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Abstract.  Macro periodic composite structures are often represented by large-scale finite element (FE) models, so 
conventional FE methods and component mode synthesis (CMS) techniques are inadequate for assessing the dynamics 
of these structures in a reasonable amount of time. This study proposes the improved reduction system (IRS) combined 
with a substructuring scheme for modal analysis of periodic composite structures; and compares it with the 
homogenization method. Model reduction and homogenization are performed utilizing in-house code and ANSYS®, 
respectively. In IRS-based substructuring, the macrostructure is subdivided into identical substructures, then a single 
representative volume element (RVE) is taken and reduced. The reduced substructures are assembled into a 
macrostructure with fewer degrees of freedom (DOFs), resulting in an accurate and efficient result with a small 
memory footprint. According to our findings, the proposed method provides accurate results independent of the 
number of substructures contained within the macrostructure, whereas the homogenization method relies on the 
number of substructures present. 
 

Keywords:  homogenization; IRS; periodic composite structures; RVE; substructuring 

 
 
1. Introduction 
 

Periodic structures are made up of repetitive unit cells arranged in a continuous form. They are 

designed for aesthetics, manufacturing, and functionality and have various applications in modern 

structures, including additive manufacturing and lattice structures. To achieve multi-functionality, 

they can be extended to functionally graded structures. Periodic composite materials are made by 

layering or otherwise integrating two or more different kinds of materials to form a new material 

with a distinct set of properties. As a result, they combine the most desirable properties of their 

component materials resulting in a product that is both light and strong (Benjeddou and Guerich 

2019, Antony et al. 2019, Rachedi et al. 2020, Sayyad and Ghugal 2020, Pourmoayed et al. 2021). 

In finite element analysis, modeling composite materials often involve performing experimental 

tests to determine the exact material properties. These tests can be time and resource-consuming. 
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Composite structures are also difficult to simulate numerically due to the different length scales 

involved. Benjeddou and Guerich (2019) proposed a FE approach for free vibration analysis of 

aircraft and spacecraft hexagonal honeycomb sandwich panels, and they pointed out that detailed 

FE approaches for simulating honeycomb sandwich structures had rarely been investigated because 

the computational effort associated with them rapidly increases as the number of core cells increases. 

There are times when the composite structure is too long in comparison to the component materials. 

Even though the structural mechanics of these systems can be computed using the finite element 

method (resolving all length scales), it is not practical because the number of elements required 

would be astronomically large. As a result, analysis methods have attempted to approximate 

composites’ mechanical behavior through analyzing a representative volume element (RVE) of the 

composite microstructure. Hill (1963) introduced the term RVE in 1963, noting that the RVE was 

structurally typical of composite materials and contained enough inclusions to ensure the apparent 

moduli were independent of RVE boundary displacements. Additionally, Hashin (1983) 

demonstrated that stress and strain fields in the RVE are homogeneous when homogeneous 

boundary conditions are given except for a layer near the external surface (Hollister and Kikuchi 

1992). 

The RVE method separates the analysis of composite materials into local and global analyses. 

Using the local level analysis, the microstructural details are modeled to determine effective elastic 

properties. In addition, the relationship between the local strain within the RVE and the effective or 

average RVE strain is calculated. The composite structure is then replaced with an equivalent 

homogeneous material with the calculated effective properties. In the global level analysis, the 

effective stress and strain are calculated within the homogeneous equivalent structure. The process 

of computing effective properties has been termed “homogenization” by Suquet (1987). Using 

homogenized material data structures only need to be simulated at the macroscopic level, making 

composite simulation significantly less computationally expensive. It is possible to obtain estimates 

of local stresses and strains by using the relationship between the average and local strain from the 

local analysis, and this procedure is called “localization” (Suquet 1987) or dehomogenization 

(Hollister and Kikuchi 1992). 

As structures and mechanical systems become complex, they require sophisticated simulation 

techniques for design, control, and optimization. In finite element analysis (FEA), the computational 

effort is approximately proportional to the cubic of the problem size (Qu 2004); if the problem size 

is reduced, the computational work could be reduced significantly. Thus, several techniques have 

been proposed to reduce the size of large models before they are analyzed in detail. Examples include 

component mode synthesis, dynamic condensation, dynamic substructuring, and the Ritz vector 

approach. Through the application of a model reduction technique, the size of a full mode can be 

significantly reduced. However, the reduced model does not retain all features of the full model 

because of the truncated errors. Even though most reduction techniques aim to keep the key features 

within a certain frequency range, this may not be exactly the case. Consequently, there exists a trade-

off between model size and accuracy. Model reduction is all about trying to get the smallest model 

that contains the most information out of the full model. 

Dynamic condensation was proposed in 1965 as an efficient method for model reduction. 

According to this technique, there are master and slave degrees of freedom for a given value of the 

system’s degrees of freedom. As a result, the dynamic condensation matrix defines the relationship 

between the responses or mode shapes between the master and slave degrees of freedom. Through 

dynamic condensation, the system matrices of a full model can be reduced to the dimensions of just 

the master degrees of freedom. Unlike other model reduction techniques, the reduced model from 
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dynamic condensation is defined in a subspace of the full displacement space and each coordinate 

has its physical meaning.  

Dynamic substructuring (DS) is the decomposition of a complex dynamic system into smaller 

parts called substructure (Klerk et al. 2008). DS is best understood as a framework for synthesizing 

components rather than a method of its own (Seijs 2016). Often, the idea is related to the 

mathematical concept of domain decomposition by Schwarz (Schwarz 1890) or the ancient principle 

of “divide and conquer”. DS was first introduced in the 1960s to solve large FEM models that were 

not manageable with computing resources available at that time. It is possible to solve smaller 

substructures individually and synthesize them by satisfying coordinate compatibility and force 

equilibrium at the substructure’s interface (Craig Jr. and Bampton 1968, Hurty 1960, Rixen 2004). 

As micromechanical FEA is increasingly used for the characterization of modern composite 

materials with sophisticated microstructures (Li 2008, Li et al. 2015), this study presents an 

improved reduced system (IRS) method (O’Callahan 1989) for vibration analysis of periodic 

composite structures. The proposed method has the following merits: first, it applies the IRS method, 

which diminishes the eigenvalue error reduction significantly by accounting for the effect of inertia 

terms of the slave DOFs. Second, it employs a substructuring scheme, which requires less computing 

time and memory usage for the construction of the reduced system, even when the problem has a 

large number of degrees of freedom. 

The paper is organized as follows: Section 2 presents an overview of the homogenization theory. 

Section 3 discusses model order reduction and substructuring for periodic structures in detail. 

Section 4 describes the computational procedure for the proposed method, and Section 5 presents a 

numerical example and compares the modal analysis results of the proposed and homogenization 

methods. 

 

2. Review of homogenization theory 
 

Based on the details presented by Bendsøe and Kikuchi (1988), Guedes and Kikuchi (1990), and  

Cho et al. (2011), this section discusses the basic formulation of the homogenization method. 

According to homogenization theory, it is generally assumed that composite material is locally 

formed by repeated discrete microstructures, such as ‘microscopic’ cells, compared to the overall 

size of the structure of interest on a macroscopic scale. Accordingly, the microscopic variable is 

assumed to determine material properties periodically, where the period is smaller than the 

macroscopic variable. Based on this assumption, equivalent material properties can be determined 

by reducing microscopic cell sizes to zero (Guedes and Kikuchi 1990). The overall macroscopic 

domain in composites with size-dependent elastic moduli is composed of microscopic periodic base 

cells, as shown in Fig. 1. Macroscopically, 𝑉𝜀 is the matrix domain. The boundary, 𝑆0, is divided 

into two parts; traction 𝑆1
0 and displacement 𝑆2

0. 

