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Abstract.  The present research considers the stability and corresponding modes of two axially compressed joined 
cross-ply laminated conical shells. The joined conical shells are the general case of a wide area of joined structures, 
including cylinder-cone, cone-plate, cylinder-plate, stepped thickness cone and stepped thickness cylinder. The 
principle of minimum potential energy is applied to extract the equilibrium equations under the thin Donnell type shell 
theory assumptions. The analytical procedure is used to solve the equations by applying trigonometric and series 
responses in circumferential and meridional directions, respectively. To ensure from accuracy and correctness of the 
results, the finite element analysis is done for various stacking sequences and the analytical results are compared and 
validated with other literature and finite element results. Finally, the effects of some parameters including semi-vertex 
angles, meridional lengths, number of layers and various kinds of simply supported and clamped boundary conditions 
at both ends are studied. 
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1. Introduction 
 

Due to high capacity of load carrying, shells of revolution and joined shells find extensive uses 

in engineering branches like construction, mechanical and aeronautical structures. The joined shell 

structures, made from shell parts joined along their boundaries, experience high values of bending 

moment and shear force near the joining region. It causes the more instability in these structures. 

Therefore, the instability of the shells is one of the most important modes of failure of joined shell 

structures and needs more attention. 

The stability and vibrational behavior of joined shells are one of the attractive subjects in recent 

years. Most previous investigations are focused on vibration of the joined shells (Shakouri and 

Kouchakzadeh 2014, Sarkheil et al. 2017, Bagheri et al. 2018, Izadi et al. 2018). However, there are 

some published papers on stability of joined shells. Flores and Godoy (1991) applied finite element 

analysis to study the buckling and post-buckling of cone-cylinder and sphere-cylinder shells under 

external pressure. A comprehensive review of recent works on joined shells is performed by 

Pietraszkiewicz and Konopinska (2015). 

The elastic buckling and post-buckling of joined conical-cylindrical shells subjected to internal 
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pressure was studied by Teng and his colleagues (Teng 1996, Teng and Barbagallo 1997, Teng and 

Ma 1999, Zhao and Teng 2003), and the plastic buckling analysis of thick isotropic cone-cylinder 

and cap-cylinder shells for radius/thickness ratio of 50, under external pressure is investigated by 

Bushnel and Galletly (1974). Zerin (2012) studied the effect of non-homogeneity on the stability of 

laminated orthotropic conical shells subjected to hydrostatic pressure.  

Anwen (1998) showed that the insertion of a toroidal segment between the cone and cylinder 

results in slightly higher external buckling pressures than that of cone–cylinder shell without 

transition. The nonlinear thermo-elastic buckling and post-buckling characteristics of laminated 

conical-cylindrical and conical–cylindrical–conical joined shells, subjected to uniform temperature 

rise is studied by Patel and his colleagues (Patel et al. 2005, 2006, 2008). Shakouri et al. (2016) 

investigated the buckling of conical shells under compression with various imperfection shapes.  

The joined conical shells are a general case for a wide range of joined shells and plates. As an 

example, the joined cone-cylinder or joined cone-plate analyses are the special cases of two joined 

conical shells, when the semi-vertex angle tends to 0⁰ or 90⁰, respectively. Therefore, study of two 

joined conical shells can cover the results for the special cases mentioned above (Kouchakzadeh and 

Shakouri 2014). There are a few published papers on buckling of joined conical shells. The 

axisymmetric buckling of joined isotropic conical shells is studied in (Kouchakzadeh and Shakouri 

2015) and a closed form solution is introduced. The stability of joined isotropic conical shells under 

axial compression is studied in (Shakouri and Kouchakzadeh 2013) for simply-supported boundary 

conditions at both ends.  

As can be seen above, most of the previous works on the stability of joined shells are focused on 

isotropic materials and the buckling analysis of joined laminated conical shells need more attention. 

