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Minimum area for circular isolated footings with eccentric
column taking into account that the surface in contact with
the ground works partially in compression
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Abstract. This study aims to develop a new model to obtain the minimum area in circular isolated footings with
eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a
part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The
new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration
to obtain the axial load “/’, moment around the X axis “M,” and moment around the Y axis “M,” in function of oimax
(available allowable soil pressure) R (radius of the circular footing), o (angle of inclination where the resultant
moment appears), yo (distance from the center of the footing to the neutral axis measured on the axis where the
resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to
obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing
under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the
ground works completely in compression. Three numerical problems are given to determine the lowest area for
circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the
direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the
direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in
Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular
footings will be of great help to engineers when the column is located on the center or edge of the footing.
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1. Introduction

The main element of a building is the foundation and its essential function is the transmission
of loads supported by the structure to the subsoil.

The reinforced concrete foundations can be classified according to their function as: isolated
footings that support a column and can be circular, square and rectangular in shape, combined
footings that support two or more columns and can be rectangular, trapezoidal, strap, L (Corner)
and T in shape, strap footings are two or more isolated footings joined by a beam, raft or mat
foundation that support an entire building and can be circular, square, rectangular, trapezoidal, L
(Corner) and T in shape.

The main contributions on the bearing capacity of the soil, soil-structure interaction,
experimental tests for footings and settlement behavior in foundations under biaxial bending have
been presented by several researchers (Ramu and Madhav 2010, Lee ef al. 2015, Kaur and Kumar
2016, Dagdeviren 2016, Hadzalic et al. 2018a, b, ¢, 2020, Turedi ef al. 2019, Golewski 2019, Luat
et al. 2020, Ibrahimbegovic et al. 2021).

The strong interest in foundation design has been stimulated by the quick development of the
mathematical models in the recent decades. The mathematical models for the design or contact
area with the ground have been presented for isolated footings under biaxial bending assuming that
the contact area of the footing with the soil works entirely under compression (Agrawal and Hora
2012, Al-Ansari 2013, 2014, Alijani and Bidgoli 2018, Alazwari et al. 2021, Anil et al. 2017,
Basudhar et al. 2012, Gor 2022, Himeur et al. 2022, Jelusic and Zlender 2018, Khajehzadeh et al.
2014, 2017a, Lezgy-Nazargah et al. 2022, Malapur et al/, 2018, Luévanos-Rojas 2014a, b, 2015a,
2016a, 2023a, Rad 2012, Rawat and Mittal 2018, Lopez-Chavarria et al. 2017a, b, 2019). The
mathematical models for the design or contact area with the ground have been developed for
combined footings under biaxial bending in each column assuming that the contact area of the
footing with the soil works entirely under compression (Luévanos-Rojas 2015b, 2016b, 2023b,
Mohebkhah 2017, Luévanos-Rojas et al. 2017b, 2018a, b, 2020, Rizwan et al. 2012, Velazquez-
Santillan et al. 2018, Aguilera-Mancilla et al. 2019, Yaiiez-Palafox et al. 2019, Pasillas-Orona et
al. 2020, Garcia-Galvan et al. 2022a, b, Rivera-Mendoza et al. 2022, Garay-Gallegos et al. 2022,
Moreno-Hernandez et al. 2022, Garcia-Graciano et al. 2022). The mathematical models for the
contact area with the ground have been investigated for some footings under biaxial bending
assuming that the contact area of the footing with the soil works partiality under compression as:
circular isolated footings (Soto-Garcia et al. 2022), rectangular isolated footings (Vela-Moreno et
al. 2022) and rectangular combined footings (Montes-Paramo et al. 2023). The mathematical
models for the complete design for some footings under biaxial bending assuming that the contact
area of the footing with the soil works partiality under compression as: circular isolated footings
(Kim-Sanchez et al. 2022), rectangular isolated footings (Luévanos-Rojas 2023c).

The current documents closest to the topic addressed here are: The current papers on isolated
footings that show the minimum contact area with the ground that work partially in compression
for circular isolated footings (Soto-Garcia et al. 2022) and rectangular isolated footings (Vela-
Moreno et al. 2022), these works are presented only for columns located in the center of the
footing. The current study with eccentric column that shows the minimum cost design for
rectangular isolated footings proposed by Luévanos-Rojas (2023a), but this work presents the area
in contact with the ground working completely under compression.

