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Abstract.  In the present work, a microelogated thermoelastic model based on Lord-Shulman (1967) and Green-
Lindsay (1972) theories of thermoelasticity has been constructed. The governing equations for the simulated model 
are converted into two-dimensional case and made dimensionless for further simplification. Laplace and Hankel 
transforms followed by eigen value approach has been employed to solve the problem. The use of eigen value 
approach has the advantage of finding the solution of governing equations in matrix form notations. This approach is 
straight forward and convenient for numerical computation and avoids the complicate nature of the problem. The 
components of displacement, stress and temperature distribution are obtained in the transformed domain. Numerical 
inversion techniques have been used to invert the resulting quantities in the physical domain. Graphical 
representation of the resulting quantities for describing the effect of microelongation are presented. A special case is 
also deduced from the present investigation. The problem find application in many engineering problems like thick-
walled pressure vessel such as a nuclear containment vessel, a cylindrical roller etc. 
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1. Introduction 
 

Eringen (1971) extended the theory of micropolar elasticity (Eringen 1966) to include the effect 

of axial stretch during the rotation of molecules and developed the theory of micropolar elastic 

solids with stretch. These solids respond to intrinsic rotational motions and spin inertia and 

therefore can support couple stresses and body couples. The model introduced is conjectured to 

explain the motion of certain class of granular and composite materials in which grains and fibers 

are elastic along the direction of their major axis. 

The theory of thermomicrostretch elastic solids was developed by Eringen (1990a). Eringen 

(1990b) also derived the equations of motion, constitutive equations, and boundary conditions for 

thermo-microstretch fluids and obtained the solution of the problem for acoustical waves in bubbly 

liquids. The microstretch continuum is a model for Bravais lattice with a basis on the atomic level 
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and a two phase dipolar solid with a core on the macroscopic level. 

(Sharma et al. 2013a with Sharma et al. 2013) and (Sharma et al. 2013b with Sharma et al. 

2014) investigated the propagation of plane waves and fundamental solution in homogeneous and 

isotropic electro microstretch elastic solids and electro- microstretch viscoelastic solids. Marin et 

al. (2015) derived a relation of De Hoop-Knopoff type for displacement fields in 

thermomicrostretch elastic solid and obtained an explicit expression of the body loadings 

equivalent to a seismic dislocation. Sharma and Khator (2021, 2022) examined some problems of 

power generating due to renewable sources.  

A microelongated elastic solid possesses four degrees of freedom: three for translation and one 

for microelongation. In microelongation theory, the material particles can perform only volumetric   

microelongation in addition to classical deformation of the medium. The material points of such 

medium can stretch and contract independently of their translations. Solid-liquid crystals, 

composite materials reinforced with chopped elastic fibers, porous media with pores filled with 

non-viscous fluid or gas can be categorized as a microelongated medium.  

Kiris and Inan (2005) examined the problem of the Eshelby tensors for a spherical inclusion in 

a microelongated elastic solid field. Shaw and Mukhopadhyay (2012) studied the response due to 

periodically varying heat sources in a functionally graded microelongated medium. Shaw and 

Mukhopadhyay (2013) studied the response of moving heat source in a thermoelastic 

microelongated isotropic homogeneous medium. Ailawalia et al. (2015) presented a two-

dimensional deformation problem in a thermoelastic microelongated medium with internal heat 

source. Sachdeva and Ailawalia (2015) investigated a problem in a thermoelastic microelongated 

elastic half space by using normal mode analysis to obtain the expressions for displacements 

components, stresses, and temperature distribution. Othman et al. (2020) examined plane waves in 

magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse 

heating. Abo-Dahad et al. (2020) examined the problem of a thermoelastic functionally graded 

thin strip due to pulsed laser heating.  

Othman et al. (2022) presented the dual phase lag model to investigate the influence of rotation 

on a two-dimensional problem in a microelongated thermoelastic half space. Lotfy (2022) 

discussed the problems of thermo-mechanical waves of excited microelongated semiconductor 

layer during photothermal transport processes. Ismail et al. (2022) explored the influence of 

variable thermal conductivity on thermal-plasma-elastic waves of excited microelongated 

semiconductor. Ismail et al. (2023) examined the effect of electron diffusion in the presence of 

microelongated parameters due to exponential laser-pulsed heat. El-Sapa et al. (2023) analysed the 

influence of microelongated parameters on displacements, stresses, temperature field and carrier 

density field in photothermoelastic medium with due to laser pulse. Raddadi et al. (2024) 

investigated the deformation in microelongated photothermoelastic under non-local rotating with 

variable thermal conductivity due to laser pulse.   

In this study, two-dimensional problem in microelongated thermoelastic circular plate due to 

thermomechanical sources has been investigated. Laplace and Hankel transforms followed by 

eigen value approach has been applied to solve the problem. After using the inversion techniques 

of transforms, the results are obtained in the physical domain. The effect of microelongation on 

displacements, temperature distribution, normal stress and tangential stress have been shown 

graphically. 