𝑆1
0 and 𝑆2

0 are stipulated as follows 

𝐮 = 𝐮̅ on 𝑆1
0, 𝐭 = 𝐭 ̅on 𝑆2

0 (1) 

Along with the macroscopic domain boundary 𝑆ℎ, the effective interface boundaries can be 

defined as 𝑆ℎ𝑖. The formulation assumes no external force acts on the boundary, 𝑆ℎ𝑖. Due to the 

heterogeneity that repeats within the macroscopic domain, it makes sense to separate the 

microscopic behavior of composites from the macroscopic behavior when subjected to external 

loads and prescribed displacements. Hence, the macroscopic and microscopic coordinate systems, 

𝑋 and 𝑦, respectively, can be defined as follows 
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Fig. 1 Micro and macro structures of periodic composite in domain 𝑉𝜀, with traction and displacement 

boundary conditions, indicated by 𝑆1
0 and 𝑆2

0, respectively 

 

 

𝐗 = 𝐗(𝐱, 𝐲), 𝐱 = 𝐗, 𝐲 = 𝐗/𝜀 (2) 

where 𝜀 describes the ratio of macro to microscale as a non-dimensional parameter, which is given 

as 

𝜀 =
1

𝐿
, 0 < 𝜀 =

1

𝐿
< 1 (3) 

The virtual work can be expressed as a strong form of the real displacement field, 𝐮, and the 

virtual displacement, 𝛖, as shown in Eq. (4) when a body force, 𝐛, is applied to the matrix domain 

and traction, 𝐭,̅ on the boundary, 𝑆2
0. 

∫ ∇𝑋
𝑉𝜀

𝐮: 𝐂: ∇𝑋𝛖d𝑉𝑋 = ∫ 𝐛
𝑉𝜀

∙ 𝛖d𝑉𝑋 + ∫ 𝐭̅
𝑆2

0
∙ 𝝊dSX (4) 

where 𝐂 is the fourth-order stiffness tensor (𝐶𝑖𝑗𝑘𝑙). A macroscale, as well as microscale behavior, 

can be described using Eq. (5), which expresses the displacement field, 𝐮, as an asymptotic form of 

the parameter, 𝜀. 

𝐮(𝑋) = 𝐮0(𝐱, 𝐲) + 𝜀𝐮1(𝐱, 𝐲) + 𝜀2𝐮2(𝐱, 𝐲) + ⋯ (5) 

Since the virtual displacement, 𝛖, is an arbitrary function that can be defined as a function of 𝐱 

and 𝐲 as follows 

𝛖(𝐗) = 𝛖(𝐱, 𝐲) (6) 

Using partial derivatives of the displacement fields based on the two coordinate systems, Eqs. 

(5)-(6) can be written as 

∂𝛙(𝐱, 𝐲)

∂𝑥𝑖
=

∂𝛙

∂𝑥𝑖
+

1

𝜀

∂𝛙

∂𝑦𝑖
, 𝛙(𝐱, 𝐲) = 𝐮(𝐱, 𝐲) or 𝛖(𝐱, 𝐲)  (7) 

If 𝜀 is sufficiently small (𝜀 → 0), then the volume and surface integral of a function, Φ(𝐗), in 

the macroscopic domain, 𝐗, can be transformed as follows 
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lim
𝜀→0

∫ Φ(𝐗)
𝑉𝜀

d𝑉𝑥 = ∫
1

vol(𝑉𝑋
C)

[∫ Φ(𝐱, 𝐲)𝜀3

𝑉C̅̅ ̅̅
d𝑉𝑦]

𝑉

d𝑉𝑥 

= ∫
1

vol(𝑉𝑦
C)

[∫ Φ(𝐱, 𝐲)
𝑉𝑦

C̅̅ ̅̅
d𝑉𝑦]

𝑉

d𝑉𝑥 

lim
𝜀→0

∫ Φ(𝐗)
𝑉𝜀

d𝑆𝑥 = ∫
1

vol(𝑉𝑋
C)

[∫ Φ(𝐱, 𝐲)𝜀2

𝑆ℎ𝑖
d𝑆𝑦]

𝑉

d𝑉𝑥 

=
1

𝜀
∫

1

vol(𝑉𝑦
C)

[∫ Φ(𝐱, 𝐲)
𝑆ℎ𝑖

d𝑆𝑦]
𝑉

d𝑉𝑥 

(8) 

where volumes 𝑉  and 𝑉C  represent the homogenized macroscopic and unit cell domains, 

respectively. Eqs. (9)-(11) are obtained by introducing Eq. (5) into Eq. (4), applying Eqs. (7)-(8), 

and arranging the terms referring to 𝜀. 

𝑂 (
1

𝜀2
) : ∫

1

vol(𝑉𝑦
C)

[∫ ∇𝑦𝐮0: 𝐂: ∇𝑦𝛖
𝑉𝑦

C̅̅ ̅̅
d𝑉𝑦]

𝑉

d𝑉𝑥 = 0 (9) 

𝑂 (
1

𝜀
) : ∫

1

vol(𝑉𝑦
C)

[∫ ∇𝑦𝐮0: 𝐂: ∇𝑥𝛖
𝑉𝑦

C̅̅ ̅̅
+ (∇𝑥𝐮0 + ∇𝑦𝐮1): 𝐂: ∇𝑦𝛖] d𝑉𝑦

𝑉

d𝑉𝑥 = 0 (10) 

(1): ∫
1

vol(𝑉𝑦
C)

[∫ (∇𝑥𝐮0 + ∇𝑦𝐮1): 𝐂: ∇𝑥𝛖
𝑉𝑦

C̅̅ ̅̅
+ (∇𝑥𝐮1 + ∇𝑥𝐮2): 𝐂: ∇𝑦𝛖] d𝑉𝑦

𝑉

d𝑉𝑥 

= ∫
1

vol(𝑉𝑦
C)

∫ 𝐛. 𝛖
𝑉𝑦

C̅̅ ̅̅
d𝑉𝑦

𝑉

d𝑉𝑥 + ∫ 𝐭̅
𝑆0

∙ 𝛖d𝑆𝑥 

(11) 

Sequentially solving Eqs. (9)-(11) yields the displacement field, 𝐮(𝐱, 𝐲) . Applying the 

divergence theorem and accounting for 𝛖(𝐱, 𝐲) is arbitrary, 𝐮0(𝐱, 𝐲) is obtained from Eq. (9) as a 

function of 𝐱. 

𝐮𝟎(𝐱, 𝐲) = 𝐮𝟎(𝐱) (12) 

To find the differential equations stated below, first, we incorporate Eq. (12) into Eq. (10) and 

then assume that the virtual displacement represents an arbitrary function of 𝐲, viz., 𝛖(𝐲), and 

finally apply the divergence theorem to Eq. (10). 

