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Abstract. Macro periodic composite structures are often represented by large-scale finite element (FE) models, so
conventional FE methods and component mode synthesis (CMS) techniques are inadequate for assessing the dynamics
of these structures in a reasonable amount of time. This study proposes the improved reduction system (IRS) combined
with a substructuring scheme for modal analysis of periodic composite structures; and compares it with the
homogenization method. Model reduction and homogenization are performed utilizing in-house code and ANSYS®,
respectively. In IRS-based substructuring, the macrostructure is subdivided into identical substructures, then a single
representative volume element (RVE) is taken and reduced. The reduced substructures are assembled into a
macrostructure with fewer degrees of freedom (DOFs), resulting in an accurate and efficient result with a small
memory footprint. According to our findings, the proposed method provides accurate results independent of the
number of substructures contained within the macrostructure, whereas the homogenization method relies on the
number of substructures present.
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1. Introduction

Periodic structures are made up of repetitive unit cells arranged in a continuous form. They are
designed for aesthetics, manufacturing, and functionality and have various applications in modern
structures, including additive manufacturing and lattice structures. To achieve multi-functionality,
they can be extended to functionally graded structures. Periodic composite materials are made by
layering or otherwise integrating two or more different kinds of materials to form a new material
with a distinct set of properties. As a result, they combine the most desirable properties of their
component materials resulting in a product that is both light and strong (Benjeddou and Guerich
2019, Antony et al. 2019, Rachedi et al. 2020, Sayyad and Ghugal 2020, Pourmoayed et al. 2021).
In finite element analysis, modeling composite materials often involve performing experimental
tests to determine the exact material properties. These tests can be time and resource-consuming.
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Composite structures are also difficult to simulate numerically due to the different length scales
involved. Benjeddou and Guerich (2019) proposed a FE approach for free vibration analysis of
aircraft and spacecraft hexagonal honeycomb sandwich panels, and they pointed out that detailed
FE approaches for simulating honeycomb sandwich structures had rarely been investigated because
the computational effort associated with them rapidly increases as the number of core cells increases.
There are times when the composite structure is too long in comparison to the component materials.
Even though the structural mechanics of these systems can be computed using the finite element
method (resolving all length scales), it is not practical because the number of elements required
would be astronomically large. As a result, analysis methods have attempted to approximate
composites’ mechanical behavior through analyzing a representative volume element (RVE) of the
composite microstructure. Hill (1963) introduced the term RVE in 1963, noting that the RVE was
structurally typical of composite materials and contained enough inclusions to ensure the apparent
moduli were independent of RVE boundary displacements. Additionally, Hashin (1983)
demonstrated that stress and strain fields in the RVE are homogeneous when homogeneous
boundary conditions are given except for a layer near the external surface (Hollister and Kikuchi
1992).

The RVE method separates the analysis of composite materials into local and global analyses.
Using the local level analysis, the microstructural details are modeled to determine effective elastic
properties. In addition, the relationship between the local strain within the RVE and the effective or
average RVE strain is calculated. The composite structure is then replaced with an equivalent
homogeneous material with the calculated effective properties. In the global level analysis, the
effective stress and strain are calculated within the homogeneous equivalent structure. The process
of computing effective properties has been termed “homogenization” by Suquet (1987). Using
homogenized material data structures only need to be simulated at the macroscopic level, making
composite simulation significantly less computationally expensive. It is possible to obtain estimates
of local stresses and strains by using the relationship between the average and local strain from the
local analysis, and this procedure is called “localization” (Suquet 1987) or dehomogenization
(Hollister and Kikuchi 1992).

As structures and mechanical systems become complex, they require sophisticated simulation
techniques for design, control, and optimization. In finite element analysis (FEA), the computational
effort is approximately proportional to the cubic of the problem size (Qu 2004); if the problem size
is reduced, the computational work could be reduced significantly. Thus, several techniques have
been proposed to reduce the size of large models before they are analyzed in detail. Examples include
component mode synthesis, dynamic condensation, dynamic substructuring, and the Ritz vector
approach. Through the application of a model reduction technique, the size of a full mode can be
significantly reduced. However, the reduced model does not retain all features of the full model
because of the truncated errors. Even though most reduction techniques aim to keep the key features
within a certain frequency range, this may not be exactly the case. Consequently, there exists a trade-
off between model size and accuracy. Model reduction is all about trying to get the smallest model
that contains the most information out of the full model.