 

Premiliar equations  

The constitutive equations for a linear isotropic microelongated thermoelastic solid are given 
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by Eringen (1999), Lord-Shulman (1967), Green-Lindsay (1972) as 

 𝑡𝑗𝑖 = 𝜆𝑒𝑟𝑟𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 + 𝜆0𝜓𝛿𝑖𝑗 − 𝜈 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇𝛿𝑖𝑗   ,                               (1) 

 𝜆𝑖
∗ = 𝛼0𝜓, 𝑖,                                                               (2) 

 𝜎 =  𝜆0𝑒𝑟𝑟 + 𝜆1𝜓 −  𝜈 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇,                                              (3) 

and 

𝑒𝑖𝑗 =
1

2
 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).                                                           (4) 

Balance of momentum and momentum moments in absence of body forces, body couples are 

given by 

 𝑡𝑗𝑖,𝑗 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2 ,                                                               (5) 

 𝜆𝑖,𝑖
∗ −  𝜎 =

1

2
𝜌𝑗0

𝜕2𝜓

𝜕𝑡2 .                                                        (6) 

Heat conduction law involving heat flux and temperature gradient in absence of heat sources is 

given by 

 (1 + 𝜂0𝜏0
𝜕

𝜕𝑡
) 𝑞𝑖 = −𝐾1

∗ 𝑇,𝑖,                                                    (7) 

The energy equation in absence of heat source is given by Boley and Weiner (1960) as 

 𝜌𝑇 0 𝑆 = −𝑞𝑖,𝑖,                                                              (8) 

where (i) for Lord-Shulman (L-S) (1967) 

 𝜌𝑇 0 𝑆 =  𝜌𝐶∗ 𝑇 +  𝑇 0  ( 𝜈𝑒𝑟𝑟 +  𝑚 0𝜓),                                           (9) 

(ii) for Green-Lindsay (1972) 

 𝜌𝑇 0 𝑆 =  𝜌𝐶∗ (1 + 𝜏0
𝜕

𝜕𝑡
) 𝑇 + 𝑇 0  ( 𝜈𝑒𝑟𝑟 +  𝑚 0𝜓).                              (10) 

Making use of Eq. (1) in Eq. (5), also Eqs. (2) and (3) in Eq. (6) with the aid of Eq. (4) yield the 

equations of motion in microelogation generalized thermoelastic solid as 

(𝜆 + 𝜇)∇(∇. 𝑢⃗ ) + 𝜇∇2𝑢⃗  + 𝜆0∇𝜓 − 𝜈 (1 + 𝜏1
𝜕

𝜕𝑡
) ∇𝑇 = 𝜌

𝜕2𝑢⃗⃗ 

𝜕𝑡2  ,                   (11) 

𝛼0∇
2𝜓 − 𝜆0(∇. 𝑢⃗ ) − 𝜆1𝜓 + 𝑚 0 (1 + 𝜏1

𝜕

𝜕𝑡
) 𝑇 =

1

2
𝜌𝑗0

𝜕2𝜓

𝜕𝑡2  ,                    (12) 

Making use of Eqs. (7), (9) and (10) in Eq. (8) yield the heat conduction equation in compact 

form as  

𝐾1
∗∇2𝑇 − ν 0T (

𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2) (∇. 𝑢⃗ ) − 𝑚 0𝑇 0 (
𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2)𝜓 = 𝜌𝐶∗ (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) 𝑇.  (13) 

In the above equations, 𝑢⃗  is the displacement vector,𝜓 isscalar microelogational function, 𝜆 and 

𝜇 are Lame’s constant, 𝛼0 , 𝜆0, 𝜆1, 𝑚 0  are microelogational material parameters, 𝜌 is the density of 

microelogated sample, 𝑗0  is the microinertia of microelogation, 𝜆1
∗  is microstress vector, 𝜎 is 

microstress function, 𝐾1
∗  is the coefficient of thermal conductivity, 𝜈 = (3𝜆 + 2𝜇)𝛼𝑡 , 𝛼𝑡  is the 

coefficient of linear thermal expansion,   𝑇 is the change in temperature of the medium at any time, 

𝑇0 is reference temperature of the body, 𝑆 is the entropy per unit mass, 𝑞𝑖 is heat flux vector, 𝐶∗ is 
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the specific heat at constant strain, 𝜏0, 𝜏1 are the thermal relaxation times, 𝑒𝑖𝑗 is the strain tensor, 

𝑡𝑖𝑗 is the microelogational stress tensor, 𝛿𝑖𝑗 is the Kronecker delta, ∇ is the gradient operator and 

∇2 is the Laplacian operator. 

For L-S theory, 𝜏1 = 0, 𝜏0 > 0, and 𝜂0 = 1  , 
For G-L theory, 𝜏1 ≥ 𝜏0 > 0 and 𝜂0 = 0 . 

 

 

2. Formulation of the problem 
 

Consider a homogeneous, isotropic microelongated thermoelastic circular plate with thickness 

2d and the circular plate occupied the region defined by 0 ≤ 𝑟 ≤ ∞, −𝑑 ≤ 𝑧 ≤ 𝑑. The plate is 

acted upon by a transient axisymmetric temperature field and an instantaneous normal ring force, 

and the plate is thermally insulated. The cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) with origin 

being taken in the middle surface of the plate and z-axis along the normal to the plate i.e., along 

the thickness of the plate. The problem becomes a two-dimensional axisymmetric problem with 

symmetry about z-axis. 𝑇0 is the initial temperature of the thick circular plate which is taken as a 

constant temperature. For the present problem, we take 

𝑢⃗ = (𝑢𝑟 , 0, 𝑢𝑧).                                                          (14) 

Eqs. (11)-(13) with the use of (14) take the form 

(𝜆 + 𝜇) (
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
)

𝜕

𝜕𝑟
+ 𝜇 (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜕2𝑢𝑟

𝜕𝑧2 −
𝑢𝑟

𝑟2
)  

+𝜆0
𝜕𝜓

𝜕𝑟
− 𝜈 (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑟
= 𝜌

𝜕2𝑢𝑟

𝜕𝑡2  ,                                     (15) 

(𝜆 + 𝜇) (
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
)

𝜕

𝜕𝑧
+ 𝜇 (

𝜕2𝑢𝑧

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

𝜕2𝑢𝑧

𝜕𝑧2
) + 𝜆0

𝜕𝜓

𝜕𝑧
− 𝜈 (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑧
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2 ,  (16) 

𝛼0 (
𝜕2𝜓

𝜕𝑟2 +
1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓

𝜕𝑧2) − 𝜆0 (
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
)  

