

follows from Figs. 5, 6, and 7 that under the low wavenumber approach (the cases where 0 <
𝑘𝑅 ≤ 2.0), the influence of the fluid flow velocity on the wave propagation velocity disappears 

almost completely.   

According to the results obtained in the papers (Akbarov et al. 2021) and (Sinha et al.1992), in 

the low wavenumber approach, the dispersion curves of the first and the second modes obtained 

for the “cylinder+fluid” hydro-elastic system are very near to the corresponding dispersion curves 

obtained for the empty hollow cylinder. However, after a certain value of 𝑘𝑅 the dispersion curves 

of the first mode obtained for the “cylinder+fluid” hydro-elastic system separate from the 

corresponding dispersion curves related to the empty cylinder, and approach the first mode of the 

dispersion curves related to the waves propagating in the fluid cylinder, examples of which are 

constructed in Fig. 3. This explains the character of the influence of the fluid flow velocity and of 

the inhomogeneous initial stresses on the dispersion curves in the first mode. 

Accordingly, the influence of the fluid flow velocity on the dispersion curves of the first mode 

begins after the aforementioned “certain value” of 𝑘𝑅  and, as a result of this flow, the wave 

propagation velocity decreases and the relations in (29) occur also for the first mode. At the same 

time, in the cases where 𝑘𝑅 ≥ 2.0, the relations in (30) occur also for the first mode. 

Note that all the results presented in Figs. 4-7 and obtained in the case where 𝑉0/𝑎0 = 0 and 

𝑝0/𝜇 ≥ 0 in particular cases coincide with the corresponding ones obtained in the paper (Akbarov 

et al. 2021). Moreover, in particular cases, the dispersion curves illustrated in these figures and 

constructed in the case where 𝑝0/𝜇 = 0  and 𝑉0/𝑎0 ≠ 0  coincide with the corresponding 

dispersion curves constructed in the paper (Veliyev 2023). Note also that the paper (Veliyev 2023) 

considered only a few numerical results on the influence of the fluid flow on the dispersion curves 

of the axisymmetric waves propagating in the cylinder containing this fluid. What is more, these 

results are obtained when the cylinder has no initial stresses, and it is not an attempt to explain the 

character of this influence.  

We recall that the numerical results discussed above are obtained in the case where𝑁 = 54. 
Now, we consider the convergence of the numerical results with this number of sub-intervals. For 

this purpose, we consider the numerical results in Fig. 8 which illustrate the dispersion curves of 

the first mode obtained for various numbers of sub-intervals 𝑁 under ℎ/𝑅 = 0.3, 𝑉0/𝑎0 = −0.15  

and 106𝑝0/𝜇 = 50. It follows from Fig. 8 that the selected number of sub-intervals even in the 

most unfavorable case provides convergence of the numerical results with high accuracy. 

 

4.3 Numerical results obtained in the case where 𝑉0/𝑎0 > 0 
 

Now, we analyze the dispersion curves constructed in the case where the fluid flow direction in 
the initial state coincides with the wave propagation direction. We begin this analysis with the 
dispersion curves presented in Fig. 9 and related to the zeroth mode. Note that these curves are 
constructed in the cases where ℎ/𝑅 =0.05 (Fig. 9(a)), 0.10 (Fig. 9(b)), and 0.20 (Fig. 9(c)), and we 
recall that the waves, to which these dispersion curves relate, are also named as “quasi-Scholte” 
waves. 
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Fig. 8 Convergence of the numerical results with respect to the number 𝑁 in the first 

mode under ℎ/𝑅 = 0.3 and 𝑉0/𝑎0 = −0.15 

 

 

Thus, it follows from Fig. 9 that in the case where 𝑉0/𝑎0 > 0, the fluid flow in the initial state 

leads to an increase in the wave propagation velocity, and the magnitude of this increase grows 

monotonically with 𝑉0/𝑎0. Moreover, it follows from the results that the high wavenumber limit 

value of the quasi-Scholte waves (i.e., the velocity of the corresponding Scholte wave) depends 

significantly on the fluid flow velocity in the initial state. In light of the influence of the fluid flow 

velocity on the wave propagation velocity, we consider the dependence between this wave 

propagation velocity and initial inhomogeneous stresses, the magnitudes of which are estimated 

through the ratio 𝑝0/𝜇. 