In this study, the buckling load and modes of two joined cross-ply conical shells under axial 

compression are studied. The governing equations and continuity conditions at joining section are 

obtained using minimum potential energy. The equations are solved by assuming trigonometric 

response in circumferential and series solution in meridional direction. The results are compared and 

validated with the available results in the other papers. Effects of semi-vertex angles, meridional 

lengths, number of layers and various boundary conditions on the buckling load are investigated. 

 

 

 

Fig. 1 Geometry of two joined conical shells 
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Fig. 2 Lamination of cross-ply layers 

 

 

2. Governing equations for joined conical shells 
 

2.1 Displacements and strains 
 

Consider a set of two joined conical shells with (x,θ,z) coordinates as shown in Fig. 1, where x is 

the coordinate along the cones’ generators with the origin placed at the middle of the generators, θ 

is the circumferential coordinate and z is the coordinate normal to the cones’ surfaces as shown in 

Fig. 2. R1, R2 and R3 are the radii of the system of cones at its first, middle and end, respectively,  

and  the semi-vertex angles of cones and L1 and L2 are the cone lengths along the generators. The 

thicknesses of cones are t1 and t2. 

The shells are made of NL layers of laminates with the fibers in 0 or 90 degrees with respect to 

the x axis and the stacking sequences of the layers is as shown in Fig. 2. 

Applying the classical shell theory, the displacement field is: 
 

 (1) 

where the parameters , and  are displacements, u, v and w are displacements of the mid-

plane in x, θ and z directions respectively, and βx and βθ are rotations about x and θ directions, 

respectively. 

According to the thin-walled shallow shell theory of Donnell-type, the strains and curvature 

changes in the middle surface of each cone can be written as (Qatu 2004) 
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(3) 

where R(x) is cone’s radius at any point along its length and may be expressed as 

 (4) 

and 

 (5) 

The parameters ( ) are the membrane strains, and ( ) are the flexural (bending) 

strains, known as the curvatures. 

 

2.2 Constitutive relations 
 

The stress-strain relation for cross-ply laminated conical shell can be shown as (Reddy 2004) 

 
(6) 

in which (Nxx, Nθθ, Nxθ) and (Mxx, Mθθ, Mxθ) are stress and moment resultants measured per unit 

length, respectively and (Aij, Dij, Bij) are extensional, bending and bending-extensional coupling 

stiffnesses which are defined in terms of the lamina stiffnesses Qij as  

 (7) 

where NL is total number of layers in lamina, the subscript k denotes the kth layer of the laminate 

andQijs are transformed stiffnesses and for cross-ply laminates are expressed as 
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 (8) 

where  is the angle of each ply and Qijs are known in terms of the engineering constants: 

 (9) 

 

2.3 Governing equations 
 

The strain field can be used to drive the governing equations of isotropic conical shells by the 

use of minimum potential energy theory. We have  

 (10) 

where  denotes the virtual strain energy, and  is the virtual potential energy due to the 

applied loads. 

 (11) 

  

(12) 

Here, V is the volume of the shell, 𝑁�̂�, 𝑇�̂�, 𝑆�̂�, 𝑀�̂� are stress resultants due to applied axial 

load, and (N, M) are stress resultants measured per unit length and defined as  

 (13) 

By substitution of Eqs. (2)-(5) and Eq. (13) into Eqs. (11) and (12), we have 
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 (14) 

 
(15) 

Substituting  and  from Eqs. (14) and (15) into the virtual work statement (10), we 

obtain 

 (16) 

where  and  denote the shear resultants at x and θ directions, respectively and are defined as 

 (17) 

Also, P.B.T. is pre-buckling loads defined as 

 (18) 

where stress resultants with subscript ‘0’ denote the pre-buckling loads and they can be expressed 
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 (19) 

The boundary conditions are then given by  

 

(20) 

Thus -neglecting nonlinear terms- the primary or essential variables (i.e., generalized 

displacements) are u0, v0, w0, w0/x and secondary variables (i.e., generalized forces) are Nx, Tx, Vx, 

Mx in which 

 (21) 

 

 

3. Solutions for buckling of joined laminated conical shells 
 

By the use of trigonometric solution in θ direction  

 (22) 

and series solution in x direction, and with the approach described by Tong and Wang (1992) we 

have 
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 (24) 