−𝜆1𝜓 + 𝑚 0 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇 =

1

2
𝜌𝑗0

𝜕2𝜓

𝜕𝑡2  ,                                       (17) 

𝐾1
∗ (

𝜕2𝑇

𝜕𝑟2 +
1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2) = 𝜌𝐶∗ (
𝜕𝑇

𝜕𝑡
+ 𝜏0

𝜕2𝑇

𝜕𝑡2)  

+νT0 (
𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2) (
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
) + 𝑚 0T0 (

𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2)𝜓.                    (18) 

The non-dimensional quantities are introduced as  

𝑟′ =
𝜔∗𝑟

𝑐1
,   𝑧′ =

𝜔∗𝑧

𝑐1
,    𝑢𝑟

′ =
𝜌𝑐1𝜔

∗𝑢𝑟

𝜈𝑇0
,   𝑢𝑧

′ =
𝜌𝑐1𝜔

∗𝑢𝑧

𝜈𝑇0
,    𝜓′ =

𝜌𝑐1
2𝜓

𝜈𝑇0
,  

𝑇′ =
𝑇

𝑇0
, 𝑡′ = 𝜔∗𝑡,   𝜏0

′ = 𝜔∗𝜏0,   𝜏1
′ = 𝜔∗𝜏1,     𝑡𝑖𝑗

′ =
𝑡𝑖𝑗

𝜈𝑇0
 , 

where 

          𝜔∗ =
𝜌𝐶∗𝑐1

2

𝐾1
∗ , 𝑐1

2 =
𝜆+2𝜇

𝜌
 .                                                        (19) 

Eqs. (15)-(18) with the aid of dimensionless quantities (19) and after suppressing the primes, 

yield 

(1 −
0a ) (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜕2𝑢𝑧

𝜕𝑟𝜕𝑧
−

𝑢𝑟

𝑟2) +
0a (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

𝜕2𝑢𝑟

𝜕𝑧2 −
𝑢𝑟

𝑟2)  
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+
1a

𝜕ψ

𝜕𝑟
− (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑟
=

𝜕2𝑢𝑟

𝜕𝑡2  ,                                              (20) 

(1 −
0a ) (

∂2ur

∂r∂z
+

1

r

∂ur

∂z
+

∂2uz

∂z2 ) +
0a (

∂2uz

∂r2 +
1

r

∂uz

∂r
+

∂2uz

∂z2 )  

+
1a

∂ψ

∂z
− (1 + τ1

∂

∂t
)

∂T

∂z
=

∂2uz

∂t2
 ,                                             (21) 

(
∂2ψ

∂r2 +
1

r

∂ψ

∂r
+

∂2ψ

∂z2)ψ − 𝑎2 (
∂ur

∂r
+

ur

r
+

∂uz

∂z
) − 𝑎3𝜓  

+𝑎5 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇  = 𝑎4

𝜕2𝜓

𝜕𝑡2  ,                                                (22) 

∇2𝑇 = (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) 𝑇 + ϵ (
𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2) (
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
) + 𝜈̅𝜖 (

𝜕

𝜕𝑡
+ 𝜂0𝜏0

𝜕2

𝜕𝑡2)𝜓 ,     (23) 

where 

𝑎0 =
𝑐2
2

𝑐1
2 , 𝑎1 =

𝜆0

𝜌𝑐1
2 , 𝑎2 =

𝜆0𝜌𝑐1
2

𝛼0𝜔
∗2 , 𝑎3 =

𝜆1𝑐1
2

𝛼0𝜔
∗2 , 𝑎4 =

𝜌𝑗0𝑐1
2

2𝛼0
, 𝑎5 =

𝜈̅𝜌𝑐1
4

𝛼0𝜔
∗2 , 𝜖 =

𝜈2𝑇0

𝜌𝐾1
∗𝜔∗ , 𝜈̅ =

𝑚0

𝜈
, 𝑐2

2 =
𝜇

𝜌
  . 

The Laplace and Hankel Transforms are defined as  

𝑓(̅𝑟, 𝑧, 𝑠) = 𝐿{𝑓(̅𝑟, 𝑧, 𝑡)} = ∫ 𝑓(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡,
∞

0

 (24) 

𝑓( , 𝑧, 𝑠) = 𝐻{𝑓(̅𝑥, 𝑧, 𝑠)} = ∫ 𝑟𝑓(̅𝑥, 𝑧, 𝑠)𝐽𝑛( 𝑟)𝑑𝑟.
∞

0

 (25) 

Applying Laplace and Hankel transforms defined by (24) and (25) on the set of Eqs. (20)-(23), 

we obtain 

𝑢̃𝑟′′ = 𝑏11𝑢̃𝑟 + 𝑏13𝜓̃ + 𝑏14𝑇̃ +  𝑓12𝑢̃𝑧′,  (26) 

𝑢̃𝑧′′ = 𝑏22𝑢̃𝑧 + 𝑓21𝑢̃𝑟′ + 𝑓23𝜓̃′ + 𝑓24𝑇̃′,  (27) 

𝜓̃′′ = 𝑏31𝑢̃𝑟 + 𝑏33𝜓̃ + 𝑏34𝑇̃ +  𝑓32𝑢̃𝑧′,  (28) 

𝑇̃′′ = 𝑏41𝑢̃𝑟 + 𝑏43𝜓̃ + 𝑏44𝑇̃ +  𝑓42𝑢̃𝑧′,  (29) 

Where  

𝑏11 = (


2
+𝑠2

0a
),    𝑏12 =

𝑎1

0a
,   𝑏13 = −



0a
(1 + 𝜏1𝑠),    𝑏14 =

 (1−
0a )

0a
,    

 𝑏21 = (
2

0a + 𝑠2) , 𝑏22 =   (
0a − 1) , 𝑏23 = −

1a ,   𝑏24 = (1 + 𝜏1𝑠), 𝑏31 = 𝑎2 , 

 𝑏32 = 
2
+ 𝑎4𝑠

2 + 𝑎3, 𝑏33 = −𝑎5(1 + 𝜏1𝑠), 𝑏34 = 𝑎2, 𝑏41 =  𝜖(𝑠 + 𝜂0𝜏0𝑠
2), 

 𝑏42 = 𝜈̅𝜖(𝑠 + 𝜂0𝜏0𝑠
2), 𝑏43 = 

2
+ (𝑠 + 𝜏0𝑠

2), 𝑏44 = 𝜖(𝑠 + 𝜂0𝜏0𝑠
2). 