Thus, it follows from Fig. 9 that, as in the case where 𝑉0/𝑎0 < 0, an increase in the values of 

the ratio 𝑝0/𝜇 causes an increase in the values of the wave propagation velocity. However, in the 

present case, i.e., in the case where 𝑉0/𝑎0 > 0 , the magnitude of this influence increases 

significantly with 𝑉0/𝑎0. This is the main qualitative difference of the action of the fluid flow 

velocity in the case where 𝑉0/𝑎0 > 0 on the influence of the initial inhomogeneous stresses on the 

wave propagation velocity. We recall that, as shown in the previous subsection, in the case where 

𝑉0/𝑎0 < 0, this effect was the opposite. 

Analysis of the numerical results illustrated in Fig. 9 allows us to write that for each selected 

value of the ratio 𝑝0/𝜇 the following relations take place 

𝑐/𝑐2|𝑉0/𝑎0=0.00 < 𝑐/𝑐2|𝑉0/𝑎0=0.05<𝑐/𝑐2|𝑉0/𝑎0=0.15 < 𝑐/𝑐2|𝑉0/𝑎0=0.30 < 𝑐/𝑐2|𝑉0/𝑎0=0.50    (32) 

Also, in the case where 𝑉0/𝑎0 > 0 (as in the case where 𝑉0/𝑎0 < 0), there exists such a value 

of 𝑘𝑅  (denote it by (𝑘𝑅) ∗ ) after which, i.e., in the cases where 𝑘𝑅 > (𝑘𝑅) ∗ (in the cases where 

𝑘𝑅 < (𝑘𝑅) ∗) for each fixed value of the ratio 𝑉0/𝑎0, as in (30), the following relations take place 

𝑐/𝑐2|106𝑝0/𝜇=0.0 < 𝑐/𝑐2|106𝑝0/𝜇=3.0 < 𝑐/𝑐2|106𝑝0/𝜇=10.0 < 𝑐/𝑐2|106𝑝0/𝜇=15.0.         (33) 

However, in the cases where 𝑘𝑅 < (𝑘𝑅) ∗, as in (31), the relations (33) become the opposite, 

i.e. 

𝑐/𝑐2|106𝑝0/𝜇=0.0 > 𝑐/𝑐2|106𝑝0/𝜇=3.0 > 𝑐/𝑐2|106𝑝0/𝜇=10.0 > 𝑐/𝑐2|106𝑝0/𝜇=15.0.           (34) 
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Fig. 9 Dispersion curves in the zeroth mode constructed for the case where 𝑉0/𝑎0 > 0 under  ℎ/𝑅 = 0.05 

(a), 0.1 (b) and 0.2 (c) 

 

 

Note that the relations in (32) are opposite the corresponding relations in (29) which relate to 

the case where 𝑉0/𝑎0 < 0. However, the relations in (33) and (34) agree in the qualitative sense 

with the relations in (30) and (31), respectively. 
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(a) (b) 

 
(c) 

Fig. 10 Dispersion curves in the first mode constructed for the case where 𝑉0/𝑎0 > 0 under ℎ/𝑅 = 0.05 (a), 

0.1 (b) and 0.2 (c) 

 

 

Now, we analyze the dispersion curves related to the first mode. These curves are presented in 

Figs. 10 and 11. In Fig. 10, the graphs grouped by letters a, b, and c relate to the cases where 

ℎ/𝑅 =0.05, 0.10, and 0.20, respectively. However, in Fig. 11, the graphs grouped by letters a, b, 

and c show the parts of the dispersion curves illustrated in Fig. 10 (a), (b), and (c), respectively in 

which the magnitude of the influence of the initial inhomogeneous stresses, i.e., of the ratio 𝑝0/𝜇 

on the wave propagation velocity is considerable.  