This paper presents a new model to obtain the minimum area for circular isolated footings with
eccentric column taking into account that the surface in contact with the ground works partially in
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(a) Load and real moments “P”, “M,” and “M,” (b) Load and resultant moments “P”” and “Mpzr”

Fig. 1 Circular isolated footing with an eccentric column

compression, i.e., a part of the contact area of the footing is subject to compression and the other
there is no pressure (pressure zero). The methodology is developed by integration to obtain the
axial load “P”, moment around the X axis “M,” and moment around the Y axis “M,” in function of
omax (available allowable soil pressure) R (radius of the circular footing), o (angle of inclination
with respect to the Y axis where the resultant moment appears), yy (distance from the center of the
footing to the neutral axis measured on the axis where the resultant moment appears). Three
numerical problems are given to determine the lowest area for circular footings under biaxial
bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X
axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the
direction of the Y axis to 1.50 m. Also, a comparison is made between the current model and the
new model to observe the differences.

2. Methodology
Fig. 1 presents a circular footing with an eccentric column subjected to an axial load “P” and

two moments “My and My” in orthogonal directions (biaxial bending).
The total resultant moment can be obtained as follows

2 2
Mar = (M, + Pyrc)’ + (M, + Pxy.) (M)
The inclination angle “a” with respect to the Y axis is obtained as follows

My + PxfC)

2

a = arc tan<

Fig. 2 shows the resulting complete eccentricity diagram across the entire circular footing base.
The general biaxial bending equation is

_ P My | Myrx
AT I,

(2

)
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Fig. 2 Eccentricity diagram of a circular isolated footing

where: o=pressure exerted by the ground on the base of the footing (kN/m?), P=axial load (kN),
A=ground contact area at the bottom of the footing (m?), Mxr=total moment on the X axis (kN-m),
Myr=total moment on the Y axis (kN-m), l,=moment of inertia on the X axis (m?), l,=moment of
inertia on the Y axis (m*), x=coordinate in the X direction of the base (m), y=coordinate in the Y
direction of the base (m).

Substituting A=7zR?, 1=7R%4 and Eq. (1) into Eq. (3), the maximum pressure “cy” and
minimum pressure “op” of the circular footing is obtained

P 4'\/(Mx + nyc)z + (My + P.Xfc)z (4)

% = IR? + R3
p 4 J (My + Pyse)” + (M, + Pxs.)’ )

% = TRZ mR3

where: R is the radius of the circular base.
2.1 Case |: Area works completely under compression

Fig. 3 presents a circular footing supported on elastic soils with an eccentric column under
biaxial bending, assuming that the surface in contact with the ground works completely in
compression and the distribution of the ground pressure is linear.

2.2 Case IlI: Area works partially under compression

Fig. 4 presents a circular footing supported on elastic soils with an eccentric column under
biaxial bending, assuming that the surface in contact with the ground works partially in
compression and the distribution of the ground pressure is linear.

The general equation of a plane in 3-D of the soil pressure on the footing is

Ayx + Ayy + Az0, + Ay = 0 (6)
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Fig. 4 Circular isolated footing works partially in compression

The three known points of the plane in 3D are (see Fig. 5)

P;(R sina,Rcosa,amaX),PZ(yO sina —+/R? —yy?cosa,y, cosa +
VR? — yo? sina,O),P3(yo sina + /R? — yy? cosa,y, cosa —/R? — y,? sina,O)

The coordinates of any point in the 3D plane are: Pg (x, y, 0z).
The general equation in the plane by determinant is obtained

(7
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e Gmax

7

Fig. 5 Coordinates of the three known points of the plane in 3D

x —Rsina y—Rcosa 0, — Omax
Yosina —/R? —ys2cosa —Rsina  yycosa ++R%—yy2sina —Rcosa 0 — 0pnax| (8)
yosina +R? —yy,?2cosa —Rsina yycosa —+/R?> —y,2sina —Rcosa 0 — opax

Solving the determinant and simplifying to obtain o. as a function of the coordinates (x, y), R, yo
and a is obtained

Omax(x sina + y cos a —y,)
g, =
“ (R — yo0)

The equation of the neutral axis (straight line), where the pressure is zero through Eq. (9) is
obtained

©

xsina+ycosa—y, =0 (10)

The general equations of the axial load “P”, the two moments on the X and Y axes “M,” and

“M,” are obtained as follows
VRZ—x2
f J;/o xsing o,dydx (11)

cosa

OmaxR[2R?(cos a)? — 3m|R|y, cos a + 6y,% + 2R?]