The system of Eqs. (26)-(29) can be written as 

𝑑

𝑑𝑧
𝑊( , 𝑧, 𝑠) = 𝐴( , 𝑠)𝑊( , 𝑧, 𝑠),  (30) 

where 
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𝑊 = [
𝑈
𝐷𝑈

] ,    𝐴 = [
𝑂      𝐼
𝐴2    𝐴1

] ,     𝑈 =  [

𝑢̃𝑟

𝑢̃𝑧

𝜓̃

𝑇̃

] ,   𝐷 =
𝑑

𝑑𝑧
  , 

𝑂 = [

0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0

] , 𝐼 = [

1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

] , 2A =  [

𝑏11  0   𝑏13  𝑏14

0   𝑏22  0     0
𝑏31     0    𝑏33  𝑏34

𝑏41    0  𝑏43  𝑏44

] , 1A = [

0    𝑓12  0  0
𝑓21  0  𝑓23  𝑓24

0   𝑓32  0  0
0   𝑓42  0  0

]. 

To solve Eq. (30), we assume 

𝑊( , 𝑧, 𝑠) = 𝑋( , 𝑠)𝑒𝑚𝑧, (31) 

for some parameter m, so that 

𝐴( , 𝑠)𝑊( , 𝑧, 𝑠) = 𝑚𝑊( , 𝑧, 𝑠),  (32) 

which leads to the solution of the problem through eigen value approach. Accordingly, the 

characteristic equation corresponding to the matrix 𝐴 is given by 

|A − mI| = 0, 
which an expansion provides 

 𝑚8 − 𝐵1𝑚
6 + 𝐵2𝑚

4 − 𝐵3𝑚
2 + 𝐵4 = 0 , (33) 

where 

𝐵1 = 𝑏11 + 𝑏22 + 𝑏33 + 𝑏44 + 𝑓12𝑓21 + 𝑓23𝑓32 + 𝑓24𝑓42, 

𝐵2 = 𝑏11𝑏22 + 𝑏11𝑏33 + 𝑏11𝑏44 + 𝑏22𝑏33 + 𝑏22𝑏44 + 𝑏33𝑏44 − 𝑏13𝑏31 − 𝑏14𝑏41 − 𝑏34𝑏43 

         +(𝑏11 + 𝑏33)𝑓24𝑓42 + (𝑏11 + 𝑏44)𝑓23𝑓32 + (𝑏33 + 𝑏44)𝑓12𝑓21 − (𝑏31𝑓23 + 𝑏41𝑓24)𝑓12 

          −(𝑏13𝑓21 + 𝑏43𝑓24)𝑓32 − (𝑏14𝑓21 + 𝑏34𝑓23)𝑓42 , 

𝐵3 = 𝑏13𝑏34𝑏41 + 𝑏14𝑏31𝑏43 − (𝑏11 + 𝑏22)𝑏34𝑏43 + (𝑏11 + 𝑏33)𝑏22𝑏44 − (𝑏22 + 𝑏33)𝑏14𝑏41 

+(𝑏11𝑏33 − 𝑏13𝑏31)𝑏22 + (𝑏11𝑏33 − 𝑏13𝑏31)𝑏44 + (𝑏33𝑏44 − 𝑏34𝑏43)𝑓12𝑓21 

+(𝑏34𝑏41 − 𝑏31𝑏44)𝑓12𝑓23 + (𝑏31𝑏43 − 𝑏33𝑏41)𝑓12𝑓24 + (𝑏14𝑏43 − 𝑏13𝑏44)𝑓21𝑓32 

           +(𝑏13𝑏34 − 𝑏14𝑏33)𝑓21𝑓42 + (𝑏14𝑏44 − 𝑏14𝑏41)𝑓23𝑓32 + (𝑏14𝑏31 − 𝑏11𝑏34)𝑓23𝑓42 

           +(𝑏13𝑏41 − 𝑏11𝑏43)𝑓24𝑓32 + (𝑏11𝑏33 − 𝑏13𝑏31)𝑓24𝑓42 , 

𝐵4 = (𝑏13𝑏34 − 𝑏14𝑏33)𝑏22𝑏41 + (𝑏14𝑏31 − 𝑏11𝑏34)𝑏22𝑏43 + (𝑏11𝑏33 − 𝑏13𝑏31)𝑏22𝑏44 . 

Eq. (32) gives the roots as ±𝑚𝑖 ,   𝑖 = 1, 2, 3, 4. 

The eigenvectors 𝑋𝑖( , 𝑠) corresponding to the eigenvalues 𝑚𝑖 may be obtained by solving the 

following equation. 

[𝐴 − mI]𝑋𝑖( , 𝑠) = 0. 