It follows from the results given in Figs. 10 and 11 that in the case where 𝑉0/𝑎0 > 0, an 

increase in the values of the fluid flow velocity, as in the zeroth mode, leads to a monotonic 

increase in the wave propagation velocity. For each fixed value of 𝑉0/𝑎0, an increase in the values 

of 𝑝0/𝜇 also causes an increase in the values of the wave propagation velocity. However, as in the 

case where 𝑉0/𝑎0 < 0, a significant influence of the ratio 𝑝0/𝜇 on the wave propagation velocity 

is observed with certain values of the dimensionless wavenumber. Moreover, it follows from the 

results that in the case where 𝑉0/𝑎0 > 0, the effect of an increase in the values of the ratio 𝑉0/𝑎0 

on a decrease of the magnitude of the influence of the ratio 𝑝0/𝜇 on the wave propagation velocity  

268



 

 

 

 

 

 

The influence of the fluid flow velocity and direction on the wave dispersion… 

  
(a) (b) 

 
(c) 

Fig. 11 The parts of the dispersion curves given in Figs. 10a (a), 10b (b), and 10c (c) in which the magnitude 

of the influence of the ratio 𝑝0/𝜇 on the dispersion curves is considerable 

 

 

is more considerable than in the case where 𝑉0/𝑎0 < 0. Note that the results obtained for the first 

mode in the case where 𝑉0/𝑎0 > 0 in the qualitative sense agree with the corresponding results 

obtained in the paper (Deng and Yang 2013). 

We again turn to the existence of the specific regions for the dimensionless wavenumber 𝑘𝑅 in 

which the influence of the effect of 𝑉0/𝑎0 (> 0) on the magnitude of the influence of the ratio 

𝑝0/𝜇 on the wave propagation velocity is more significant. The appearance of such regions can be 

explained by the dominant role of the elastic cylinder on the dispersion curves in the low 

wavenumber values and by the dominant role of the fluid on the dispersion curves in the high 

wavenumber values. As follows from Fig. 10, in the low wavenumber values of 𝑘𝑅, the wave 

propagation velocity in the first mode approaches the wave propagation velocity in the 

corresponding empty cylinder with the inhomogeneous initial stresses. Moreover, the low 

wavenumber limit values of the velocity of the waves hardly depend on the fluid flow velocity in 

the initial state, i.e., on the ratio 𝑉0/𝑎0. 
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However, in the high wavenumber values of 𝑘𝑅, the wave propagation velocity approaches the 

corresponding wave propagation velocity in the fluid, which is in the rigid cylinder and flows in 

the initial state with the velocity 𝑉0/𝑎0. We recall that the dispersion curves of these waves are 

illustrated in Fig. 3(b). Thus, it follows from Fig. 10 that the high wavenumber limit values of the 

wave propagation velocity hardly depend on the inhomogeneous initial stresses in the cylinder, 

i.e., on the ratio 𝑝0/𝜇. 

Thus, according to the above situations, a region appears between the low and high 

wavenumbers, in which the effect of the ratio 𝑉0/𝑎0 on the magnitude of the influence 𝑝0/𝜇 on 

the wave propagation velocity becomes considerable. What is more, this region’s size depends on 

the problem’s parameters, the mode number, and the direction of the fluid flow velocity in the 

initial state. 

The preceding explanations relate to the results obtained for the first mode where 𝑉0/𝑎0 > 0 

and 𝑉0/𝑎0 < 0. However, some similar attempts to explain the results obtained in the case where 

𝑉0/𝑎0 < 0  and 𝑝0/𝜇 = 0  were also made in subsection 4.1. We note that the preceding 

explanations cannot be applied to the results of the zeroth mode. The zeroth or quasi-Scholte mode 

results appear due to the fluid-elastic cylinder dynamic interaction. Nevertheless, in the high minus 

values of the ratio 𝑉0/𝑎0, the influence of the contact of the fluid with the elastic cylinder on the 

wave propagation velocity almost disappears, and the dispersive zeroth mode becomes non-

dispersive. Recall that this situation was also detailed in the previous subsection. 

  

 

5. Conclusions 
 

Thus, in the present paper, the influence of the fluid flow velocity and flow direction on the 

dispersion of the axisymmetric waves propagating in the inhomogeneous pre-stressed hollow 

cylinder containing this fluid is investigated. It is assumed that the material of the cylinder is 

linearly elastic and the fluid is a barotropic compressible inviscid one. Formulation of the 

corresponding eigenvalue problem is made within the scope of the so-called three-dimensional 

linearized theory of elastic waves in bodies with initial stresses and of the linearized Euler 

equations for a compressible inviscid fluid. For the solution to the corresponding field equations 

related to the cylinder, the discrete-analytical method is employed, according to which, the interval 

with respect to the radial coordinate is divided into a certain number of sub-intervals and within 

each sub-interval, the analytic solutions to these equations are found. The corresponding 