P= 6(R —yy) cosa (12)

VRZ—x2
M, f f o,ydydx (13)
Yo—

xsina
cosa
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Table 1 Circular isolated footing

Case Constraint functions
I Egs. (4) and (5), 04 < Omar, 0 < 0

_ OmaxR[8yoR? — 24R?y,(cos @) + 8y,® + 37|R|*(cos a)?]

M, = 14
x 24(R — yy)(cos a)? (14)
R VRZ—x?
M, = f J;lo_xsinaazydydx (15)
-R cosa
M = OmaxR3 sina [3m|R| cos a — 16y,] (16)

y o 24(R —yo) cos a

where: omax 1S the available allowable bearing capacity of the soil.
2.3 Minimum area for circular isolated footings

The objective function to obtain the minimum area “Ami” for both cases is
Amin = TR? (17)

Table 1 shows the constraint functions for the two cases.
Fig. 6 shows the flowchart using the Maple software to obtain the minimum area of a circular
isolated footing in case Il (Nonlinear optimization).

3. Numerical examples

Tables 2, 3 and 4 present the three cases to obtain the minimum area and the radius of the
circular isolated footings subjected to biaxial bending due to the column.

Table 2 shows the results of the example 1 (x=0 and yx=0) for three examples. Example 1.1:
P=300 kN, P,=200 kN, P=500 kN, M,p=60 kN-m, My =40 kN-m, M,=100 kN-m, Mxp=180 kN-
m, Myx=120 KN-m, M,=300 kN-m, Mr=316.23 kKN-m, «=0.3217 Rad. Example 1.2: Pp=300 kN,
P=200 kN, P=500 kN, Myp=60 kN-m, My =40 kKN-m, My=100 kKN-m, Mp=120 kKN-m, M, =80
KN-m, My=200 kKN-m, Mg=223.61 kN-m, ¢=0.4636 Rad. Example 1.3: Pp=300 kN, P =200 kN,
P=500 kN, Myp=60 kN-m, M, =40 kKN-m, My=100 kN-m, M;p=90 KN-m, M, =60 kN-m, M,=150
kKN-m, Mr=180.28 kN-m, ¢=0.5880 Rad.

Table 3 presents the results of the example 2 (xx=1.50 m and yx=0) for three examples.
Example 2.1: Pp=480 kN, P.=320 kN, P=800 kN, M,p=-480 KN-m, My =-320 kN-m, M,=-800 kN-
m, Mxp=300 kKN-m, My =200 kN-m, M,=500 kN-m, Mr=640.31 kN-m, 0=0.6747 Rad. Example
2.2: Pp=480 kN, P.=320 kN, P=800 kN, Myp=-420 kN-m, My =-280 kKN-m, My=-700 kN-m,
Mxp=300 KN-m, My =200 kN-m, M,;=500 kN-m, Mg=707.11 kKN-m, 0=0.7854 Rad. Example 2.3:
Pp=480 kN, P =320 kN, P=800 kN, Myp=-360 KN-m, My =-240 kKN-m, M,=-600 kN-m, Myp=300
KN-m, M, =200 KN-m, M,=500 kN-m, Mg=781.02 KN-m, 0=0.8761 Rad.
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Load the objective function 7R, constraint functions and the known parameters Gmav, @, X, ¥, P, Mx, My

Optimization

l Optimization assistant I

\2

Check the objective function and the constraint functions, if the equations are correctly written

v

| It is assumed that all variables are non-negative |

v

The instructions are:
Local default
Minimize
Optimality Tolerance: default
Interaction Limit: default
Infinite limit: default

v

Click on solve
y

Limit the decision | No ks o Yes End
variables R, yo e The solution is obtained? n