−∇𝑦 ∙ [𝐂: ∇𝑦𝐮𝟏] = −∇𝑦 ∙ [𝐂: ∇𝑥𝐮𝟎] (13) 

𝐧 ∙ [𝐂: (∇𝑦𝐮𝟏)] = −𝐧 ∙ [𝐂: (∇𝑥𝐮𝟎)] (14) 

Based on Eqs. (13)-(14), the displacement field, 𝐮𝟏(𝐱, 𝐲), is correlated with the displacement 

field, 𝐮𝟎(𝐱), as follows 

𝐮𝟏(𝐱, 𝐲) = −𝛘(𝐱, 𝐲): ∇𝑥𝐮𝟎(𝐱) or (𝑢𝑖
1 = −𝜒𝑖𝑗𝑘𝑢𝑗,𝑘

0 ) (15) 

where 𝛘(𝐱, 𝐲) is a third-order tensor describing the behavior of the base-cell. The weak form of 
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Eqs. (13)-(14) related to the third-order tensor, 𝛘(𝐱, 𝐲), can be obtained by inserting Eq. (15) into 

Eqs. (13)-(14), and recalling that ∇𝑥𝐮𝟎(𝐱) is a function of 𝐱. 

∫ ∇𝑦𝛖(𝐲): 𝐂: ∇𝑦𝛘
𝑉𝑦

C̅̅ ̅̅
d𝑉𝑦 = ∫ ∇𝑦𝛖(𝐲): 𝐂

𝑉𝑦
C̅̅ ̅̅

d𝑉𝑦 (16) 

To obtain the homogenized elastic modulus with the singular perturbation method, we must then 

take Eq. (11) and calculate the macroscopic equilibrium condition. Selecting the virtual 

displacement based on, 𝐱, viz., 𝛖(𝐲), we can obtain 

∫
1

vol(𝑉𝑦
C)

[∫ (∇𝑥𝐮0 + ∇𝑦𝐮1): 𝐂: d𝑉𝑦
𝑉𝑦

C̅̅ ̅̅
]

𝑉

∇𝑥𝛖d𝑉𝑥 

= ∫
1

vol(𝑉𝑦
C)

∫ (𝐛d𝑉𝑦) ∙ 𝛖(𝐱)d𝑉𝑋
𝑉𝑦

C̅̅ ̅̅𝑉

+ ∫ 𝐭̅
𝑆0

∙ 𝛖d𝑆𝑥 

(17) 

By substituting Eq. (15) for 𝐮𝟏(𝐱, 𝐲) , we obtain the macroscopic equilibrium equation 

containing the homogenized elastic modulus tensor as 

∫ ∇𝑥𝛖(𝐱): 𝐂H: ∇𝑥𝐮0(𝐱)d𝑉𝑥
𝑉

= ∫ 𝛖(𝐱) ∙ 𝐭̅
𝑆0

d𝑆𝑥 (18) 

where 𝐂H is the homogenized fourth-order elastic stiffness tensor and is given by 

𝐂H =
1

vol(𝑉𝑦
C)

∫ (𝐂 − 𝐂: ∇𝑦𝛘)d𝑉𝑦
𝑉𝑦

C̅̅ ̅̅
 (19) 

Eq. (16) should be numerically solved to obtain the tensor, 𝛘(𝐱, 𝐲), to calculate the homogenized 

elastic stiffness. 

 

 

3. Model order reduction and substructuring 
 

3.1 Model order reduction-General concepts 
 

The Finite Element Method (FEM) is a common spatial discretization method when it comes to 

mechanical multi-degree-of-freedom (multi-DOF) systems. An 𝑛 − DOFs system’s dynamic 

equilibrium can be expressed in matrix form as 

𝐌𝒙̈(𝑡) + 𝐂𝒙̇(𝑡) + 𝐊𝒙(𝑡) = 𝐅(𝑡) (20) 

where 𝐌, 𝐂, 𝐊 ∈  ℝ𝑛×𝑛 represent the linearized system matrices for mass, damping, and stiffness, 

respectively. 𝒙 ∈ ℝ𝑛×1 is the set of displacements for all n degrees of freedom and 𝐅(𝑡)  ∈  ℝ𝑛×1 

is the load vector. 

Physical displacements in the time domain (discretized at nodes) are expressed by the unknown 

𝒙 in Eq. (20). As a general principle, model reduction consists of finding a low dimension subspace 

𝐓 ∈  ℝ𝑛×𝑚 with 𝑚 ≪ 𝑛 to approximate the state vector 𝒙, i.e., 𝒙 = 𝐓𝒙𝑹 + 𝜺. A linear 2nd-order 

ODE of lower dimension can be derived by projecting Eq. (20) on that subspace. 

𝐌𝐑𝒙̈𝑹(𝑡) + 𝐂𝐑𝒙̇𝑹(𝑡) + 𝐊𝐑𝒙𝑹(𝑡) = 𝐅𝐑 (21) 
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where 𝐌𝐑  = 𝐓𝐓𝐌𝐓 , 𝐂𝐑  = 𝐓𝐓𝐂𝐓 , 𝐊𝐑  = 𝐓𝐓𝐊𝐓   are the reduced system matrices with 

dimension ℝ𝑚×𝑚 and 𝐅𝐑  = 𝐓𝐓𝐅  is the reduced load vector of dimension ℝ𝑚×1 . The 

effectiveness and reliability of the reduction depend on the size of 𝜺. Over the past decades, various 

techniques have been developed that have some characteristics in common depending on the choice 

of 𝐓 (Benner 2006, Koutsovasilis and Beitelschmidt 2008). 

Some of the model order reduction techniques include Guyan-Irons reduction (Guyan 1965, Irons 

1965), dynamic reduction (Miller 1980), improved reduction system (IRS), and its iterative variant 

(O’Callahan 1989, Blair et al. 1991, Friswell et al. 1995), component mode synthesis (CMS) (Craig 

Jr. and Bampton 1968, C. Hurty 1960), and system equivalent expansion and reduction process 

(SEREP) (O’Callahan et al. 1988, Kammer 1987). The Guyan-Irons reduction and IRS method are 

discussed in this paper, but first, we need to partition the system matrices in Eq. (20) into sub-blocks, 

as master/external (𝑚) and slave/internal (𝑠) DOFs 

𝐌̃𝒙̈̃(𝑡) + 𝐂̃𝒙̇̃(𝑡) + 𝐊̃𝒙̃(𝑡) = 𝐅̃ 

[  ]̃ ≔ (
[ ]𝑚𝑚 [ ]𝑚𝑠

[ ]𝑠𝑚 [ ]𝑠𝑠
) , [ ] = {𝐌, 𝐂, 𝐊} 

𝒙̃ ≔ (
𝒙𝑚

𝒙𝑠
) , 𝐅̃ ≔ (

𝐅𝑚

𝐅𝑠
) 

𝑚 ∪ 𝑠 = 𝑛,        𝑛 = DOFtotal,       𝑚 ∩ 𝑠 = ∅ 

(22) 

 

3.1.1 Guyan-Irons reduction 

Guyan (1965) and Irons (1965) proposed a common method of finding a reasonably accurate 

representation space, 𝐓. The internal DOFs are assumed to be force-free, i.e., 𝐅𝑠 = 0, and assuming 

undamped system Eq. (22) is solved for 𝒙𝑠. The transformation matrix for the static reduction, Eq. 

(25), is obtained by omitting the equivalent inertia terms in Eq. (24). In this case, 𝐓𝐺  represents the 

low dimension subspace. 