Dynamic condensation was proposed in 1965 as an efficient method for model reduction.
According to this technique, there are master and slave degrees of freedom for a given value of the
system’s degrees of freedom. As a result, the dynamic condensation matrix defines the relationship
between the responses or mode shapes between the master and slave degrees of freedom. Through
dynamic condensation, the system matrices of a full model can be reduced to the dimensions of just
the master degrees of freedom. Unlike other model reduction techniques, the reduced model from
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dynamic condensation is defined in a subspace of the full displacement space and each coordinate
has its physical meaning.

Dynamic substructuring (DS) is the decomposition of a complex dynamic system into smaller
parts called substructure (Klerk et al. 2008). DS is best understood as a framework for synthesizing
components rather than a method of its own (Seijs 2016). Often, the idea is related to the
mathematical concept of domain decomposition by Schwarz (Schwarz 1890) or the ancient principle
of “divide and conquer”. DS was first introduced in the 1960s to solve large FEM models that were
not manageable with computing resources available at that time. It is possible to solve smaller
substructures individually and synthesize them by satisfying coordinate compatibility and force
equilibrium at the substructure’s interface (Craig Jr. and Bampton 1968, Hurty 1960, Rixen 2004).

As micromechanical FEA is increasingly used for the characterization of modern composite
materials with sophisticated microstructures (Li 2008, Li et al. 2015), this study presents an
improved reduced system (IRS) method (O’Callahan 1989) for vibration analysis of periodic
composite structures. The proposed method has the following merits: first, it applies the IRS method,
which diminishes the eigenvalue error reduction significantly by accounting for the effect of inertia
terms of the slave DOFs. Second, it employs a substructuring scheme, which requires less computing
time and memory usage for the construction of the reduced system, even when the problem has a
large number of degrees of freedom.

The paper is organized as follows: Section 2 presents an overview of the homogenization theory.
Section 3 discusses model order reduction and substructuring for periodic structures in detail.
Section 4 describes the computational procedure for the proposed method, and Section 5 presents a
numerical example and compares the modal analysis results of the proposed and homogenization
methods.

2. Review of homogenization theory

Based on the details presented by Bendsge and Kikuchi (1988), Guedes and Kikuchi (1990), and
Cho et al. (2011), this section discusses the basic formulation of the homogenization method.
According to homogenization theory, it is generally assumed that composite material is locally
formed by repeated discrete microstructures, such as ‘microscopic’ cells, compared to the overall
size of the structure of interest on a macroscopic scale. Accordingly, the microscopic variable is
assumed to determine material properties periodically, where the period is smaller than the
macroscopic variable. Based on this assumption, equivalent material properties can be determined
by reducing microscopic cell sizes to zero (Guedes and Kikuchi 1990). The overall macroscopic
domain in composites with size-dependent elastic moduli is composed of microscopic periodic base
cells, as shown in Fig. 1. Macroscopically, V¢ is the matrix domain. The boundary, S°, is divided
into two parts; traction S and displacement S3.

SY and S? are stipulated as follows

u=uonsS), t=tons (1)

Along with the macroscopic domain boundary S", the effective interface boundaries can be
defined as S™. The formulation assumes no external force acts on the boundary, S"™. Due to the
heterogeneity that repeats within the macroscopic domain, it makes sense to separate the
microscopic behavior of composites from the macroscopic behavior when subjected to external
loads and prescribed displacements. Hence, the macroscopic and microscopic coordinate systems,
X and y, respectively, can be defined as follows
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Fig. 1 Micro and macro structures of periodic composite in domain V¢, with traction and displacement
boundary conditions, indicated by S° and S9, respectively
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where ¢ describes the ratio of macro to microscale as a non-dimensional parameter, which is given
as
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The virtual work can be expressed as a strong form of the real displacement field, u, and the
virtual displacement, v, as shown in Eq. (4) when a body force, b, is applied to the matrix domain
and traction, t, on the boundary, S7.

b-vdVX+f t- vdSy 4)

53

f VX u: C: VdeVX = f
Ve Ve

where C is the fourth-order stiffness tensor (C;j;). A macroscale, as well as microscale behavior,
can be described using Eqg. (5), which expresses the displacement field, u, as an asymptotic form of
the parameter, «.

u(X) =u’(x,y) + eul(x,y) + £2u?(x,y) + - (5)

Since the virtual displacement, v, is an arbitrary function that can be defined as a function of x
and y as follows

v(X) =v(x,y) (6)
Using partial derivatives of the displacement fields based on the two coordinate systems, Egs.
(5)-(6) can be written as

pxy) dop 1y _
o "ok Tiay Y& =uEyorvy) )

If ¢ is sufficiently small (¢ — 0), then the volume and surface integral of a function, ®(X), in
the macroscopic domain, X, can be transformed as follows
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where volumes V and V¢ represent the homogenized macroscopic and unit cell domains,
respectively. Egs. (9)-(11) are obtained by introducing Eq. (5) into Eq. (4), applying Egs. (7)-(8),
and arranging the terms referring to «.