We write the set of eigen vector 𝑋𝑖( , 𝑠) as 

𝑋𝑖( , 𝑠) =  [
𝑋𝑖1( , 𝑠)

𝑋𝑖2( , 𝑠)
], 

where 
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𝑋𝑖1( , 𝑠) = [

𝑝𝑖𝑚𝑖

𝑞𝑖

𝑒𝑖

𝑓𝑖

] , 𝑋𝑖2( , 𝑠) = [

𝑝𝑖𝑚𝑖
2

𝑞𝑖𝑚𝑖

𝑒𝑖𝑚𝑖

𝑓𝑖𝑚𝑖

] ,    𝑚 = 𝑚𝑖; 𝑖 = 1,2,3,4, 

𝑋𝑗1( , 𝑠) = [

−𝑝𝑖𝑚𝑖

𝑞𝑖

𝑒𝑖

𝑓𝑖

],      𝑋𝑗2( , 𝑠) = [

𝑝𝑖𝑚𝑖
2

−𝑞𝑖𝑚𝑖

−𝑒𝑖𝑚𝑖

−𝑓𝑖𝑚𝑖

] ,      𝑗 = 𝑖 + 4,   𝑚 = −𝑚𝑖; 𝑖 = 1,2,3,4, 

where     

𝑝𝑖 =
𝜂

0a
[(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2)

2
{𝑎1𝑎2 − (1 −

0a ) (𝜂2 + 𝑎4𝑠
2 + 𝑎3 − 𝑚𝑖

2)}  +

𝜖(1+,we obtain 𝜏1s) (𝑠 + 𝜂0𝜏0𝑠
2) (𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2){(𝜂2 + 𝑎4𝑠

2 + 𝑎3 − 𝑚𝑖
2) − (1 −

𝑎0)𝜈̅
2

4a + 2𝑎5}],  

𝑞𝑖 =
1

𝑎0
[(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2)

2
{ (𝜂2 + 𝑎4𝑠

2 + 𝑎3 − 𝑚𝑖
2)(𝜂2 + 𝑠2 − 𝑚𝑖

2𝑎0) − 𝑎1𝑎2𝜂
2} 

+𝜖(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠
2)(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2) 

{𝜂2(𝜂2 + 𝑎4𝑠
2 + 𝑎3 − 𝑚𝑖

2) + 𝜈̅𝑎5(𝜂
2 + 𝑠2 − 𝑎0𝑚𝑖

2) − 2𝑎1𝑎5𝜂
2], 

𝑒𝑖 = [ 𝑎2(𝜂
2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2) + 𝑎5𝜖(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠

2)](𝜂𝑝𝑖 + 𝑞𝑖)𝑚𝑖/𝐺10, 

𝑓𝑖 = [𝜖(𝑠 + 𝜂0𝜏0𝑠
2){(𝜂2 + 𝑎4𝑠

2 + 𝑎3 − 𝑚𝑖
2) 

(𝜂2 + (𝑠 + 𝜏0𝑠
2) − 𝑚𝑖

2) + 𝜖𝜈̅2 𝑎4(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠
2)} − 𝜖 𝑎5(𝑠 + 𝜂0𝜏0𝑠

2) 

{ 𝑎1(𝜂
2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2) + 𝜖𝜈̅(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠

2)}](𝜂𝑝𝑖 + 𝑞𝑖)𝑚𝑖/𝐺20, 

and 

𝐺10 = −[(𝜂2 + (𝑠 + 𝜏0𝑠
2) − 𝑚𝑖

2)(𝜂2 + 𝑎3 + 𝑎4𝑠
2 − 𝑚𝑖

2)  − 𝜖 𝑎5𝑠
2(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠

2)], 

𝐺20 = −[(𝜂2 + (𝑠 + 𝜏0𝑠
2) − 𝑚𝑖

2)(𝜂2 + (𝑠 + 𝜏0𝑠
2) − 𝑚𝑖

2)(𝜂2 + 𝑎3 + 𝑎4𝑠
2 − 𝑚𝑖

2) −

𝜖𝑎5𝑠
2(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠

2)] . 
The solution of (30) can be assumed as 

𝑊( , 𝑧, 𝑠) = ∑ 𝑆𝑖
4
𝑖=1 𝑋𝑖( , 𝑠) cosh(𝑚𝑖𝑧),  (34) 

where 𝑆1, 𝑆2, 𝑆3 and 𝑆4 are arbitrary constants. 

 

 

3. Boundary conditions 
 

The circular plate occupying the region is defined by 0 ≤ 𝑟 ≤ ∞, −𝑑 ≤ 𝑧 ≤ 𝑑 and the plate is 

acted upon by a transient axisymmetric temperature field dependent on the radial and axial 

direction of the cylindrical coordinates system and an instantaneous normal ring force as shown in 

Fig. 1. The tangential stress and gradient of microelongation field vanish at the surface 𝑧 = ±𝑑. 
Also the plate is thermally insulated. Therefore, the non-dimension boundary conditions at the 

surface 𝑧 = ±𝑑 of the plate are taken as 

𝑑𝑇

𝑑𝑧
= 𝐹1(𝑟, 𝑧, 𝑡), (35) 

𝑡𝑧𝑧 = 𝐹2(𝑟, 𝑧, 𝑡), (36) 
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Fig. 1 Instantaneous and concentrated normal ring force 

 

 

𝑡𝑧𝑟 = 0, (37) 

𝑑𝜓

𝑑𝑧
= 0, (38) 

where 

𝐹1(𝑟, 𝑧) = 𝐹10𝑧
2𝑒−𝜔𝑟𝛿(𝑡),     𝜔 > 0,  (39) 

𝐹1(𝑟, 𝑡) = 𝐹20𝛿(𝑡)𝛿(𝑎 − 𝑟) . (40) 

The function 𝑧2𝑒−𝜔𝑟 is a function that increase in the axial direction symmetrically and falls 

off exponentially as one moves away from the centre of the plate along the radial direction. 

𝐹10 is the constant temperature applied on the boundary, 𝐹20 is the magnitude of the force and 

𝛿() is the dirac delta function. 