𝒙𝑠 = −𝐊𝑠𝑠
−𝟏(𝐌𝑠𝑚𝒙̈𝑚 + 𝐌𝑠𝑠𝒙̈𝑠 + 𝐊𝑠𝑚𝒙𝑚) (23) 

𝐌𝑠𝑚𝒙̈𝒎 + 𝐌𝑠𝑠𝒙̈𝑠 = 𝟎 (24) 

(
𝒙𝑚

𝒙𝑠
) = (

𝐈
−𝐊𝑠𝑠

−𝟏𝐊𝑠𝑚
) . 𝒙𝑚 = 𝐓𝐺 . 𝒙𝑚 (25) 

𝐓𝐺 = (
𝐈

−𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚

) (26) 

Using 𝐓𝐺 the reduced stiffness and mass matrices become 

𝐊𝐆  = 𝐓𝐺
T𝐊𝐓𝐺 = 𝐊𝑚𝑚 − 𝐊𝑚𝑠𝐊𝑠𝑠

−𝟏𝐊𝑠𝑚 

𝐌𝐆  = 𝐓𝐺
T𝐌𝐓𝐺 = 𝐌𝑚𝑚 − 𝐌𝑚𝑠𝐊𝑠𝑠

−𝟏𝐊𝑠𝑚 − 𝐊𝑚𝑠𝐊𝑠𝑠
−𝟏𝐌𝑠𝑚 + 𝐊𝑚𝑠𝐊𝑠𝑠

−𝟏𝐌𝑠𝑠𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚 

(27) 

In general, Guyan-Irons reduction provides a good approximation for smaller eigenvalues and 

eigenvectors. For high-frequency motion, however, Inertia terms become significant, which makes 

this method inaccurate. 
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3.1.2 Improved Reduction System (IRS) method 
The IRS method is what O’Callaghan (1989) proposed as a modified method. By taking inertia 

terms into account as pseudo-static forces, the IRS perturbs the static transformation. The free 

vibration of the undamped reduced system, Eq. (21), gives 

𝐌𝐑𝒙̈𝑚 + 𝐊𝐑𝒙𝑚 = 𝟎 ⟹ 𝒙̈𝑚 = −𝐌𝐑
−𝟏𝐊𝐑𝒙𝑚 (28) 

where 𝐊𝐑 and 𝐌𝐑 are reduced stiffness and mass matrices obtained from Guyan-Irons reduction, 

and we can replace them with 𝐊𝐆 and 𝐌𝐆, respectively. By differentiating Eq. (25) 

𝒙̈𝑠 = −𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚𝒙̈𝑚 (29) 

By substituting Eq. (28) into Eq. (29), we get Eq. (30). 

𝒙̈𝑠 = 𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚𝐌𝐆

−𝟏𝐊𝐆𝒙𝑚 (30) 

Eqs. (28)-(30) are substituted into Eq. (23), resulting in the IRS transformation matrix as follows 

𝒙𝒔 = [−𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚+𝐊𝑠𝑠

−𝟏𝐒𝐌𝐆
−𝟏𝐊𝐆]𝒙𝑚 (31) 

𝐒 = 𝐌𝑠𝑚 − 𝐌𝑠𝑠𝐊𝑠𝑠
−𝟏𝐊𝑠𝑚 

(
𝒙𝑚

𝒙𝑠
) = 𝐓𝐼𝑅𝑆. 𝐱𝑚, 𝐏 = (

𝟎 𝟎
𝟎 𝐊𝑠𝑠

−𝟏) 
(32) 

𝐓𝐼𝑅𝑆 = 𝐓𝐺 + 𝐏𝐌𝐓𝐺 𝐌𝐆
−𝟏𝐊𝐆 (33) 

𝐓𝐼𝑅𝑆 is dependent on the reduced stiffness and mass matrices obtained from the static reduction. 

The reduced stiffness and mass matrices of the IRS method are given as follows 

𝐊𝐈𝐑𝐒 = 𝐓𝐼𝑅𝑆
T 𝐊𝐓𝐼𝑅𝑆 = 𝐊𝑚𝑚 + 𝐊𝑚𝑠𝐓𝐼𝑅𝑆 + 𝐓𝐼𝑅𝑆

T 𝐊𝑠𝑚 + 𝐓𝐼𝑅𝑆
T 𝐊𝑠𝑠𝐓𝐼𝑅𝑆 

𝐌𝐈𝐑𝐒 = 𝐓𝐼𝑅𝑆
T 𝐌𝐓𝐼𝑅𝑆 = 𝐌𝑚𝑚 + 𝐌𝑚𝑠𝐓𝐼𝑅𝑆 + 𝐓𝐼𝑅𝑆

T 𝐌𝑠𝑚 + 𝐓𝐼𝑅𝑆
T 𝐌𝑠𝑠𝐓𝐼𝑅𝑆 

(34) 

 

3.2 Substructuring using the IRS method 
 

Substructuring requires splitting up the whole structure into smaller pieces. Based on the paper 

by Choi et al. (2008), we present the derivation of the basic substructuring reduction procedure using 

the IRS method. Assuming an undamped system, the eigenvalue problem of Eq. (20) is 

𝐊𝚽 = 𝐌𝚽Λ (35) 

where 𝚽 represents the vibrating mode (eigenvector), corresponding to eigenvalue Λ. 

To develop the basic substructuring formulation, the entire system is divided into two 

substructures, in which the system matrices are constructed independently. In the case of 

substructure one, the eigenvalue problem can be expressed as follows 

[
𝐊𝑠𝑠

(1)
𝐊𝑠𝑚

(1)

𝐊𝑚𝑠
(1)

𝐊𝑚𝑚
(1)

] [ 𝚽𝑠𝑚
(1)

𝚽𝑚𝑚

] = [
𝐌𝑠𝑠

(1)
𝐌𝑠𝑚

(1)

𝐌𝑚𝑠
(1)

𝐌𝑚𝑚
(1)

] [ 𝚽𝑠𝑚
(1)

𝚽𝑚𝑚

] Λ𝑚𝑚 (36a) 

As for substructure two, the eigenvalue problem can be described separately as follows 

[
𝐊𝑚𝑚

(2)
𝐊𝑚𝑠

(2)

𝐊𝑠𝑚
(2)

𝐊𝑠𝑠
(2)

] [
𝚽𝑚𝑚

𝚽𝑠𝑚
(2) ] = [

𝐌𝑚𝑚
(2)

𝐌𝑚𝑠
(2)

𝐌𝑠𝑚
(2)

𝐌𝑠𝑠
(2)

] [
𝚽𝑚𝑚

𝚽𝑠𝑚
(2) ] Λ𝑚𝑚 (36b) 
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A global system can be constructed by combining stiffness matrices and mass matrices, as shown 

in Eq. (37). 

[

𝐊𝑠𝑠
(1)

𝐊𝑠𝑚
(1)

𝐊𝑚𝑠
(1)

𝐊𝑚𝑚 𝐊𝑚𝑠
(2)

𝐊𝑠𝑚
(2)

𝐊𝑠𝑠
(2)

] [

𝚽𝑠𝑚
(1)

𝚽𝑚𝑚

𝚽𝑠𝑚
(2)

] = [

𝐌𝑠𝑠
(1)

𝐌𝑠𝑚
(1)

𝐌𝑚𝑠
(1)

𝐌𝑚𝑚 𝐌𝑚𝑠
(2)

𝐌𝑠𝑚
(2)

𝐌𝑠𝑠
(2)

] [

𝚽𝑠𝑚
(1)

𝚽𝑚𝑚

𝚽𝑠𝑚
(2)

] Λ𝑚𝑚 (37) 

where 𝐊𝑚𝑚 = 𝐊𝑚𝑚
(1)

+ 𝐊𝑚𝑚
(2)

 and 𝐌𝑚𝑚 = 𝐌𝑚𝑚
(1)

+ 𝐌𝑚𝑚
(2)

 include degrees of freedom at the 

interface between the substructures. Since each substructure must be free of the slave degrees of 

freedom, the first and third rows of Eq. (37) become 

𝐊𝑠𝑠
(1)

𝚽𝑠𝑚
(1)

+ 𝐊𝑠𝑚
(1)

𝚽𝑚𝑚 = (𝐌𝑠𝑠
(1)

𝚽𝑠𝑚
(1)

+ 𝐌𝑠𝑚
(1)

𝚽𝑚𝑚)Λ𝑚𝑚 

𝐊𝑠𝑚
(2)

𝚽𝑚𝑚 + 𝐊𝑠𝑠
(2)

𝚽𝑠𝑚
(2)

= (𝐌𝑠𝑚
(2)

𝚽𝑚𝑚 + 𝐌𝑠𝑠
(2)

𝚽𝑠𝑚
(2)

)Λ𝑚𝑚 
(38) 

The transformation relation between the master and slave DOFs can be found by rearranging Eq. 