0 (é) :.[V vol(lvc)

0 G) :.[V Vol(lVC)

1 0 1 1 2
(1): m _C(qu +V,u'):C:V,0 + (Vu! + V,u?): C: Vv
14 y Vy

d(x,y)e? dSy] dV;,

dv, = 0 9)

f Vyu CVyUdV
VC

dy, dv; = 0 (10)

f Vyu’: C: Vv + (V,u® + V,ut): C: Vv

dv, dv

(11)
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174 VOl(V ) VC S0

Sequentially solving Egs. (9)-(11) yields the displacement field, u(x,y). Applying the
divergence theorem and accounting for v(x,y) is arbitrary, u®(x,y) is obtained from Eq. (9) as a
function of x.

w(xy) =u’(x) (12)

To find the differential equations stated below, first, we incorporate Eq. (12) into Eg. (10) and
then assume that the virtual displacement represents an arbitrary function of y, viz., v(y), and
finally apply the divergence theorem to Eq. (10).

-V, - [C:Vyul] = -V, - [C:V,u’] (13)

n - [C: (Vyul)] = —n - [C: (V,u")] (14)

Based on Egs. (13)-(14), the displacement field, u'(x,y), is correlated with the displacement
field, u®(x), as follows

ul(x,y) = —x(x,y): V,u’ (x) or (u} = —xijf) (15)
where x(x,y) is a third-order tensor describing the behavior of the base cell. The weak form of
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Egs. (13)-(14) related to the third-order tensor, x(x,y), can be obtained by inserting Eq. (15) into
Egs. (13)-(14), and recalling that V,u®(x) is a function of x.

f_c Vyu(y): C:Vyxdl, = f_c V,u(y): CdY, (16)
Vy Vy

To obtain the homogenized elastic modulus with the singular perturbation method, we must then

take Eg. (11) and calculate the macroscopic equilibrium condition. Selecting the virtual

displacement based on, x, viz., v(y), we can obtain

1
V,u® +v,ul):C:dy,
_[V vol (1) Uv_yc( »u’ +Vyut) y

1 _
- bdV,) - v(x)dV; -vdS
jv vol(vyc)j@( ) v X+f50t Vo

By substituting Eq. (15) for ul(x,y), we obtain the macroscopic equilibrium equation
containing the homogenized elastic modulus tensor as

V,udV,

(17

[ v vt v = [ w00 -Eas, (18)
174 Y

where Cy is the homogenized fourth-order elastic stiffness tensor and is given by

1
C =—f C-C:V,x)dV 19
H VO](VyC) E( yX) y ( )
Eq. (16) should be numerically solved to obtain the tensor, x(x,y), to calculate the homogenized
elastic stiffness.

3. Model order reduction and substructuring
3.1 Model order reduction-General concepts

The Finite Element Method (FEM) is a common spatial discretization method when it comes to
mechanical multi-degree-of-freedom (multi-DOF) systems. An n — DOFs system’s dynamic
equilibrium can be expressed in matrix form as

Mix(t) + Cx(t) + Kx(t) = F(t) (20)

where M, C,K € R™" represent the linearized system matrices for mass, damping, and stiffness,
respectively. x € R™1 is the set of displacements for all n degrees of freedom and F(t) € R™*!
is the load vector.

Physical displacements in the time domain (discretized at nodes) are expressed by the unknown
x in Eq. (20). As a general principle, model reduction consists of finding a low dimension subspace
T € R™™ with m « n to approximate the state vector x, i.e., x = Txg + &. A linear 2nd-order
ODE of lower dimension can be derived by projecting Eq. (20) on that subspace.

MgiXg(t) + Crig(t) + Krxg(t) = Fg (21)
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where Mg = TTMT, Cg = TTCT, Kgr = T'KT are the reduced system matrices with
dimension R™™ and Fg = TTF is the reduced load vector of dimension R™*! . The
effectiveness and reliability of the reduction depend on the size of &. Over the past decades, various
techniques have been developed that have some characteristics in common depending on the choice
of T (Benner 2006, Koutsovasilis and Beitelschmidt 2008).