The non dimensional stress components 𝑡𝑧𝑧 and   𝑡𝑧𝑟 are given by 

𝑡𝑧𝑧 =
𝜕𝑢

𝜕𝑧
+ 𝑎6 (

𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
) − (1 + 𝜏1

𝜕

𝜕𝑡
) 𝑇 + 𝑎1𝜓, (41) 

𝑡𝑧𝑟 = 𝑎0 (
𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
), (42) 

where  

𝑎6=
𝜆

𝜌𝑐1
2. 

Applying the Laplace and Hankel transforms defined by (24) and (25) on the boundary 

conditions (35)-(38), alongwith (39) and (40), give 

𝑑𝑇̃

𝑑𝑧
= 𝐹̃1(𝜂, 𝑧), (43) 

238



 

 

 

 

 

 

Axisymmetric deformation of thick circular plate in microelongated thermoelastic solid 

 𝑡𝑧𝑧̃ = 𝐹2 (𝜂̃, 𝑠), (44) 

𝑡𝑧𝑟̃ = 0, (45) 

𝑑𝜓̃

𝑑𝑧
= 0, (46) 

where 

𝐹̃1(𝜂, 𝑧) = 𝐹10
𝑧2𝜔

(𝑧2+𝜔2)3/2, 𝐹̃2(𝜂, 𝑧) = 𝐹20 𝑎𝐽0 (𝜂 𝑎) (47) 

Applying Laplace and Hankel transforms defined (24)-(25) on Eqs. (41)-(42) and with the aid 

of (34), yield 

 𝑡𝑧𝑧̃ = 𝑅1𝑆1 cosh(𝑚1𝑧) + 𝑅2𝑆2 cosh(𝑚2𝑧) + 𝑅3𝑆3 cosh(𝑚3𝑧) + 𝑅4𝑆4 cosh(𝑚4𝑧) (48) 

𝑡𝑧𝑟̃ = 𝑇1𝑆1 cosh(𝑞1𝑧) + 𝑇2𝑆2 cosh(𝑞2𝑧) + 𝑇3𝑆3 cosh(𝑞3𝑧) + 𝑇4𝑆4 cosh(𝑞4𝑧), (49) 

where 

𝑅𝑖 = [𝑎6𝜂𝑝𝑖𝑚𝑖 + 𝑎1𝑒𝑖 − (1 + 𝜏1𝑠)𝑓𝑖 + 𝑞𝑖𝑚𝑖], 𝑖 = 1,2,3,4, (50) 

𝑇𝑖 = 𝑎0[𝑝𝑖𝑚𝑖
2 − 𝜂𝑞𝑖], 𝑖 = 1, 2, 3, 4. (51) 

Making use of (34) and (48)-(49) in the boundary conditions (43)-(46), we obtain, the 

expressions of displacements, microelongation, temperature distribution and stresses in the 

transformed domain as 

(𝑢̃𝑟 ,   𝑢̃𝑧,  𝜓̃, 𝑇̃) =
1

Δ
∑ (𝑝𝑖𝑚𝑖 ,   𝑞𝑖 ,   𝑒𝑖 ,   𝑓𝑖)Δ𝑖 cosh(𝑚𝑖𝑧)

4
𝑖=1 , (52) 

( 𝑡𝑧𝑧̃ ,   𝑡𝑧𝑟̃) =
1

Δ
∑ (𝑅𝑖 ,   𝑇𝑖)Δ𝑖 cosh(𝑚𝑖𝑧)

4
𝑖=1 , (53) 

where 

∆= |

𝐸1   𝐸2   𝐸3   𝐸4

𝐹1   𝐹2   𝐹3   𝐹4

𝐺1   𝐺2   𝐺3   𝐺4

𝐻1   𝐻2   𝐻3   𝐻4

|, 

and ∆𝑖(𝑖 = 1,2,3,4) are obtained from ∆ by replacing ith column of ∆ with |𝐹10, 𝐹20, 0, 0|𝑡𝑟 , also 

𝐸𝑖 = 𝑓𝑖𝑚𝑖 cosh(𝑚𝑖𝑑),   𝐹𝑖 = 𝑅𝑖 cosh(𝑚𝑖𝑑),   𝐺𝑖 = 𝑇𝑖 cosh(𝑚𝑖𝑑) ,    
iH = 𝑒𝑖𝑚𝑖 cosh(𝑚𝑖𝑑), 

(𝑖 = 1,2,3,4) 

 

 

4. Particular case 
 

In the absence of microelongation, the boundary conditions for thermoelastic medium are given 

by 
𝑑𝑇

𝑑𝑧
= 𝐹1(𝑟, 𝑧, 𝑡), 

𝑡𝑧𝑧 = 𝐹2(𝑟, 𝑧, 𝑡), 
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𝑡𝑧𝑟 = 0. 

The corresponding expressions for displacements, temperature distribution and stresses are 

obtained in thermoelastic medium as 

(𝑢̃𝑟 ,   𝑢̃𝑧, 𝑇̃) =
1

Δ
∑ (

i ip m ,   𝑞𝑖 ,   𝑓𝑖)Δ𝑖 cosh(𝑚𝑖𝑧)
3
𝑖=1 , 

( 𝑡𝑧𝑧̃ ,   𝑡𝑧𝑟̃) =
1

Δ
∑ (𝑅𝑖 ,   𝑇𝑖)Δ𝑖 cosh(𝑚𝑖𝑧)