(38) for the slave DOFs as follows 

𝚽𝑠𝑚
(1)

= − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

𝚽𝑚𝑚 + (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

𝚽𝑚𝑚 + 𝐌𝑠𝑠
(1)

𝚽𝑠𝑚
(1)

)Λ𝑚𝑚 

𝚽𝑠𝑚
(2)

= − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

𝚽𝑚𝑚 + (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

𝚽𝑚𝑚 + 𝐌𝑠𝑠
(2)

𝚽𝑠𝑚
(2)

)Λ𝑚𝑚 

(39) 

Based on the definitions of the transformation matrices in each subsystem, the matrices are as 

follows 

𝚽𝑠𝑚
(1)

= 𝐭(1)𝚽𝑚𝑚 

𝚽𝑠𝑚
(2)

= 𝐭(2)𝚽𝑚𝑚 
(40) 

Substituting Eq. (40) into Eq. (39) and arranging the result 

𝐭(1) = − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

+ (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

+ 𝐌𝑠𝑠
(1)

𝐭(1)) 𝚽𝑚𝑚Λ𝑚𝑚𝚽𝑚𝑚
−1  

𝐭(2) = − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

+ (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

+ 𝐌𝑠𝑠
(2)

𝐭(2)) 𝚽𝑚𝑚Λ𝑚𝑚𝚽𝑚𝑚
−1  

(41) 

Eq. (41) can be rewritten as 

𝐭(1) = 𝐓𝐺
(𝟏)

+ 𝐓𝑑
(1)

; 𝐓𝐺
(1)

= − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

 

𝐓𝑑
(1)

= (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

+ 𝐌𝑠𝑠
(1)

𝐭(1)) 𝚽𝑚𝑚Λ𝑚𝑚𝚽𝑚𝑚
−1  

𝐭(2) = 𝐓𝐺
(2)

+ 𝐓𝑑
(2)

; 𝐓𝐺
(2)

= − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

 

𝐓𝑑
(2)

= (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

+ 𝐌𝑠𝑠
(2)

𝐭(2)) 𝚽𝑚𝑚Λ𝑚𝑚𝚽𝑚𝑚
−1  

(42) 

In the transformation matrices, 𝐓𝐺 and 𝐓𝑑 represent the static and dynamic terms, respectively. 

Eq. (41) gives us two transformation matrices. These two transformation matrices allow us to reduce 

the entire assembled system into a simplified one based on only master DOFs as 
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[

𝚽𝑠𝑚
(1)

𝚽𝑚𝑚

𝚽𝑠𝑚
(2)

] = [

𝐭(1)

𝐈𝑚𝑚

𝐭(2)

] 𝚽𝑚𝑚 = 𝐓𝚽𝑚𝑚 (43) 

where 𝐓 is the transformation matrix between 𝚽𝑚𝑚 and 𝚽𝑠𝑚 in the total system, whereas 𝐈 is 

the unit matrix of size 𝑚 × 𝑚. The reduced system matrices can be obtained by substituting Eq. 

(43) into Eq. (37) and premultiplying 𝐓T on the left. 

𝐊𝑹 = 𝐭(1)
T 𝐊𝑠𝑠

(1)
𝐭(1) + 𝐊𝑚𝑠

(1)
𝐭(1) + 𝐭(1)

T 𝐊𝑠𝑚
(1)

+ 𝐊𝑚𝑚 + 𝐭(2)
T 𝐊𝑠𝑚

(2)
+ 𝐊𝑚𝑠

(2)
𝐭(2) + 𝐭(2)

T 𝐊𝑠𝑠
(2)

𝐭(2) 

𝐌𝑹 = 𝐭(1)
T 𝐌𝑠𝑠

(1)
𝐭(1) + 𝐌𝑚𝑠

(1)
𝐭(1) + 𝐭(1)

T 𝐌𝑠𝑚
(1)

+ 𝐌𝑚𝑚 + 𝐭(2)
T 𝐌𝑠𝑚

(2)
+ 𝐌𝑚𝑠

(2)
𝐭(2) + 𝐭(2)

T 𝐌𝑠𝑠
(2)

𝐭(2) 

(44) 

Based on the equations above, the basic substructuring reduction procedure is derived. However, 

the transformation matrix for each substructure is not defined entirely. Using Eq. (44), an 

eigenproblem with 𝑚 degrees of freedom can be constructed. 

𝐊𝑹𝚽𝑚𝑚 = 𝐌𝑹𝚽𝑚𝑚Λ𝑚𝑚 (45) 

From Eq. (45), 𝚽𝑚𝑚
−1 Λ𝑚𝑚𝚽𝑚𝑚 can be expressed as 

𝚽𝑚𝑚
−1 Λ𝑚𝑚𝚽𝑚𝑚 = 𝐌𝑹

−1𝐊𝑹 (46) 

Eq. (46) is substituted into Eq. (41) to yield two transformation matrices. 

𝐭(1) = − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

+ (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

+ 𝐌𝑠𝑠
(1)

𝐭(1)) 𝐌𝑹
−1𝐊𝑹 

𝐭(2) = − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

+ (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

+ 𝐌𝑠𝑠
(2)

𝐭(2)) 𝐌𝑹
−1𝐊𝑹 

(47) 

As the above equations are nonlinear, it is not easy to solve them directly, so they have to be 

solved iteratively, and this leads to the iterative version of the improved reduction system. However, 

we are interested in the standard IRS method, so we take the value of the 0th iteration (𝑘=1). The 

iterative forms of Eq. (47) for 𝑘=1, 2, 3..., are expressed as follows 

𝐭(1)
(𝑘)

= − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

+ (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

+ 𝐌𝑠𝑠
(1)

𝐭(1)
(𝑘−1)

) (𝐌𝑹
(𝑘−1)

)
−1

𝐊𝑅
(𝑘−1)

 

𝐭(2)
(𝑘)

= − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

+ (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

+ 𝐌𝑠𝑠
(2)

𝐭(2)
(𝑘−1)

) (𝐌𝑹
(𝑘−1)

)
−1

𝐊𝑅
(𝑘−1)

 

(48) 

Initial approximations of the transformation matrices can be calculated as follows 

𝐭(1)
(0)

= 𝐓𝐺
(1)

= − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

 

𝐭(2)
(0)

= 𝐓𝐺
(2)

= − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

 

(49) 

In these matrices, we exclude the dynamic part of Eq. (48), and they are used to construct Guyan 

reduction matrices in the following manner 
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𝐊𝐺 = [(𝐭(1)
(0)

)
T

𝐈𝑚𝑚 (𝐭(2)
(0)

)
T

] [

𝐊𝑠𝑠
(1)

𝐊𝑠𝑚
(1)