Some of the model order reduction techniques include Guyan-Irons reduction (Guyan 1965, Irons
1965), dynamic reduction (Miller 1980), improved reduction system (IRS), and its iterative variant
(O’Callahan 1989, Blair et al. 1991, Friswell et al. 1995), component mode synthesis (CMS) (Craig
Jr. and Bampton 1968, C. Hurty 1960), and system equivalent expansion and reduction process
(SEREP) (O’Callahan et al. 1988, Kammer 1987). The Guyan-lrons reduction and IRS method are
discussed in this paper, but first, we need to partition the system matrices in Eq. (20) into sub-blocks,
as master/external (m) and slave/internal (s) DOFs

Mx(t) + Cx(t) + K¥(t) = F

7= ([[]]r:;n [[]]r::)’ [1={M,CK}

=G F=(%)

mUs=n n=D0Fy,y, mnNs=0

(22)

3.1.1 Guyan-Irons reduction

Guyan (1965) and Irons (1965) proposed a common method of finding a reasonably accurate
representation space, T. The internal DOFs are assumed to be force-free, i.e., F; = 0, and assuming
undamped system Eq. (22) is solved for x,. The transformation matrix for the static reduction, Eq.
(25), is obtained by omitting the equivalent inertia terms in Eq. (24). In this case, T; represents the
low dimension subspace.

Xs = _Ks_sl (Mg Xy + MsXs + Ko X)) (23)
Mg ¥m + Mgdis = 0 (24)
Xm\ _ I _
R (—K;lesm) Xy, = Ty X, (25)
I
=) .
G _Kslesm ( )

Using T the reduced stiffness and mass matrices become
K¢ = TEKTG = Kpmm — KmsKs_lesm

- - - - (27)
Mg = TgMTG = My — MmsKslesm - KmsKsslMsm + KmsKsslMssKslesm

In general, Guyan-Irons reduction provides a good approximation for smaller eigenvalues and
eigenvectors. For high-frequency motion, however, Inertia terms become significant, which makes
this method inaccurate.
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3.1.2 Improved Reduction System (IRS) method

The IRS method is what O’Callaghan (1989) proposed as a modified method. By taking inertia
terms into account as pseudo-static forces, the IRS perturbs the static transformation. The free
vibration of the undamped reduced system, Eqg. (21), gives

MgpX, + Kpx, = 0 = X, = —Mg'Kpx,, (28)

where Kg and Mg are reduced stiffness and mass matrices obtained from Guyan-Irons reduction,
and we can replace them with K¢ and Mg, respectively. By differentiating Eq. (25)

X5 = _Ks_lesmjzm (29)
By substituting Eq. (28) into Eq. (29), we get Eg. (30).

Xg = Ks_lesmM(ElKme (30)
Egs. (28)-(30) are substituted into Eq. (23), resulting in the IRS transformation matrix as follows
xs = [~ K551K5m+K SM(;lKG] (31)

S = Mg, — MssKs_lesm
Xm\ (0 0 (32)

()= Tasxnp = (5 ()

Tirs = Tg + PMT; Mg 1K (33)

T;rs is dependent on the reduced stiffness and mass matrices obtained from the static reduction.
The reduced stiffness and mass matrices of the IRS method are given as follows
Kirs = TrsKTirs = Kinm + KinsTirs + TirsKem + TirsKssTirs

(34)
Migs = TrsMTirs = My + My Tigs + TisM + TlrsMgsTigs

3.2 Substructuring using the IRS method

Substructuring requires splitting up the whole structure into smaller pieces. Based on the paper
by Choi et al. (2008), we present the derivation of the basic substructuring reduction procedure using
the IRS method. Assuming an undamped system, the eigenvalue problem of Eqg. (20) is

K® = MdA (35)

where @ represents the vibrating mode (eigenvector), corresponding to eigenvalue A.

To develop the basic substructuring formulation, the entire system is divided into two
substructures, in which the system matrices are constructed independently. In the case of
substructure one, the eigenvalue problem can be expressed as follows

KD K[ M M) o)
KD gD ~ MY e (362)
ms ms
As for substructure two, the eigenvalue problem can be described separately as follows

K2 K@ M@ M@
K@ g® ¢(2> M@ M@ ¢(2) (36b)
sm
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A global system can be constructed by combining stiffness matrices and mass matrices, as shown
in Eqg. (37).