dispersion equation is derived from the boundary, compatibility and contact conditions between 

the sub-intervals. The dispersion equation is solved numerically, as a result of which the dispersion 

curves are constructed for various values of the problem parameters, which are mainly the initial 

inhomogeneous stresses in the cylinder and the initial flowing velocity of the fluid contained in 

this cylinder. These results are presented for the zeroth and first modes, and are obtained for the 

case in which the fluid flow direction is opposite to the direction of wave propagation, and in the 

case where the fluid flow direction coincides with the wave propagation direction. By analyzing 

these results, conclusions are drawn regarding the influence of the fluid flow velocity in the initial 

state on the wave propagation velocity in the considered hydro-elastic system. The attempt is also 

made to explain the character of the influence of the fluid flow velocity on the dispersion curves. 

 According to the obtained and analyzed numerical results, concrete conclusions on the 

character of the fluid flow velocity and fluid flow direction on the magnitude of the influence of 

the inhomogeneous initial stresses in the cylinder on the studied wave propagation velocity are 
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made. For instance, one such conclusion is the following: in the case where the fluid flow direction 

coincides with (is opposite) the wave propagation direction, an increase in the absolute values of 

the fluid flow velocity leads to an increase (a decrease) in the magnitude of the influence of the 

initial inhomogeneous stresses on the propagation velocity of the quasi-Scholte waves in the 

hydro-elastic system under consideration. 
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Appendix A 
 

In the present Appendix, the explicit expressions for displacements and stresses of the cylinder 

which enter the conditions in (14) are given through the formulae (A1) and (A2) in which the 

notation in (19)-(22) is used.  

𝑢𝑟
𝑛(𝑟) = 𝐴1
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(𝑟1
𝑛)(𝛾(𝑟𝑛)−2)𝐹𝛾(𝑟𝑛)(𝑟1

𝑛) + 2𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) 𝑑𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

+ (𝑟1
𝑛)𝛾(𝑟𝑛) 𝑑2𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)2 ] +

𝜆

𝜇

1

𝑟1
𝑛 (

𝑑𝑟1
𝑛

𝑑𝑟
)

2

[𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1)𝐹𝛾(𝑟𝑛)(𝑟1

𝑛) + 𝑟1
𝑛 𝑑𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

] +
𝜆

𝜇
[𝛾(𝑟𝑛)(𝛾(𝑟𝑛) −

1)(𝑟1
𝑛)(𝛾(𝑟𝑛)−2)𝐹𝛾(𝑟𝑛)(𝑟1

𝑛) + 𝛾(𝑟𝑛)(𝑟1
)𝑛

)(𝛾(𝑟𝑛)−1) 1

𝑟1
𝑛 (

𝑑𝑟1
𝑛

𝑑𝑟
)

2

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) +

2𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) (

𝑑𝑟1
𝑛

𝑑𝑟
)

2 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

+
1

𝑟1
𝑛 (

𝑑𝑟1
𝑛

𝑑𝑟
)

2

(𝑟1
𝑛)𝛾(𝑟𝑛) 𝑑𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

+

(
𝑑𝑟1

𝑛

𝑑𝑟
)

2

(𝑟1
𝑛)𝛾(𝑟𝑛) 𝑑2𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)2 ]}, 

𝜎𝑟𝑧
𝑚 (𝑟)

𝜇
= 𝐴1

𝑛2
𝑑𝑟2

𝑛

𝑑𝑟
[𝛾1

(𝑟𝑛)(𝑟2
𝑛)

(𝛾1(𝑟𝑛)−1)
× 𝐸𝛾1(𝑟𝑛)(𝑟2

𝑛) + (𝑟2
𝑛)

𝛾1(𝑟𝑛) 𝑑𝐸𝛾1(𝑟𝑛)(𝑟2
𝑛)

𝑑(𝑟2
𝑛)

] +  

𝐴2
𝑛2

𝑑𝑟2
𝑛

𝑑𝑟
[𝛾1(𝑟𝑛)(𝑟2

𝑛)(𝛾1(𝑟𝑛)−1)𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛) + (𝑟2

𝑛)𝛾1(𝑟𝑛) 𝑑𝐹𝛾1(𝑟𝑛)(𝑟2
𝑛)

𝑑(𝑟2
𝑛)