𝐊𝑚𝑠
(1)

𝐊𝑚𝑚 𝐊𝑚𝑠
(2)

𝐊𝑠𝑚
(2)

𝐊𝑠𝑠
(2)

] [

𝐭(1)
(0)

𝐈𝑚𝑚

𝐭(2)
(0)

]

= (𝐭(1)
(0)

)
T

𝐊𝑠𝑠
(1)

𝐭(1)
(0)

+ 𝐊𝑚𝑠
(1)

𝐭(1)
(0)

+ (𝐭(1)
(0)

)
T

𝐊𝑠𝑚
(1)

+ 𝐊𝑚𝑚 + (𝐭(2)
(0)

)
T

𝐊𝑠𝑚
(2)

+ 𝐊𝑚𝑠
(2)

𝐭(2)
(0)

+ (𝐭(2)
(0)

)
T

𝐊𝑠𝑠
(2)

𝐭(2)
(0)

 

𝐌𝐺 = [(𝐭(1)
(0)

)
T

𝐈𝑚𝑚 (𝐭(2)
(0)

)
T

] [

𝐌𝑠𝑠
(1)

𝐌𝑠𝑚
(1)

𝐌𝑚𝑠
(1)

𝐌𝑚𝑚 𝐌𝑚𝑠
(2)

𝐌𝑠𝑚
(2)

𝐌𝑠𝑠
(2)

] [

𝐭(1)
(0)

𝐈𝑚𝑚

𝐭(2)
(0)

]

= (𝐭(1)
(0)

)
T

𝐌𝑠𝑠
(1)

𝐭(1)
(0)

+ 𝐌𝑚𝑠
(1)

𝐭(1)
(0)

+ (𝐭(1)
(0)

)
T

𝐌𝑠𝑚
(1)

+ 𝐌𝑚𝑚 + (𝐭(2)
(0)

)
T

𝐌𝑠𝑚
(2)

+ 𝐌𝑚𝑠
(2)

𝐭(2)
(0)

+ (𝐭(2)
(0)

)
T

𝐌𝑠𝑠
(2)

𝐭(2)
(0)

 

(50) 

Eq. (50) explains that Guyan reduction matrices are calculated at the substructure level, and then 

that we combine these reduced matrices to form one reduced system. 𝐊𝐺 and 𝐌𝐺 are the initial 

reduced system matrices of an iterative dynamic condensation as 

𝐊𝑹
(0)

= 𝐊𝐺 

𝐌𝑹
(0)

= 𝐌𝐺 
(51) 

The initial transformation matrices for 𝑘=1 are obtained when Eq. (51) is substituted into Eq. 

(48) and by using Eq. (49). 

𝐭(1)
(1)

= − (𝐊𝑠𝑠
(1)

)
−1

𝐊𝑠𝑚
(1)

+ (𝐊𝑠𝑠
(1)

)
−1

(𝐌𝑠𝑚
(1)

+ 𝐌𝑠𝑠
(1)

𝐭(1)
(0)

) (𝐌𝑹
(0)

)
−1

𝐊𝑅
(0)

 

𝐭(2)
(1)

= − (𝐊𝑠𝑠
(2)

)
−1

𝐊𝑠𝑚
(2)

+ (𝐊𝑠𝑠
(2)

)
−1

(𝐌𝑠𝑚
(2)

+ 𝐌𝑠𝑠
(2)

𝐭(2)
(0)

) (𝐌𝑹
(0)

)
−1

𝐊𝑅
(0)

 

(52) 

Using Eq. (52), the reduced system matrices for the Standard IRS method becomes 

𝐊𝑹
(1)

= 𝐊𝐼𝑅𝑆 = [(𝐭(1)
(1)

)
T

𝐈𝑚𝑚 (𝐭(2)
(1)

)
T

] [

𝐊𝑠𝑠
(1)

𝐊𝑠𝑚
(1)

𝐊𝑚𝑠
(1)

𝐊𝑚𝑚 𝐊𝑚𝑠
(2)

𝐊𝑠𝑚
(2)

𝐊𝑠𝑠
(2)

] [

𝐭(1)
(1)

𝐈𝑚𝑚

𝐭(2)
(1)

]

= (𝐭(1)
(1)

)
T

𝐊𝑠𝑠
(1)

𝐭(1)
(1)

+ 𝐊𝑚𝑠
(1)

𝐭(1)
(1)

+ (𝐭(1)
(1)

)
T

𝐊𝑠𝑚
(1)

+ 𝐊𝑚𝑚 + (𝐭(2)
(1)

)
T

𝐊𝑠𝑚
(2)

+ 𝐊𝑚𝑠
(2)

𝐭(2)
(1)

+ (𝐭(2)
(1)

)
T

𝐊𝑠𝑠
(2)

𝐭(2)
(1)

 

𝐌𝑹
(1)

= 𝐌𝐼𝑅𝑆 = [(𝐭(1)
(1)

)
T

𝐈𝑚𝑚 (𝐭(2)
(1)

)
T

] [

𝐌𝑠𝑠
(1)

𝐌𝑠𝑚
(1)

𝐌𝑚𝑠
(1)

𝐌𝑚𝑚 𝐌𝑚𝑠
(2)

𝐌𝑠𝑚
(2)

𝐌𝑠𝑠
(2)

] [

𝐭(1)
(1)

𝐈𝑚𝑚

𝐭(2)
(1)

]

= (𝐭(1)
(1)

)
T

𝐌𝑠𝑠
(1)

𝐭(1)
(1)

+ 𝐌𝑚𝑠
(1)

𝐭(1)
(1)

+ (𝐭(1)
(1)

)
T

𝐌𝑠𝑚
(1)

+ 𝐌𝑚𝑚 + (𝐭(2)
(1)

)
T

𝐌𝑠𝑚
(2)

+ 𝐌𝑚𝑠
(2)

𝐭(2)
(1)

+ (𝐭(2)
(1)

)
T

𝐌𝑠𝑠
(2)

𝐭(2)
(1)

 

(53) 
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Full Model 

𝐊, 𝐌 

 

 
 

(a) Uncondensed 𝑎 × 𝑏 periodic substructures 

Unit Cell 

Condensation 

𝐊𝑹
𝑠𝑢𝑏 , 𝐌𝑹

𝑠𝑢𝑏 

 
(b) Condensation of a substructure 

Reduced 

Model 

𝐊𝑹, 𝐌𝑹 

 
(c) Condensed 𝑎 × 𝑏 periodic substructures 

Fig. 2 Condensation of a periodic structure using the proposed method 

 

 

Solving the generalized eigenproblem of the reduced system, the lowest 𝑚 eigenvalues, and 

their corresponding eigenvectors can be estimated. 

𝐊𝐼𝑅𝑆𝚽𝑚𝑚 = 𝐌𝐼𝑅𝑆𝚽𝑚𝑚𝚲𝑚𝑚 (54) 

 

3.3 Substructuring periodic structures using the IRS method 
 

According to Eq. (53), the reduced system matrices are created within each subsystem and 
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assembled. Whenever a periodic structure exists, all of its substructures share the same structural 

matrices. Therefore, only one substructure is involved in substructuring. 

In Fig. 2(a), a 2D macrostructure is segmented into 𝑎 × 𝑏  substructures, where 𝑎  and 𝑏 

indicate the number of substructures in the 𝑖 and 𝑗 direction, respectively. Since finite element 

models of periodic structures contain repeated geometries, all substructures undergo similar static 

and dynamic condensations. Condensation of these substructures creates a super-element. Because 

only the external nodes connected to neighboring elements are retained, the internal shape 

complexity of the condensed substructure may be lost. Nevertheless, the stiffness and mass matrices 

of the substructure are reduced considering the uncondensed representation of the substructure. Fig. 