Gi,j coefficients are given in the Appendix. With these equations, one can evaluate all coefficients 

in u(x), v(x) and w(x). Coefficients a0, a1, b0, b1, c0, c1, c2 and c3 should be calculated from the 

boundary and continuity conditions. The general form of displacement functions u(x), v(x) and w(x) 

are in the form 

 (25) 

 

3.1 Boundary and continuity conditions 
 

All boundary conditions can be used at both ends of the joined cones. We use four subclasses of 

simply-supported, clamped and free boundary conditions as 
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 (28) 

All of the above mentioned boundary conditions are applicable in the current solution method. 

The continuity conditions at the conical shell joint can be obtained from Eq. (20) as: 

 
(29) 

Applying Eqs. (22) and (23) in continuity conditions and desired boundary conditions results in 

a set of 16 algebraic equations as eigenvalue problem and the axial buckling load of the joined cross-

ply conical shells can be obtained by solving this eigenvalue problem. 

 

 

4. Numerical results and discussions 
 

4.1 Comparative study 
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The values of buckling ratio cr and circumferential wave number n obtained from the present study 
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is defined as 
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The coefficients in the constitutive Eq. (6) for anti-symmetric cross-ply laminate is (Tong and 

Wang 1992) 

 
(32) 

The material of lamina is assumed to be graphite/epoxy, with the following properties (Tong and 

Wang 1992): 

 (33) 

The results are shown in Table 1 for different values of L/R0 and semi-vertex angles (). Good 

agreement for cr can be observed.  

In addition, Table 2 presents the comparison of the results of this study with finite element method 

(FEM) for cross-ply laminated conical shells with various stacking sequences in which R1/h = 100, 

L/R1 = 0.2 and α = 30°. 

The FE analysis is performed using ANSYS software with 4-node shell element with linear element 

formulation, reduced-integration, and hour-glass control, which has six degrees of freedom at each 

node, three translational displacements in the nodal directions and three rotational displacements 

about the nodal axes. The boundary condition is considered to be S4 simply-supported at both ends. 

The model subjected to axial compression and the mesh convergence is obtained using 800 elements. 

By the use of LANCZOS method, (Moaveni 2015) eigenvalue problem is solved and the linear 

buckling load for various stacking sequences is investigated. Results are in good accordance both in 

critical load ratio and circumferential wave numbers. 

 

 

Table 1 Buckling ratio cr and circumferential wave number(n) for anti-symmetric cross-ply laminate with S4 

boundary conditions (R1/h = 100.0) 

L/R0 NL 
 =10⁰  =30⁰ 

Present Tong and Wang (1992) Present Tong and Wang (1992) 

0.2 

2 0.1621(9) 0.1615(9) 0.1392(9) 0.1370(9) 

4 0.2160(8) 0.2151(8) 0.1862(8) 0.1832(8) 

6 0.2200(8) 0.2190(8) 0.1897(8) 0.1867(8) 

∞ 0.2211(8) 0.2202(8) 0.1911(8) 0.1878(7) 

0.5 

2 0.0768(9) 0.0769(9) 0.0626(7) 0.0629(9) 

4 0.1060(6) 0.1068(6) 0.0829(6) 0.0830(6) 

6 0.1076(6) 0.1085(6) 0.0842(6) 0.0846(6) 

∞ 0.1072(6) 0.1081(6) 0.0840(6) 0.0845(6) 
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Table 2 Buckling ratio cr and circumferential wave number(n) for various stacking sequences for S4 boundary 

conditions (R1/h = 100.0, L/R1 = 0.2 and α = 30°) 

Stacking sequences Present FE 

(0/0/90) 0.1094(8) 0.1091(8) 

(0/90/90) 0.1652(9) 0.1616(8) 

(0/90/0) 0.0589(7) 0.0578(7) 

(0/90/90/90) 0.1860(10) 0.1747(8) 

(0/0/90/90) 0.1343(9) 0.1319(8) 

