

Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

www.jcde.org

Development of educational software for beam loading analysis
using pen-based user interfaces

Yong S. Suh

Department of Mechanical Engineering, California State University, Sacramento, 6000 J Street, Sacramento, CA, U.S.A.

(Manuscript Received September 6, 2013; Revised November 11, 2013; Accepted November 11, 2013)

--

Abstract

Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the so-

lution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-

based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape

matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions.

Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides

aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solv-

ing the problems.

Keywords: Beam loading analysis; Pen-based interface; Education software; Shape matching

--

1. Introduction

Shafts and beams are commonly used in mechanical com-

ponents, building structures, and bridges. Many mechanical

and civil engineering courses include the topic of analyzing

the stresses and deflections of simple beams and shafts under

various lateral loadings. [1-3] A simple beam is a straight

beam with a constant section, and the analyses are relatively

easy to solve by hand without complex digital computer sim-

ulations. An example of a simple beam-loading problem is

shown in Figure 1. Students need to calculate the shear force,

bending moments, and deflections along the beam, and iden-

tify the location and magnitudes of their maximum values.

Although the problems can be solved analytically on paper,

the computational steps are usually tedious and prone to error.

There are many commercial [4-6] and noncommercial [7, 8]

software programs available for the analyses. There are also

many systems [9-17] designed to be used as educational tools

for the beam and structural analyses. Most of them are usual-

ly designed to generate solutions quickly and automate the

processes for ease of use. Although effective in obtaining

solutions, they may not be the best educational tools for

learning the concept. Most of all, the user interfaces of the

current educational software may not be ideal for educational

purposes. They use the WIMP (Windows, Icons, Menus, and

Pointers) based graphical user interfaces (GUI), in which

users choose the loading conditions and parameters from the

menus or icons or dialog boxes. This user interface deviates

from the traditional learning mode that is using a pen on pa-

per. Recent studies [18, 19] show that the students will learn

better in their learning when the user interface is closer to the

familiar work practice. According to Oviatt et al. [19], using

a graphical user interface (GUI) increases students’ cognitive

load, causing distractions to learning. They conclude that

learning performance is best with interfaces similar to the

existing work practice of using pen-and-paper. In the tradi-

tional method, students learn by taking their time in drawing

beams, marking loading symbols, writing and solving equa-

tions by hand. The magnitudes of loadings, shear forces,

moments, and deflections along the beam are also drawn

graphically by hand, based on the hand calculations. The

Figure 1. A statically determinate beam under loads.

*Corresponding author. Tel.: +1 916-278-6162 Fax.: +1 916-278-7713

E-mail address: ysuh@csus.edu

© 2014 Society of CAD/CAM Engineers & Techno-Press

doi: 10.7315/JCDE.2014.007

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

Figure 2. UI for writing singularity functions.

Figure 3. UI for sketching graphs.

68

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

WIMP-based user interface is limited in bringing such manu-

al interfaces to the students.

On the other hand, computer-based educational tools have

advantages over the traditional pen-and-paper method in that

they can give interactive feedback to the students, automate

grading for instructors, and provide an easy way of archiving

students’ works and progresses.

A pen-based computer user interface can be a good alter-

native tool by taking the advantages of both the approaches.

In this paper, the design and implementation of an education-

al software tool for the beam loading analysis using a pen-

based interface is described. Although there are many alter-

nate devices with the pen strokes interfaces available, the

system described in this paper is implemented on a tablet PC.

2. Beam analysis using singularity function

Although there are a few different approaches, the beam

problems can be systematically (and programmatically)

solved by using the singularity functions [1]. A singularity

function, fn(x), is expressed and defined as in Equation (1).

Where n > -3 is an integer, and x is the distance along the

beam and a is the value of x where the function begins. The

Dirac delta, ,is a unit impulse function. A mathematical

model of a load to a beam can be represented by a combina-

tion of one or more singularity functions. The singularity

function is chosen because it is not only easy to write and

solve by hand, but also easy to convert to computer algo-

rithms.

 ()
 {

 ()

()

}

∫

 {

}

(1)

To add a certain load to a beam, students are required to

write the singularity functions of the load in question. An

alternative way is to draw a symbolic sketch of the load to

the beam, and the symbol is recognized and converted to the

corresponding one or more singularity functions. The system

performs all computations based on the singularity functions

internally. Detailed descriptions on solving the beam prob-

lem using the singularity functions can be found in [1-3].