1 1 1 1
Ky K o] MF M) e
KO Kpm KE|[[®Prm| = [ME M, MG || P | A (37)
2 2
kK2 k@] oo M2 M@|| oo

where K, = ngn + KE,ZLBn and M, = Mf,fzn + Mfﬁ}n include degrees of freedom at the
interface between the substructures. Since each substructure must be free of the slave degrees of
freedom, the first and third rows of Eq. (37) become
1 1 1 1 1 1
KDL+ K@ = P + MO @) -
2 2 2 2 2 2
K.(err)Ld)mm + Kgs) (Ds(nz = (Mgrraq)mm + Mgs)(bs(nz)Amm

The transformation relation between the master and slave DOFs can be found by rearranging Eqg.
(38) for the slave DOFs as follows
1 -1 -1 1), (1
(D.grrz == (Kg)) Kgr)ld)mm + (Kg)) (Mgrrz(bmm + Mgs)q)s(ﬂbAmm
(39)
2 -1 1@ 2) 1 (2
(D.grrz == (Kg)) Kgr)ld)mm + (Kg)) (Mgrrz(bmm + Mgs)q)s(ﬂbAmm
Based on the definitions of the transformation matrices in each subsystem, the matrices are as
follows

1
q)s(nz = t(1) Dy

@ (40)
P, = t(2)(I)mm
Substituting Eq. (40) into Eqg. (39) and arranging the result
-1 -1
ty = —(KD) KGR+ (KY) (MG +MEPt0)) @pmdmm @ik "
41
-1 -1
tey = —(KD) KQ+ (D) (ME+MPte)) @pmdmm @it
Eqg. (41) can be rewritten as
1 1), m(1 N, a
t =T+ 147 TV = - (KE) K
-1
1 -
Tcg )= (Kg)) (M.E‘}Y?. + Mg)t(l)) (DmmAmmq)m}n (42)

-1
2 2 2
o =1 + 1% 10 = - (k) kY

-1
2 _
77 = (KS) (MR +MEPte)) Opmhmm @i

In the transformation matrices, T, and T, represent the static and dynamic terms, respectively.
Eq. (41) gives us two transformation matrices. These two transformation matrices allow us to reduce
the entire assembled system into a simplified one based on only master DOFs as
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1
> tw
Py | = |Imm | Pram = T®rmm (43)
o3| '@
where T is the transformation matrix between @,,,,,, and ®,, in the total system, whereas I is

the unit matrix of size m x m. The reduced system matrices can be obtained by substituting Eq.
(43) into Eq. (37) and premultiplying TT on the left.
1 1 1 2 2 2
Kg = t]K Pty + Koty + 5 Ko + K + th) Ko + Kt o) + th) K2t ) )
1 1 1 2 2 2
Mg = tly MGty + Moty + thMG) + My, + t MG + M2t o) + th M3t

Based on the equations above, the basic substructuring reduction procedure is derived. However,
the transformation matrix for each substructure is not defined entirely. Using Eq. (44), an
eigenproblem with m degrees of freedom can be constructed.

Kr®Pmm = Mp®mmAmm (45)
From Eq. (45), @5, Apmm®mm Can be expressed as
d);L}nAmm(Dmm = MlleR (46)
Eq. (46) is substituted into Eq. (41) to yield two transformation matrices.
D\ !, 1\t 1 1 -
ty = - (K&) KG+ (YY) (MG +MEPto) ) Mz'Kg
(47)
2\, 2 2\ ! 2 2 -
ty = — (k) KD+ (K2) 7 (S + M) MK
As the above equations are nonlinear, it is not easy to solve them directly, so they have to be
solved iteratively, and this leads to the iterative version of the improved reduction system. However,

we are interested in the standard IRS method, so we take the value of the Oth iteration (k=1). The
iterative forms of Eq. (47) for k=1, 2, 3..., are expressed as follows

() == (RE) R (R (M M) () e

@~ @®

1 1 1 (48)

k) _ @Y\ @ @Y (2 (2) ¢ (k-1) (k=1 (k-1)
t(z) - (Kss ) Ksm + (Kss ) (Msm + Mss t(2) ) (MR ) KR
Initial approximations of the transformation matrices can be calculated as follows

0 1 N\ ,a
=1 = - (k) K

(49)

0 2 2N\t
9= = - (k) kS

In these matrices, we exclude the dynamic part of Eq. (48), and they are used to construct Guyan
reduction matrices in the following manner
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1 1 0
T KO KR
— 1 2
Ko = [((2) Lum (£9)]|KD Kyum K2 [tnm
€y @)
@ @|t@
Kon Kss (2)

_ (t(m)T KOO | g1 0 o (t(o))T KD 4K, + (t(o))T K®

(€Y) ss H(1) ms*(1) (1) ) o
T
(2)4(0) (0 (2),.(0)
+ Kmst(z) + (t(z)) Kss t(2) -
Mo M® +© (50)
T ol sm @
= (0) 0) (D )

2 2
. Mg, Mg e .
0 1),(0 1),.(0 0 1 0 2
= (£9) MO + MO + (¢9) MG + My + (£3)) ME)

M ' & @
OROIAONITORO!
MG + () M)

Eqg. (50) explains that Guyan reduction matrices are calculated at the substructure level, and then
that we combine these reduced matrices to form one reduced system. K; and M, are the initial
reduced system matrices of an iterative dynamic condensation as

0 _

Ky =Kg -
0

M = M,

The initial transformation matrices for k=1 are obtained when Eq. (51) is substituted into Eq.
(48) and by using Eq. (49).