2(b) illustrates a typical condensation of a substructure (unit cell). Since all the master and slave 

DOFs of the original structure contribute to the reduced stiffness and mass matrices (𝐊𝑹
𝑠𝑢𝑏and 

𝐌𝑹
𝑠𝑢𝑏), no structural information is lost. Compared to the original full stiffness and mass matrices 

of the substructure (𝐊𝑠𝑢𝑏  and 𝐌𝑠𝑢𝑏 ), 𝐊𝑹
𝑠𝑢𝑏  and 𝐌𝑹

𝑠𝑢𝑏  have a much smaller dimensionality. 

Thus, the computation becomes more efficient. Through the repeated assembly of the reduced 

stiffness and mass matrices, the reduced global matrices are obtained using Eqs. (55)-(58). Fig. 2(c) 

illustrates a condensed periodic structure, and the reduced model has fewer degrees of freedom than 

the original periodic structure in Fig. 2(a). This results in higher computational efficiency in the 

macro FEA. 

For periodic structures, Eqs. (49)-(53) can be rewritten as follows, respectively. 

𝐓𝐺
𝑠𝑢𝑏 = −(𝐊𝑠𝑠

𝑠𝑢𝑏)
−1

𝐊𝑠𝑚
𝑠𝑢𝑏 (55) 

𝐊𝑮 = ∑ 𝐊𝑚𝑚
𝑠𝑢𝑏 + 𝐊𝑚𝑠

𝑠𝑢𝑏𝐓𝐺
𝑠𝑢𝑏 + (𝐓𝐺

𝑠𝑢𝑏)
T

𝐊𝑠𝑚
𝑠𝑢𝑏 +

𝑎×𝑏

𝑖=1

(𝐓𝐺
𝑠𝑢𝑏)

T
𝐊𝑠𝑠

𝑠𝑢𝑏𝐓𝐺
𝑠𝑢𝑏 

𝐌𝑮 = ∑ 𝐌𝑚𝑚
𝑠𝑢𝑏 + 𝐌𝑚𝑠

𝑠𝑢𝑏𝐓𝐺
𝑠𝑢𝑏 + (𝐓𝐺

𝑠𝑢𝑏)
T

𝐌𝑠𝑚
𝑠𝑢𝑏 +

𝑎×𝑏

𝑖=1

(𝐓𝐺
𝑠𝑢𝑏)

T
𝐌𝑠𝑠

𝑠𝑢𝑏𝐓𝐺
𝑠𝑢𝑏 

(56) 

𝐓𝐼𝑅𝑆 = 𝐓𝐺
𝑠𝑢𝑏 + (𝐊𝑠𝑠

𝑠𝑢𝑏)
−1

(𝐌𝑠𝑚
𝑠𝑢𝑏 + 𝐌𝑠𝑠

𝑠𝑢𝑏𝐓𝐺
𝑠𝑢𝑏)(𝐌𝑮)−1𝐊𝑮 (57) 

𝐊𝑹 = 𝐊𝐼𝑅𝑆 = ∑ 𝐊𝑚𝑚
𝑠𝑢𝑏 + 𝐊𝑚𝑠

𝑠𝑢𝑏𝐓𝐼𝑅𝑆 + (𝐓𝐼𝑅𝑆)T𝐊𝑠𝑚
𝑠𝑢𝑏 +

𝑎×𝑏

𝑖=1

(𝐓𝐼𝑅𝑆)T𝐊𝑠𝑠
𝑠𝑢𝑏𝐓𝐼𝑅𝑆 

𝐌𝑹 = 𝐌𝐼𝑅𝑆 = ∑ 𝐌𝑚𝑚
𝑠𝑢𝑏 + 𝐌𝑚𝑠

𝑠𝑢𝑏𝐓𝐼𝑅𝑆 + (𝐓𝐼𝑅𝑆)T𝐌𝑠𝑚
𝑠𝑢𝑏 +

𝑎×𝑏

𝑖=1

(𝐓𝐼𝑅𝑆)T𝐌𝑠𝑠
𝑠𝑢𝑏𝐓𝐼𝑅𝑆 

(58) 

 

 

4. Numerical implementation 
 

This section presents a computationally efficient implementation of the proposed method. See 

Table 1 for more information. The reduction process begins with the initialization of the structural 

mesh and the number of repeated substructures. Following that, the substructures are condensed 

using the IRS method and assembled to form a reduced macrostructure. 
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Table 1 Computational procedure of the proposed method 

Computational process Equation numbers 

Step 1: Generate the system matrices for the unit cell 

Generate 𝐊𝑠𝑢𝑏  and 𝐌𝑠𝑢𝑏 
 

Step 2: Choose the master degrees of freedom for the unit cell and partition the system 

matrices into sub-blocks 

Set the master (𝑚) and slave (𝑠) DOFs 

Generate 𝐊𝑚𝑚
𝑠𝑢𝑏 , 𝐊𝑚𝑠

𝑠𝑢𝑏 , 𝐊𝑠𝑚
𝑠𝑢𝑏 , 𝐊𝑠𝑠

𝑠𝑢𝑏 and  𝐌𝑚𝑚
𝑠𝑢𝑏 , 𝐌𝑚𝑠

𝑠𝑢𝑏 , 𝐌𝑠𝑚
𝑠𝑢𝑏 , 𝐌𝑠𝑠

𝑠𝑢𝑏 

22 

Step 3: Calculate the Guyan transformation matrix for the unit cell 

Calculate 𝐓𝐺
𝑠𝑢𝑏  

55 

Step 4: Construct the reduced matrices of the Guyan method and assemble them into 

one 

Construct 𝐊𝐺 and 𝐌𝐺  

56 

Step 5: Calculate the IRS transformation matrix 

Calculate 𝐓𝐼𝑅𝑆 
57 

Step 6: Construct the reduced matrices of the IRS method and assemble them into one 

Construct 𝐊𝐼𝑅𝑆 and 𝐌𝐼𝑅𝑆 
58 

Step 7: Solve for eigenvalue problem of the reduced model 54 

Step 8: Calculate the relative eigenfrequency error, 𝜉𝑗 , using the following formula 

𝝃𝒋 =
|𝝎̅𝒋 − 𝝎𝒋|

𝝎𝒋

 

where 

𝝃𝒋-Relative eigenfrequency error, 

𝝎𝒋-Modal frequency obtained from the full system, 

𝝎̅𝒋-Modal frequency calculated from the reduced model 

 

 

 

5. Numerical example 
 

In this section, examples are given to illustrate and compare the effectiveness and efficiency of 

the proposed and homogenization methods. The homogenization was performed using the Material 

Designer tool from ANSYS® . Material Designer is a component system in ANSYS®  Workbench 

that allows creating composite materials for simulation and homogenized materials of parts made 

with lattice structures using additive manufacturing. In Material Designer, the RVE is used to 

represent the microscale structure of the material under consideration. The RVE represents one unit 

cell for periodic materials, and it repeats itself in all three coordinate directions. Since a single unit 

cell contains all the information about a material, analyzing its behavior is sufficient. 

Homogenization begins with modeling the RVE; this requires simplifying the geometry and defining 

the material properties of the components. Once the geometry has been simplified, it must be meshed 

to support finite element analysis. Next, the RVE is exposed to several macroscopic load cases, and 

its response is computed from which homogenized material data are calculated.  