Fig. 6 Maple software flowchart for case II

Table 2 Example 1: x=0 and y;=0

_ Current Model New Model Proposed solution _— _—
Example \jp2) R R Yo R Yoo A (N/m?) (KN/m?)
(m) m m m (m ()
250 2.53 141 -051 145 -0.58 6.61  227.89 0
11 200 2.53 .51 -0.68 1.55 -0.73 755 186.27 0
150 2.53 1.67 -092 1.70 -0.97 9.08 142.58 0
100 2.53 193 -134 195 -136 1195 97.85 0
250 1.79 126 -0.76 130 -0.82 531  228.79 0
12 200 1.79 137 -093 140 -098 6.16 187.17 0
150 1.79 .52 -1.17 155 -122 755 143.22 0
100 1.79 1.79 -1.60 1.80 -1.62 10.18 97.97 0
250 1.44 1.18 -0.86 120 -0.89 452 241.68 0
13 200 1.44 129 -1.03 130 -1.05 5.31 195.67 0
150 1.45 144 -129 145 -130 6.6l 147.66 0
100 1.71 No solution  1.75 * 9.62 94.80 9.14

* The entire area of the footing is working in compression, where: ;... is the maximum pressure acting on
the footing, ouminpa is the minimum pressure acting on the footing.
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Table 3 Example 2: x=1.50 m and yx=0

Current Model New Model Proposed solution

Bxample (o) R R % R 0w gmey )
(m) m (m (m (m (m)
250 3.20 1.78 -0.59 1.80 -0.62 10.18 239.99 0
21 200 3.20 191 -079 195 -0.85 11.95 187.16 0
150 3.20 2,10 -1.08 215 -1.I5 1452 140.12 0
100 3.20 242 -158 245 -1.62 18.86 96.80 0
250 3.54 1.84 -045 1.85 -046 10.75 246.98 0
29 200 3.54 197 -064 200 -0.68 12.57 190.15 0
150 3.54 2,15 -092 220 -099 1521 140.68 0
100 3.54 246 -141 250 -147 19.63  95.80 0
250 3.91 192 -026 195 -030 11.95 239.55 0
23 200 3.91 2.04 -047 205 -048 1320 197.67 0
150 3.91 222 -076 225 -0.82 1590 142.68 0
100 3.91 251 -125 255 -129 2043  99.55 0

Table 4 presents the results of the example 3 (x¢=1.50 m and yx=1.50) for three examples.
Example 3.1: Pp=480 kN, P.=320 kN, P=800 kN, M,p=-480 KN-m, My =-320 kN-m, M,=-800 kN-
m, Myxp=300 kN-m, M, =200 KN-m, M;=500 kN-m, Mgr=1746.42 kN-m, ¢=0.2311 Rad. Example
3.2: Pp=480 kN, P =320 kN, P=800 kN, Myp=-420 kN-m, M, =-280 kN-m, My=-700 kN-m,
Mxp=300 kN-m, My =200 kN-m, M,=500 kN-m, Mgr=1772.00 KN-m, ¢=0.2861 Rad. Example 3.3:
Po=480 kN, P =320 kN, P=800 kN, Myp=-360 kN-m, My =-240 kN-m, My=-600 kN-m, M,p=300
KN-m, M, =200 KN-m, M,=500 kN-m, Mg=1802.78 kN-m, ¢=0.3393 Rad.

4. Results

The proposed model can be verified as follows:

1. Substituting Xx=R sin a and y=R cos «a into Eq. (9) is obtained 6;=0max.

2. Substituting x=y, sina — {/R? — y,? cosa and y=y, cosa + /R? — y,? sina into Eq. (9)
is obtained 4,=0.

3. Substituting x=y, sina + /R? — yy% cosa and y=y, cosa —/R? — y,? sina into Eq. (9)
is obtained ¢,=0.

Table 2 presents (Example 1: x=0 and yx=0) the following: When omax decreases, the value of
R is constant for the current model, and R and Yy, (absolute value) increase for the new model. This
happens for the first two examples. For the third example, the value of R is constant for omax=250
and 200 kN/m?, and for oma=150 and 100 kN/m? the value of R for the current model tends to
decrease, and the new model shows the same behavior as the first two examples, but for oma=100
kN/m? there is no solution.