D) == (k) KR+ (k)7 (MG + MPe) (M) )

@~ ® (52)
1 D\ 2 2)\ ! 2 2),(0 0\ !0
(3= (K2) KRG+ (kD) (M2 + MDD) (M)
Using Eq. (52), the reduced system matrices for the Standard IRS method becomes
1 (1) (1
® T T K.(ss) Ksm t(1§
1) _ — 1 2
K = Kps = [(tgg) —_— 1KY K K2 [T
@ @] tW
T KsmT Kss 2 T
_ (+» CYMED) D4 (1) ® @™ ® @3]
- (t(l)) Kss t(1) + Kmst(l) + (t(l)) Ksm + Kmm + (t(z)) Ksm
@@ (O @@
R + (1)) Kt
® ® ® (53)
) T T Mss Msm t(1)
1) _ _ 1 2
MR = Mpgs = [(tgg) Lnm (tg%) ] M£n3 M:m M£n3 ITE";‘
2 2 1
MG MP][te)

DY (D1 1,1 D\ a1 D)7 (2
= (t3)) MED) + MGXD + (63) M) + My + (3)) ME

@) @
T
2 1 1 2 1
+ Mt + (tgzg) ML)
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Fig. 2 Condensation of a periodic structure using the proposed method

Solving the generalized eigenproblem of the reduced system, the lowest m eigenvalues, and
their corresponding eigenvectors can be estimated.

Kirs®Pmm = Migs®PrmmAmm (54)

3.3 Substructuring periodic structures using the IRS method

According to Eq. (53), the reduced system matrices are created within each subsystem and
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assembled. Whenever a periodic structure exists, all of its substructures share the same structural
matrices. Therefore, only one substructure is involved in substructuring.

In Fig. 2(a), a 2D macrostructure is segmented into a x b substructures, where a and b
indicate the number of substructures in the i and j direction, respectively. Since finite element
models of periodic structures contain repeated geometries, all substructures undergo similar static
and dynamic condensations. Condensation of these substructures creates a super-element. Because
only the external nodes connected to neighboring elements are retained, the internal shape
complexity of the condensed substructure may be lost. Nevertheless, the stiffness and mass matrices
of the substructure are reduced considering the uncondensed representation of the substructure. Fig.
2(b) illustrates a typical condensation of a substructure (unit cell). Since all the master and slave
DOFs of the original structure contribute to the reduced stiffness and mass matrices (K3*?and

M34P), no structural information is lost. Compared to the original full stiffness and mass matrices
of the substructure (KS¥? and Ms¥?), K3*? and M3*? have a much smaller dimensionality.
Thus, the computation becomes more eff|C|ent Through the repeated assembly of the reduced
stiffness and mass matrices, the reduced global matrices are obtained using Eqgs. (55)-(58). Fig. 2(c)
illustrates a condensed periodic structure, and the reduced model has fewer degrees of freedom than
the original periodic structure in Fig. 2(a). This results in higher computational efficiency in the
macro FEA.

For periodic structures, Eqgs. (49)-(53) can be rewritten as follows, respectively.

Tsub (Kgistb) Ksub (55)
axb
K¢ = Z Ksub + Ksub sub 4 (Tsub) Ksub + (Tsub) Ksustub
axb (56)
Mg = Z Mrsrlllnl; + MsubT sub (Tcs;ub) Mgrlflb + (Tgub) Msustub
i=1
Tirs = TG ub + (Ksub) (Mg#lb + MsubT ub)(MG)—lKG (57)
axb
KR - KIRS - 2 K‘f#rlrjl + KSubTIRS + (TIRS)TKsub + (TIRS)TK.g?bTIRS
i=1
axb (58)
Mg = Mjps = Z Mf#r?l + MsubTIRs + (TIRS)TMsub + (TIRS)TngbTIRS
i=1

4. Numerical implementation

This section presents a computationally efficient implementation of the proposed method. See
Table 1 for more information. The reduction process begins with the initialization of the structural
mesh and the number of repeated substructures. Following that, the substructures are condensed
using the IRS method and assembled to form a reduced macrostructure.
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Table 1 Computational procedure of the proposed method

Computational process Equation numbers
Step 1: Generate the system matrices for the unit cell
Generate K*“? and M*“?
Step 2: Choose the master degrees of freedom for the unit cell and partition the system
matrices into sub-blocks