3
𝑖=1 , 

where 

Δ1 = (𝐸3𝐹20 − 𝐹3𝐹10)G2 + (𝐹2𝐹10 − 𝐸2𝐹20)𝐺3, 

Δ2 = (𝐹3𝐹10 − 𝐸3𝐹20)𝐺1 + (𝐸1𝐹20 − 𝐹1𝐹10)𝐺3, 

Δ3 = (𝐸2𝐹20 − 𝐹2𝐹10)𝐺1 + (𝐹1𝐹10 − 𝐸1𝐹20)𝐺2, 

Δ = (𝐸2𝐹3 − 𝐸3𝐹2)𝐺1 + (𝐸3𝐹1 − 𝐸1𝐹3)𝐺2 + (𝐸1𝐹2 − 𝐸2𝐹1)𝐺3, 

and 

𝐸𝑖 = 𝑓𝑖𝑚𝑖 cosh(𝑚𝑖𝑑),   𝐹𝑖 = 𝑅𝑖 cosh(𝑚𝑖𝑑),    𝐺𝑖 = 𝑇𝑖 cosh(𝑚𝑖𝑑) ,   𝑖 = (1, 2, 3) 

along with the changed values of 𝑝𝑖 , 𝑞𝑖 , 𝑓𝑖 , 𝑅𝑖 , 𝑇𝑖 , 

𝑝𝑖 =
𝜂

𝑎0
[(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2)

2
{−(1 − 𝑎0)(𝜂

2 − 𝑚𝑖
2)}  

        +𝜖(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠
2)(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2) {(𝜂2 − 𝑚𝑖

2)}], 

𝑞𝑖 =
1

𝑎0
[(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2)

2
{ (𝜂2 − 𝑚𝑖

2)(𝜂2 + 𝑠2 − 𝑚𝑖
2𝑎0)}  

+𝜖(1 + 𝜏1𝑠)(𝑠 + 𝜂0𝜏0𝑠
2)(𝜂2 + (𝑠 + 𝜏0𝑠

2) − 𝑚𝑖
2) {𝜂2(𝜂2 − 𝑚𝑖

2), 

𝑓𝑖 = [𝜖(𝑠 + 𝜂0𝜏0𝑠
2){(𝜂2 − 𝑚𝑖

2) (𝜂2 + (𝑠 + 𝜏0𝑠
2) − 𝑚𝑖

2) }](𝜂𝑝𝑖 + 𝑞𝑖)𝑚𝑖/𝐺20, 

𝑅𝑖 = [𝑎6𝜂𝑝𝑖𝑚𝑖 − (1 + 𝜏1𝑠)𝑓𝑖 + 𝑞𝑖𝑚𝑖],   𝑖 = 1, 2, 3, 

𝑇𝑖 = 𝑎0(𝑝𝑖𝑚𝑖
2 − 𝜂𝑞𝑖), 𝑖 = 1, 2, 3 , 

also 𝑚𝑖  (𝑖 = 1, 2, 3) are the root of the characteristic of the equation. 

𝑚6 − 𝐵1𝑚
4 + 𝐵2𝑚

2 − 𝐵3 = 0 , 

with the changed values of 𝐵1, 𝐵2 and 𝐵3 

𝐵1 = 𝑏11 + 𝑏22 + 𝑏44 + 𝑓12𝑓21 + 𝑓24𝑓42 , 

𝐵2 = 𝑏11𝑏22 + 𝑏11𝑏44 + 𝑏22𝑏44 − 𝑏14𝑏41 + 𝑏11𝑓24𝑓42 + 𝑏44𝑓12𝑓21 − 𝑏14𝑓21𝑓42 − 𝑏41𝑓12𝑓24 , 

𝐵3 = 𝑏11𝑏22𝑏44 − 𝑏14𝑏22𝑏41 . 

 

 

5. Inversion of transforms 
 

To obtain the solution in the physical domain, we must invert the transform in (52)-(53). Here 

the displacements, stresses, temperature change and microelongation field are function of z, the 

parameters of Laplace and Hankel transforms 𝑠  and 𝜂  respectively and hence are the form 

𝑓(𝜂, 𝑧, 𝑠). First we invert the Hankel transform, which give the Laplace transform expression 

𝑓(̅𝑟, 𝑧, 𝑠) of the function 𝑓(𝑟, 𝑧, 𝑡) as 

𝑓(̅𝑟, 𝑧, 𝑠) = ∫ 𝜂 𝑓(𝜂, 𝑧, 𝑠)𝐽𝑛(𝜂𝑟)𝑑𝜂
∞

0
, (54) 

240



 

 

 

 

 

 

Axisymmetric deformation of thick circular plate in microelongated thermoelastic solid 

 

Fig. 2 Variations of displacement 𝑢𝑟 

 

 

Now for fixed values of  𝜂, r, z, the function 𝑓̅(𝑟, 𝑧, 𝑠) in (54) can be considered as the Laplace  

transform of 𝑓(𝑟, 𝑧, 𝑡). Following Hoing and Hirdes (1984), the Laplace transformed function 

𝑓(̅𝑟, 𝑧, 𝑠) can be inverted as given below 

𝑓(𝑟, 𝑧, 𝑡) =
1

2𝜋
∫ . 𝑓̅(𝑟, 𝑧, 𝑠)𝑒𝑠𝑡𝑑𝑠

𝑐+ i ∞.

𝑐− i ∞
, (55) 

where 𝑐 is an arbitrary real number greater than all real parts of the singularities of 𝑓(̅𝑟, 𝑧, 𝑠), 

taking 𝑠 = 𝑐 + i 𝑦  

𝑓(𝑟, 𝑧, 𝑡) =
𝑒𝑐𝑡

2𝜋
∫ 𝑒𝑖𝑡𝑦𝑓(̅𝑟, 𝑧, 𝑐 + i 𝑦)𝑒𝑠𝑡𝑑𝑦

∞

−∞
. (56) 

The last step is to calculate the integral in Eq. (54). The method for calculate this integral is 

described by Press et al. (1986). It involves the use of Romberg’s integration with adaptive step 

size. This also uses the results from successive refinements of the extended trapezoidal rule 

followed by extrapolation of the results to the limit when the step size tends to zero. 