(0/0/90/0) 0.0620(7) 0.0603(7) 

(0/90)S 0.0841(7) 0.0815(7) 

(02/90)S 0.0589(7) 0.0578(7) 

(0/90/0)S 0.1247(7) 0.1183(7) 

(0/902)S 0.1336(7) 0.1255(7) 

 

  
NL = 2 NL = 4 

  
NL = 6 NL = ∞ 

Fig. 3 Effects of L/R1 on the buckling ratio of joined conical shells versus α2 for various numbers of 

layers [α1=30⁰] 
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NL = 2 NL = 4 

  
NL = 6 NL = ∞ 

Fig. 4 Variation of buckling ratio for different values of NL and α1 [L0/R1 = 0.1 and R1/h = 100.0] 

 

 

4.2 Results 
 

In this section we use the above formulation to study the buckling load of joined anti-symmetric 

cross-ply conical shells. For simplicity, we assume that the shells are made from one material and 

all mechanical properties and also the lengths and thicknesses are the same. Thus we have: 

 (34) 

The effect of L0/R1 on the buckling load of joined conical shells versus  for various numbers of 

layers is shown in Fig. 3. In this figure  is set to 30⁰. It is seen that the buckling load of joined 

shells increase when  moves towards zero (i.e. joined cone-cylinder shells). However, for small 

values of L0/R1, the buckling load drops rapidly when  is close to . 
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Fig. 5 Variation of buckling ratio for different values of NL [L0/R1 = 0.1, α1 = 30⁰ and R1/h = 100.0] 

 

 
Fig. 6 Variation of buckling ratio for different types of clamped boundary conditions [L0/R1 = 0.1, α1 = 

30⁰ and NL = 6] 

 

 

Fig. 4 shows the buckling ratio for L0/R1 = 0.1 and different values of NL and α1. It can be seen 

from Fig. 3 and 4 that the minimum value of buckling load with specified lengths occurs when α2 is 

close to α1 but it varies by number of layers. 

Effect of number of layers on buckling ratio of joined anti-symmetric cross-ply conical shells is 

shown in Fig. 5. It is assumed that L0/R1 = 0.1 and α1 = 30⁰. It is seen that the buckling load of joined 

shells is very low when we have only 2 layers. It is due to the effect of strong asymmetry of 

lamination sequence that causes buckling in lower loads. When we use more layers, the laminate 

approach to symmetric condition and the buckling load get larger. In addition, the place of minimum 

buckling ratio (i.e., the α2) varies with number of layers from angles 3 degrees less to 3 degrees more 

than α1.  
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Effect of various types of clamped boundary conditions at both ends on buckling loads of joined 

anti-symmetric cross-ply conical shells is shown in Fig. 6. It is assumed that L0/R1 = 0.1, α1 = 30⁰ 

and NL = 6. It can be seen that when α1 = α2, all four types of clamped boundary conditions have 

approximately the same buckling ratio and C2 and C4 types of clamped boundary conditions have 

the same behavior. However, when the semi-vertex angles are not the same, the change in buckling 

loads are dissimilar. 

 

 

5. Conclusions 
 

In this paper, the buckling load of two joined conical shells is studied and the results are validated 

with the other papers and finite element analysis. Meanwhile, the effects of semi-vertex angles, 

meridional lengths, number of layers and various kinds of simply supported and clamped boundary 

conditions at both ends on the buckling loads of joined anti-symmetric cross-ply conical shells is 

presented. The major outcomes of this study 

• The buckling load of joined conical shells is increased when conical shells move towards the 

cylindrical shell. 

• For the short cones, the buckling load of joined conical shells decreases rapidly when the two 

semi-vertex angles come close to each other. Usually, the minimum buckling load occurs when the 

semi-vertex angles are a few degrees apart from each other. The position of this minimum (on α2 

axis) varies with the number of layers. 

• Using more layers (in constant thicknesses) of anti-symmetric laminates, the buckling load 

increase due to decrease in lamination sequence asymmetry of the conical shell. 
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