3. User interface design

Whenever it is applicable and appropriate, pen-based user

interfaces such as stroke-gestures, sketching, and handwriting

are used in this system. Figure 2 shows a screen shot of the

system in defining the loads on a beam. The upper half of the

window, the beam canvas area, displays a beam. Users can

add loads to the beam by sketching the corresponding sym-

bols above the beam. The system recognizes the strokes as

gesture inputs, and the matching load symbol is recognized.

A corresponding singularity function of the recognized sym-

bol is automatically generated and added to the function list

below. For compound loads, multiple singularity functions

are generated.

Conversely, users can also write singularity functions on

the function input panel in the middle below the beam panel.

Because all the singularity functions share a fixed format,

users only write parameters (numbers) for better accuracy of

recognizing the handwritings. As a user makes a checkmark

gesture after finishing writing the parameters, the system

recognizes the singularity function. At the same time, the

load symbol for the recognized loading is also automatically

drawn on the beam canvas as shown in Figure 2.

Once all the loads are added to the beam, students are re-

quired to sketch graphs for the various states of the beam due

to the loads. Figure 3 displays the system in the graph-

drawing mode. If a user selects the Graphs tab in the middle

of the window, a graph canvas replaces the function input

panel so students can sketch graphs. Grids are displayed for

guidelines, and students can draw loading, shear, moment,

slope, and deflection of the beam. Figure 3 displays the dis-

tribution of the shear force along a beam under a set of loads

generated by the system. In the learning mode, however, the

graph is not displayed and students are required to sketch the

curves.

4. Setting beam properties

The Young’s modulus of the beam material is required to

calculate the deflections of a beam under loads. The moment

Table 1 Beam section templates.

 Parameters Sketched sections

R
ec

ta
n
g

le

C
ir

cl
e

I-
B

ea
m

69

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

of inertia of the section geometry is also required. In the fol-

lowing subsections, pen-based user interfaces for assigning

the beam properties are described.

4.1 Setting material properties

Users can specify the material by selecting one from a list

of pre-defined materials in the beam definition dialog win-

dow as shown in Figure 4. Custom materials not on the list

can be added by writing the value of the Young’s modulus.

4.2 Beam section geometry

The section geometry of a beam is sketched by the user on

the right-hand side of beam definition dialog as shown in

Figure 4. The system recognizes the sketch and finds the

correct beam section in the beam section database. Currently,

only the following set of pre-defined section geometry has

been implemented for a concept proof as listed in Table 1.

Additional shapes can be added to the database without mod-

ifying the algorithm.

Once a user sketches a beam section and draws a check-

mark gesture, the system searches for a matching geometry

from a section database. The following section describes the

algorithm in detail.

4.3 Shape matching algorithm

Among various shape matching algorithms available, the

shape histogram method [20] is modified and used as a shape

descriptor in this application. In the shape histogram method,

a sufficient number of points on a shape are randomly chosen,

and the Euclidean distances between an exhaustive combina-

tion of pairs of the points is recorded. The distances are then

normalized, and similar distances are grouped and put into a

predefined number of bins. In this application, the normaliza-

tion is performed by simply dividing the distances by the

longest distance. A histogram is then created by counting the

number of point-pairs in each bin. Histograms of typical

beam-section shapes are shown in Figure 5. In these histo-

grams, 50 bins are arranged horizontally in the order of dis-

tances, and the corresponding numbers of point-pairs in the

bins are plotted in the vertical axis. Notice the distinctive

characteristic of the histogram of each shape, and the similar-

ity of the histograms of the two I-beams even if they are in

different orientations.

Histograms for various shapes are generated and stored as

templates in a database. When a user sketches a shape, its

histogram is created and compared with all the template his-

tograms in the database. The shape is then recognized as the

one that matches best.

There are many methods to measure the similarities among

histograms [20-22], and we use the Minkowski L2 Norm

(Euclidean distance) method [20] in which a Probability

Density Function, D, is computed for discrete sets of f and g

Figure 5. Histograms of section templates.

Figure 6. Distance-angle histogram.

Figure 4. Setting beam properties.