Table 3 presents (Example 2: x::=1.50 m and y;=0) the following: When omax decreases, the
value of R is constant for the current model, and R and yo (absolute value) increase for the new
model. This happens for the three examples.



210 Inocencio Luévanos-Soto et al.

Table 4 Example 3: x¢=1.50 m and y%=1.50 m

- Current Model New Model Proposed solution o P
Example 4 m?) R R w R o Awn (Nm?) N/
(m) m @m @m @m @)
250 8.73 3.01 1.14 3.05 1.06 2922 229.27 0
31 200 8.73 311 093 315 087 31.17 187.68 0
150 8.73 329 0.65 330 0.63 3421 146.63 0
100 8.73 359 018 360 0.16 40.72 98.58 0
250 8.86 306 124 310 1.14 30.19 227.72 0
39 200 8.86 316  1.00 320 091 32.17 183.44 0
150 8.86 332 070 335 0.65 3526 142.73 0
100 8.86 362 022 365 0.17 4185 96.14 0
250 9.01 315 140 320 1.13  32.17 206.23 0
1.3 200 9.01 321 110 325 1.00 33.18 183.44 0
150 9.01 336 077 340 069 3632 140.69 0
100 9.01 365 028 370 020 43.01 94.48 0

Table 4 presents (Example 3: x=1.50 m and y:;=1.50 m) the following: When omax decreases,
the value of R is constant for the current model, and R increase and yo (absolute value) decreases
for the new model. This happens for the three examples.

Fig. 7 shows the comparison between the current model and the new model for R of example 1,
Fig. 8 presents the comparison between the current model and the new model for R of example 2,
and Fig. 9 shows the comparison between the current model and the new model for R of example
3.

Fig. 7 shows the following results (Example 1): The smaller radius appears in the new model
with respect to the current model in all examples, except in example 1.3 at omax=150 KN/m? it is
equal and at omax=100 kN/m? the current model is smaller because the new model has no solution.
The largest difference is 1.79 times the current model than the new model in example 1.1 in
omax=250 KN/m?,

Fig. 8 shows the following results (Example 2): The smaller radius appears in the new model
with respect to the current model in all examples. The largest difference is 2.04 times the current
model than the new model in example 2.3 in omax=250 KN/m?.

Fig. 9 shows the following results (Example 3): The smaller radius appears in the new model
with respect to the current model in all examples. The largest difference is 2.90 times the current
model than the new model in example 3.1 in omx=250 KN/m?.

5. Conclusions

This study aims is present a new model to obtain the minimum area in circular isolated footings
with eccentric column taking into account that the surface in contact with the ground works
partially in compression, i.e., a part of the contact area of the footing is subject to compression and
the other there is no pressure (pressure zero).
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Fig. 7 Example 1

211

This research shows the minimum area for circular isolated footings under biaxial bending.
Assuming that the footing is rigid, the column is eccentrically placed, supported on elastic soils,

and the pressure diagram is linear.
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Fig. 8 Example 2

The current model is presented as follows: the independent variables (known data) are omax, X,
Ve, P, M, and M,, and the dependent variables are Amin, R, 01 and o2 (data to obtain).
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Fig. 9 Example 3

The new model is developed as follows: the independent variables (known data) are omax, X,
Ve, P, M, and M,, and the dependent variables are Amin, R, yo and a (data to obtain).
The contributions of this paper are:
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1) The normal practice in structural engineering is to use the trial and error procedure to obtain
the radius and area of the circular footing.

2) Other engineers determine the radius and area of circular footing under biaxial bending
supported on elastic soils, but considering a non-eccentric column.

3) This methodology can be used to verify of the allowable load capacity of the soil,
considering the objective function “omax”’, and the same constraint functions.

4) The new model shows a great saving compared to the current model of 44.27% in Example 1
(see Fig. 7), 50.90% in Example 2(see Fig. 8) and 65.04% in Example 3 (see Fig. 9).

Suggestions for future research may be:

1.- Minimum cost design for circular isolated footings with eccentric column taking into
account that the surface in contact with the ground works partially in compression.

2.- Minimum area for rectangular isolated footings with eccentric column taking into account
that the surface in contact with the ground works partially in compression.

3.- Minimum cost design for rectangular isolated footings with eccentric column taking into
account that the surface in contact with the ground works partially in compression.
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