Set the master (m) and slave (s) DOFs 22
Generate KSub Ksub Ksub KSub and MSUL, MSUP MSUP, MSub
Step 3: Calculate the Guyan transformation matrix for the unit cell 55

Calculate TSP
Step 4: Construct the reduced matrices of the Guyan method and assemble them into
one 56

Construct K; and Mg
Step 5: Calculate the IRS transformation matrix
Calculate T;zs
Step 6: Construct the reduced matrices of the IRS method and assemble them into one
Construct K;zs and Mzs

Step 7: Solve for eigenvalue problem of the reduced model 54

Step 8: Calculate the relative eigenfrequency error, ;, using the following formula

Wi — W;
fj=u

57
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@j
where
§;-Relative eigenfrequency error,
wj-Modal frequency obtained from the full system,
@;-Modal frequency calculated from the reduced model

5. Numerical example

In this section, examples are given to illustrate and compare the effectiveness and efficiency of
the proposed and homogenization methods. The homogenization was performed using the Material
Designer tool from ANSYS®. Material Designer is a component system in ANSYS® Workbench
that allows creating composite materials for simulation and homogenized materials of parts made
with lattice structures using additive manufacturing. In Material Designer, the RVE is used to
represent the microscale structure of the material under consideration. The RVE represents one unit
cell for periodic materials, and it repeats itself in all three coordinate directions. Since a single unit
cell contains all the information about a material, analyzing its behavior is sufficient.
Homogenization begins with modeling the RVE; this requires simplifying the geometry and defining
the material properties of the components. Once the geometry has been simplified, it must be meshed
to support finite element analysis. Next, the RVE is exposed to several macroscopic load cases, and
its response is computed from which homogenized material data are calculated.

As shown in Fig. 3(a), a uniform honeycomb structure with a volume fraction of 19.47% is
considered. In Material Designer, we generated the homogenized (effective) material properties,
which were then transferred to a new Engineering Data object and applied to the homogenized
models. The homogenized models are simple rectangles with no honeycomb structure, but they
utilize the material properties calculated using Material Designer. Fig. 3(b)-(d) shows the phase
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Properties of Outline Row 3: Nylon 12
A B
i Property Value
2 T Material Field Variables | = Table
3 T Density 929.99 kg m#-3
4 |E ‘B Isotropic Elasticty
5 Derive from Young's Modulu, .. ;l
&6 Young's Modulus L7E+09 Pa
7 Poisson's Ratio 0.394
8 Bulk Modulus 2.6729E+09 Pa
9 Shear Modulus 6.0975E+08 Pa
(a) Representative volume element (RVE) (b) Phase material properties of Nylon 12
Name Value Uit
Engineening Constants
E1 2.5324E-07 Pa
E2 2.5344E-07 Pa
E3 3.3095E+08 Pa
G12 6.0482E+06 Pa
G23 6.5065E+07 Pa
G 6.5027E+D7 Pa
nul2 0.86569
nul3 0.030145
nu23 0.030172
Density
tho 181.05 kgm”-3
(c) 2D meshed geometry of the RVE (d) Homogenized (Effective) material properties

Fig. 3 Honeycomb unit cell and its phase and effective material properties

material properties of the unit cell and the effective material properties obtained from the Material
Designer, respectively.

The proposed method was implemented as an independent reduction method using in-house
code. The unit cell model was discretized using plane stress quadrilateral elements in ANSYS?; it
has 714 nodes, 560 elements, and 1,428 degrees of freedom (2 DOFs per node). The meshed
geometry of the unit cell is depicted in Fig. 3(c).

Table 2 shows three honeycomb structures and their homogenized models. The honeycombs are
constructed with a periodicity of 3 x 3, 6 X 6, and 9 x 9, respectively. These structures are fixed
at the left edge, and all nodes connected to neighboring elements are designated as master DOFs. In
addition, Table 2 shows the number of total and master degrees of freedom and the reduction
percentage of each honeycomb using the proposed method. The 3 x 3 honeycomb, for instance,
has 360 master DOFs, which are taken into account to construct the reduced system matrices; this
makes the final reduced system 2.88% of the global system. Table 3 lists the first ten modal
frequencies of the full and reduced models obtained using the proposed method and the first ten
modal frequencies of the actual and homogenized models obtained from ANSYS®. Using the
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Fig. 4 Relative frequency errors of the proposed method for the honeycomb structures

Table 2 Honeycomb structures and their homogenized models

ANSYS®

Periodicity Proposed Method Actual Model Homogenized Model

3x3

le - »

Reduced DOFs=360 1

i
Reduction ratio (%)=2.88% [=41.16 mm w=23.76 mm [=41.16 mm w=23.76 mm
...........
telelelele
...........