As shown in Fig. 3(a), a uniform honeycomb structure with a volume fraction of 19.47% is 

considered. In Material Designer, we generated the homogenized (effective) material properties, 

which were then transferred to a new Engineering Data object and applied to the homogenized 

models. The homogenized models are simple rectangles with no honeycomb structure, but they 

utilize the material properties calculated using Material Designer. Fig. 3(b)-(d) shows the phase 
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(a) Representative volume element (RVE) (b) Phase material properties of Nylon 12 

 

 
(c) 2D meshed geometry of the RVE (d) Homogenized (Effective) material properties 

Fig. 3 Honeycomb unit cell and its phase and effective material properties 

 

 

material properties of the unit cell and the effective material properties obtained from the Material 

Designer, respectively.  

The proposed method was implemented as an independent reduction method using in-house 

code. The unit cell model was discretized using plane stress quadrilateral elements in ANSYS® ; it 

has 714 nodes, 560 elements, and 1,428 degrees of freedom (2 DOFs per node). The meshed 

geometry of the unit cell is depicted in Fig. 3(c). 

Table 2 shows three honeycomb structures and their homogenized models. The honeycombs are 

constructed with a periodicity of 3 × 3, 6 × 6, and 9 × 9, respectively. These structures are fixed 

at the left edge, and all nodes connected to neighboring elements are designated as master DOFs. In 

addition, Table 2 shows the number of total and master degrees of freedom and the reduction 

percentage of each honeycomb using the proposed method. The 3 × 3 honeycomb, for instance, 

has 360 master DOFs, which are taken into account to construct the reduced system matrices; this 

makes the final reduced system 2.88% of the global system. Table 3 lists the first ten modal 

frequencies of the full and reduced models obtained using the proposed method and the first ten 

modal frequencies of the actual and homogenized models obtained from ANSYS® . Using the 
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Fig. 4 Relative frequency errors of the proposed method for the honeycomb structures 

 
Table 2 Honeycomb structures and their homogenized models 

Periodicity Proposed Method 
ANSYS®  

Actual Model Homogenized Model 

3 × 3 

 
Total DOFs=12,492 

Reduced DOFs=360 

Reduction ratio (%)=2.88% 
 

𝑙=41.16 mm 𝑤=23.76 mm 𝑙=41.16 mm 𝑤=23.76 mm 

6 × 6 
 

Total DOFs=49,608 

Reduced DOFs=1800 

Reduction ratio (%)=3.63% 

 
𝑙=82.32 mm 𝑤=47.52 mm 

 
𝑙=82.32 mm 𝑤=47.52 mm 

9 × 9 
 

Total DOFs=11,348 

Reduced DOFs=4320 

Reduction ratio (%)=3.88% 

 
𝑙=123.48 mm 𝑤=71.28 mm 𝑙=123.48 mm 𝑤=71.28 mm 
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Table 3 The proposed method and ANSYS®  results of the first ten modal frequencies (Hz) of the honeycomb 

structures 

Periodicity  Model 
Mode 

1 2 3 4 5 6 7 8 9 10 

3 × 3 

In-house 

Code 

Full 494.4 1959.2 2006.1 3795.9 4382.7 4510.5 4873.4 4947.1 5562.4 6297.8 

Proposed 

Method 
494.4 1959.2 2006.1 3795.9 4382.9 4510.5 4873.5 4947.1 5562.5 6298.0 

ANSYS®  

Actual 486.1 1928.5 1972.6 3732.3 4299.8 4440.5 4787.6 4864.3 5467.7 6192.8 

Homogenized 664.5 2170.7 2332.0 4289.0 5088.3 5652.6 6475.0 7027.0 7474.0 7474.2 

Difference* 0.3100 0.1182 0.1670 0.1388 0.1680 0.2402 0.2996 0.3637 0.3100 0.1875 

6 × 6 

In-house 

Code 

Full 280.3 996.2 1051.8 1957.8 2338.4 2631.1 2776.4 3026.6 3227.2 3472.7 

Proposed 

Method 
280.3 996.2 1051.8 1957.8 2338.4 2631.1 2776.4 3026.6 3227.2 3472.7 

ANSYS®  

Actual 283.6 1007.1 1063.6 1982.2 2371.2 2668.7 2811.0 3056.7 3265.3 3509.8 

Homogenized 331.9 1085.1 1165.5 2143.8 2544.2 2825.5 3237.5 3512.3 3736.4 3736.8 

Difference* 0.1569 0.0746 0.0914 0.0783 0.0704 0.0571 0.1410 0.1387 0.1346 0.0627 

9 × 9 

In-house 

Code 

Full 194.3 666.9 714.3 1317.1 1578.5 1768.1 1942.3 2101.5 2250.9 2336.6 

Proposed 

Method 
194.3 666.9 714.3 1317.1 1578.5 1768.1 1942.3 2101.5 2250.9 2336.6 

ANSYS®  

Actual 196.4 674.8 721.4 1337.4 1599.0 1786.4 1970.3 2129.2 2275.5 2361.1 

Homogenized 221.2 723.4 776.9 1429.1 1696.1 1883.6 2158.3 2341.3 2490.9 2491.1 

Difference* 0.1188 0.0695 0.0741 0.0663 0.0589 0.0530 0.0911 0.0949 0.0904 0.0536 

*Difference= |𝜔𝐴𝑐𝑡𝑢𝑎𝑙 − 𝜔𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑧𝑒𝑑| (
1

2
(𝜔𝐴𝑐𝑡𝑢𝑎𝑙 + 𝜔𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑧𝑒𝑑))⁄  

 

 

proposed method and ANSYS®  actual model, it appears that the natural frequency values are similar, 

with maximum relative frequency errors of 0.0172, 0.0116, and 0.0104 for the 3 × 3, 6 × 6 and 

9 × 9 honeycombs, respectively. As the number of substructures increases, the relative frequency 

errors decrease. As the periodicity increases from 3 × 3to9 × 9, the difference between ANSYS®  

actual and homogenized models decreases from 0.3100 to 0.1188. In light of this, we can conclude 

that as we increase the number of substructures in the homogenized model, the results become more 

accurate and pretty close to the actual model. Fig. 4 compares the relative natural frequencies of the 

first 30 modes of the three honeycombs generated by the proposed method; as the number of 

substructures increases, the relative frequency errors decrease. Table 4 shows some selected mode 

shapes of the three honeycomb structures as obtained using the proposed method and ANSYS® . 

 

 

6. Conclusions 
 

The IRS-based substructuring technique was proposed for accurate and efficient modal analysis 

of periodic composite structures, and its effectiveness was demonstrated through numerical 

examples, and it was compared to the homogenization method and found that 

• Regardless of the size of the periodic structures under consideration, the proposed method 

yielded accurate results for low and medium frequency ranges. 

• Depending on the number of substructures, the homogenization method had varying levels of 
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Table 4 Mode shapes of the honeycomb structures as obtained using the proposed method and ANSYS®  

Periodicity Proposed Method 
ANSYS®  

Actual Model Homogenized Model 

3 × 3 
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accuracy. It became more accurate as the number of substructures increased. 
As Geers et al. (2010) studied, in the case of the homogenization method, the microscale 

structures (RVEs) should be significantly smaller than macroscale structures while still being large 
enough to exhibit the correct macroscale characteristics. In the absence of this assumption, macro 
and microscales cannot be modeled independently. Moreover, the accuracy of the homogenized 
solution depends on how well materials, phases, and interfaces are described at the microscale. 
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