] + 𝐵1
𝑛{−[𝛾(𝑟𝑛)(𝛾(𝑟𝑛) −

1)(𝛾(𝑟𝑛) − 2)𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) +  

3𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝑟1
𝑛)(𝛾(𝑟𝑛)−2) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3

×
𝑑𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

+ 3𝛾(𝑟𝑛)(𝑟1
𝑛)(𝛾(𝑟𝑛)−1) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3

×  

𝑑
2

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛)

2 + (𝑟1
𝑛)

𝛾(𝑟𝑛)
(

𝑑𝑟1
𝑛

𝑑𝑟
)

3

×
𝑑

3
𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛)

3 − 1

(𝑟1
𝑛)

2 𝛾(𝑟𝑛)(𝑟1
𝑛)

(𝛾(𝑟𝑛)−1)
×  

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3

𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) − 1

(𝑟1
𝑛)

2 𝛾(𝑟𝑛)(𝑟1
𝑛)

𝛾(𝑟𝑛)
(

𝑑𝑟1
𝑛

𝑑𝑟
)

3

×
𝑑𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛

)
+ 𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) ×  

1

𝑟1
𝑛 (𝑟1

𝑛)
(𝛾(𝑟𝑛)−2)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3

 𝐸𝛾(𝑟𝑛)(𝑟1
𝑛) + 2𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3

 1

𝑟1
𝑛

𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛

)
+  

1

𝑟1
𝑛 (𝑟1

𝑛)
𝛾(𝑟𝑛)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3

 
𝑑

2
𝐸𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛

)
2 ]

𝑑𝑟1
𝑛

𝑑𝑟
[𝛾(𝑟𝑛)(𝑟1

𝑛)
(𝛾(𝑟𝑛)−1)

 𝐸𝛾(𝑟𝑛𝑖
)
(𝑟1

𝑛) +  

(𝑟1
𝑛)

(𝛾(𝑟𝑛)−1) 𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛

)
]} + 𝐵2

𝑛{−[𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝛾(𝑟𝑛) − 2) ×  

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) + 3𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1)(𝑟1

𝑛)
(𝛾(𝑟𝑛)−2)

× (
𝑑𝑟1

𝑛

𝑑𝑟
)

3 𝑑𝐸𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛𝑖)

+

3𝛾(𝑟𝑛)(𝑟1
𝑛)

(𝛾(𝑟𝑛)−1)
(

𝑑𝑟1
𝑛

𝑑𝑟
)

3

×
𝑑

2
𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛

)
2 + (𝑟1

𝑛)
𝛾(𝑟𝑛)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3 𝑑
3

𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛

)
3 −

1

(𝑟1
𝑛

)
2 𝛾(𝑟𝑛)(𝑟1

𝑛)
(𝛾(𝑟𝑛)−1)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3

 𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) − 1

(𝑟1
𝑛

)
2 𝛾(𝑟𝑛)(𝑟1

𝑛)
𝛾(𝑟𝑛)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛

)
+

𝛾(𝑟𝑛)(𝛾(𝑟𝑛) − 1) × 1

𝑟1
𝑛 (𝑟1

𝑛)
(𝛾(𝑟𝑛)−2)

(
𝑑𝑟1

𝑛

𝑑𝑟
)

3

 𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) + 2𝛾(𝑟𝑛) (

𝑑𝑟1
𝑛

𝑑𝑟
)

3

 1

𝑟1
𝑛  

𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛𝑖)

+

1

𝑟1
𝑛 (𝑟1

𝑛)
𝛾(𝑟𝑛)

 (
𝑑𝑟1

𝑛

𝑑𝑟
)

3

 
𝑑

2
𝐹𝛾(𝑟𝑛)(𝑟1

𝑛)

𝑑(𝑟1
𝑛

)
2 ] +

𝑑𝑟1
𝑛

𝑑𝑟
[𝛾(𝑟𝑛)(𝑟1

𝑛)
(𝛾(𝑟𝑛)−1)

 𝐹𝛾(𝑟𝑛)(𝑟1
𝑛) +

(𝑟1
𝑛)

(𝛾(𝑟𝑛)−1) 𝑑𝐹𝛾(𝑟𝑛)(𝑟1
𝑛)

𝑑(𝑟1
𝑛𝑖)

]}.  

(A2) 

The functions 𝐸𝑥(𝑦) and 𝐹𝑥(𝑦) in (A1) and (A2) are determined through the expressions in 

(22). 
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