 

 

6. Numerical results and discussion 
 

Following Eringen (1984), we take the following values of relevant parameters for magnesium 

crystal like materials (microelongation elastic solid)  

𝜆 = 9.4 × 1010 Nm−2,   𝜇 = 4.0 × 1010 Nm−2, 𝜌 = 1.74 × 103 Kgm−3 , 
𝑗0 = 0.19 × 1019 Nm−2, 𝛼0 =  0.779 × 10−9 N, 𝜆0 =  0.5 × 1010 Nm−2, 

𝜆1 = 6.5 × 10 Nm−2. 
The values of thermal parameters are given by Dhaliwal and Singh (1980) as 

𝐾1
∗ = 1.7 × 106 Jm−1s−1K−1, 𝐶∗ = 1.04 × 103 JKg−1K−1, 𝛼𝑡 = 2.33 × 10−5 K−1, 

𝜏0 = 6.131 × 10−13 sec, 𝜏1 = 8.765 × 10−13 sec, 
𝑚 = 1.13849 × 1010 N/m2, 𝑇0 = 0.298 × 103 K. 

The variations of displacements, normal stress, tangential stress and temperature distribution 

with distance 𝑟 have been presented in case of microelongated thermoelastic medium (MTM) and  
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Fig. 3 Variations of normal displacement 𝑢𝑧 

 

 

Fig. 4 Variations of normal stress 𝑡𝑧𝑧 

 

 

thermoelastic medium (TM) in Figs. 1-5 respectively. In these figures, MTM and TM 

corresponding to solid line (——), small dash line (- - - - -) respectively. 

Fig. 2 indicates that the value of 𝑢𝑟 oscillates for 1 ≤ 𝑟 ≤ 4.5 and increases for 4.5 ≤ 𝑟 ≤ 8 

for MTM and the value for TM oscillates with different amplitude for 1 ≤ 𝑟 ≤ 8. The value of 𝑢𝑟 

is minimum for 1 ≤ 𝑟 ≤ 1.2, 6.4 ≤ 𝑟 ≤ 8 and maximum for 1.2 ≤ 𝑟 ≤ 6.4 for TM in comparison 

to MTM. 

Fig. 3 illustrates that the value of 𝑢𝑧 decreases for 1 ≤ 𝑟 ≤ 5.5, increases for 5.5 ≤ 𝑟 ≤ 8 for 

MTM whereas its value for TM increases for 1 ≤ 𝑟 ≤ 3,  decreases for 3 ≤ 𝑟 ≤ 4.5  and then 

oscillates with large amplitude. The value of 𝑢𝑧 is large for 1 ≤ 𝑟 ≤ 2 and small for 2 ≤ 𝑟 ≤ 8 for 

MTM as compared to TM. 

Fig. 4 shows that the values of 𝑡𝑧𝑧 initially increases for MTM and TM for the ranges 1 ≤ 𝑟 ≤
2.5 and 1 ≤ 𝑟 ≤ 3 respectively. The value of 𝑡𝑧𝑧 for MTM and TM decreases for 2.5 ≤ 𝑟 ≤ 6.5 

and 3 ≤ 𝑟 ≤ 6.5 and again increases for 6.5 ≤ 𝑟 ≤ 8. The value of 𝑡𝑧𝑧 is large for MTM for 1 ≤ 
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Axisymmetric deformation of thick circular plate in microelongated thermoelastic solid 

 

Fig. 5 Variations of tangential stress 𝑡𝑧𝑟 

 

 

Fig. 6 Variations of temperature distribution 𝑇 

 

 

𝑟 ≤ 2.3 and small for 2.3 ≤ 𝑟 ≤ 8 as compared to the value for TM. A similar trend of variation is 

noticed for the entire range for MTM and TM. 

Fig. 5 shows that the value of tangential stress 𝑡𝑧𝑟 for MTM oscillates for 1 ≤ 𝑟 ≤ 6 and then 

decreases for 6 ≤ 𝑟 ≤ 8. An oscillatory behaviour is noticed for 𝑡𝑧𝑟 with different amplitude over 

the whole range 1 ≤ 𝑟 ≤ 8 for TM. The value for 𝑡𝑧𝑟 is large near the application of the source 

and small away from the source for MTM in comparison to TM. 

Fig. 6 exhibits that the value of 𝑇 decreases for 1 ≤ 𝑟 ≤ 3, increases for 3 ≤ 𝑟 ≤ 7 and then 

again decreases for 7 ≤ 𝑟 ≤ 8  for MTM and TM. The value of 𝑇  for TM is maximum as 

compared to the value for MTM near the application of the source and away from the source. 𝑇 

has maximum value for 1 ≤ 𝑟 ≤ 1.7, 4.6 ≤ 𝑟 ≤ 8 and minimum value for 1.7 ≤ 𝑟 ≤ 4.6 for TM 

as compared to the value for MTM. 
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7. Conclusions 
 

An axisymmetric problem in microelongated thermoelastic thick circular plate is examined due 

to thermomechanical sources. The governing equations are mode dimensionless for two-

dimensional case. Laplace and Hankel transforms followed by eigen value approach has been 

employed to solve the problem with suitable boundary conditions. The physical quantities like 

displacements, stresses, microelongated, temperature distribution are obtained. From the above 

numerical values following conclusion are made. 

It is observed that the values of all the physical quantities are close to each other for a particular 

inclination of the source. It is observed that the variations and behaviour of normal stress and 

temperature distribution are similar for MTM and TM except near the application of the source 

where the temperature distribution has slightly different behaviour. An oscillatory behaviour is 

observed for tangential stress and radial displacement for thermoelastic medium. The effect of 

microelongation plays an important role in processing and characterization to improve material 

properties. The measured displacements and stress provide unique informations leading to 

fundamental understanding of deformation mechanism in advanced structural materials. 
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