)

6 X6

¥

Total DOFs=49,608

Reduced DOFs=1800 ' '
Reduction ratio (%)=3.63% [=82.32mm w=47.52 mm 1=82.32 mm w=47.52 mm

9x9

Total DOFs=11,348

Reduced DOFs=4320  ~ g ;
Reduction ratio (%)=3.88% (=123.48 mm w=71.28 mm [=123.48 mm w=71.28 mm

i
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Table 3 The proposed method and ANSYS? results of the first ten modal frequencies (Hz) of the honeycomb
structures

. Mode
Periodicity Model 1 > 3 7 5 6 7 P 9 10
inhouse. Pl 494.4 1959.22006.13795.94382.7 4510.5 4873.4 4947.1 5562.46297.8
Code P'\r/loeﬁﬁzedd 494.4 1959.22006.13795.94382.9 4510.5 4873.5 4947.1 5562.56298.0
3x3

Actual 486.1 1928.51972.63732.34299.8 4440.5 4787.6 4864.3 5467.76192.8

ANSYS® Homogenized 664.5 2170.72332.04289.05088.3 5652.6 6475.0 7027.0 7474.07474.2
Difference* 0.31000.11820.16700.1388 0.1680 0.2402 0.2996 0.3637 0.31000.1875
Full 280.3 996.2 1051.81957.82338.4 2631.1 2776.4 3026.6 3227.23472.7

In-house-
Code Pl\r/loe‘iﬁf)%d 280.3 996.2 1051.81957.82338.4 2631.1 2776.4 3026.6 3227.23472.7
6x6 Actual  283.6 1007.11063.61982.22371.2 2668.7 2811.0 3056.7 3265.33509.8

ANSYS® Homogenized 331.9 1085.11165.52143.82544.2 2825.5 3237.5 3512.3 3736.43736.8
Difference* 0.15690.07460.09140.07830.0704 0.0571 0.1410 0.1387 0.13460.0627
In-house- Full 194.3 666.9 714.3 1317.11578.51768.1 1942.3 2101.5 2250.92336.6

Code Pl\r/loe‘iﬁf)%d 194.3 666.9 714.3 1317.11578.51768.1 1942.3 2101.5 2250.92336.6

Actual 196.4 674.8 721.4 1337.41599.01786.4 1970.3 2129.2 2275.52361.1
ANSYS® Homogenized 221.2 723.4 776.9 1429.11696.1 1883.6 2158.3 2341.3 2490.92491.1
Difference* 0.11880.06950.07410.06630.0589 0.0530 0.0911 0.0949 0.0904 0.0536

9x%x9

. 1
*Difference= |wActual - wHomogenizedl/(E (wActual + wHomogenized))

proposed method and ANSYS® actual model, it appears that the natural frequency values are similar,
with maximum relative frequency errors of 0.0172, 0.0116, and 0.0104 for the 3 X 3, 6 X 6 and
9 x 9 honeycombs, respectively. As the number of substructures increases, the relative frequency
errors decrease. As the periodicity increases from 3 x 3t09 x 9, the difference between ANSYS®
actual and homogenized models decreases from 0.3100 to 0.1188. In light of this, we can conclude
that as we increase the number of substructures in the homogenized model, the results become more
accurate and pretty close to the actual model. Fig. 4 compares the relative natural frequencies of the
first 30 modes of the three honeycombs generated by the proposed method; as the number of
substructures increases, the relative frequency errors decrease. Table 4 shows some selected mode
shapes of the three honeycomb structures as obtained using the proposed method and ANSYS®.

6. Conclusions

The IRS-based substructuring technique was proposed for accurate and efficient modal analysis
of periodic composite structures, and its effectiveness was demonstrated through numerical
examples, and it was compared to the homogenization method and found that

- Regardless of the size of the periodic structures under consideration, the proposed method

yielded accurate results for low and medium frequency ranges.

« Depending on the number of substructures, the homogenization method had varying levels of
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Table 4 Mode shapes of the honeycomb structures as obtained using the proposed method and ANSYS®
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accuracy. It became more accurate as the number of substructures increased.

As Geers et al. (2010) studied, in the case of the homogenization method, the microscale
structures (RVESs) should be significantly smaller than macroscale structures while still being large
enough to exhibit the correct macroscale characteristics. In the absence of this assumption, macro
and microscales cannot be modeled independently. Moreover, the accuracy of the homogenized
solution depends on how well materials, phases, and interfaces are described at the microscale.
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