70

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

as follows:

 () √∑()

 ()

In general, shape descriptors are invariant to the orienta-

tions and sizes of the shapes such that similar shapes can be

found regardless of their orientations and sizes. In this appli-

cation to the beam section, however, the orientation is im-

portant because the value of the moment of inertia is depend-

ent on the orientation. On the other hand, the matching algo-

rithm must be tolerant to certain misalignments in the orien-

tations as the sketch is drawn by hand. Therefore, we need to

modify the shape descriptor that distinguishes significant

differences but is invariant to slight differences in the orienta-

tion. It also needs to be invariant to any size differences.

To distinguish the orientations of similar shapes, a two-

dimensional histogram is introduced. In addition to the dis-

tance histogram described above, we also compute the angles

of the point-pairs with respect to a reference line (e.g., hori-

zontal X axis). Assuming that we can capture the orientation

of a shape by checking the angles of the particular point-pairs

that are far apart (long enough distances between the two

points), we compute the angles only for the point-pairs

whose distances are longer than a threshold distance to re-

duce the computation time. We choose the half of the diago-

nal distance of the bounding box of the shape as the threshold.

For each distance bin in the histogram, angles of the point-

pairs in the bin are computed and put into sub-bins. We use 5

degrees as the size of the sub-bins (second direction of the

two dimensional array), so there may be at maximum 36

(=180/5) sub-bins in each distance bin. We use a Hash data

structure to save storage space and speed storing and pro-

cessing the 2-dimensional histogram. Figure 6 illustrates the

two-dimensional histogram. Experiments show that the tool

performs fast enough to be successfully used as an interac-

Distance histogram Angle histogram

I-
b

ea
m

at

0

°


#

 o
f

p
ai

rs


A

n
g

le

Distance Distance

I-
b

ea
m

at

9

0
°


#

o

f
p

ai
rs


A

n
g

le

Distance Distance

Figure 7. Histograms of I-beam in two orientations.

71

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

tively by users.

Figure 7 shows an example of the histograms of an I-beam

that are in different orientations. In the angle histogram, the

horizontal axis is the distance bins (larger than the threshold

value), and the vertical axis represents the angle bins from 0°

to 180°. The color code represents the number of point-pairs

in each angle bin. Notice that the distance histograms are

similar for both I-beams regardless of the orientation. But the

angle histograms are different each other and distinguishable.

The similarity of two histograms is measured by a score

that is computed by a linear combination of the scores of the

distance histogram and the angle histograms as follows:

 ()

We set C1 and C2 to be 0.5, and Dd and Da are computed

using Equation (2).

Once a matching shape is recognized, the Beam Definition

dialog shows the selected section shape and the users need to

write the parameters specifying the exact size of the section

as shown in Figure 8.

5. Beam supports

Currently, the system only allows determinate systems

with up to two supports per beam. Users can add a fixed sup-

port (constraining the beam both horizontally and vertically)

by sketching a triangle, and add a non-fixed support (con-

straining the beam vertically) by sketching a circle as shown

in Figure 9. A cantilever beam has one support and a moment

at one end of the beam.

As a support is recognized, users are required to write the

location (X coordinate) of the support as shown in Figures 9

Table 2 Loads.

Load Symbol Gesture Singularity Fn

M
o
m

en
t

m<x‐a>
-2

U
n
it

 i
m

p
u
ls

e

m<x‐a>
-1

U
n
it

 s
te

p

m<x‐a>0

R
am

p

m<x‐a>-1

(a) and (b). The sketched gestures are replaced by the support

symbols as shown in Figure 9(c). The reaction forces are au-

tomatically computed whenever the user adds or modifies the

loads to the beam, which may or may not be displayed to the

students. A support can be edited at any time by tapping on

the symbol with a stylus pen.

6. Beam Loads

6.1 Types of loads

The loads can be added to a beam by sketching gestures on

the beam canvas, or writing singularity functions correspond-

ing to the loads. The types of the loads supported are summa-

rized in Table 2.

6.2 Adding loads by gesture input

The load symbols are sketched in the beam canvas area.

Instead of using symbol recognition [23, 24], a gesture-based

interface [25] is used. Table 2 illustrates the loads and their

gestures. The gestures are recognized by the first one or two

strokes of the actual symbols. As a user sketches a gesture,

the system prompts the user to write load parameters as

shown in Figure 10(a).

The user writes the values for the location and the magni-

tude of the load, and then the gesture strokes are replaced by

the symbol of the recognized load at the correct location as

shown in Figure 10(b). At the same time, corresponding sin-

gularity function(s) is (are) also created and displayed. Notice

in that the reaction force is automatically recalculated after

the load is added as illustrated in Figure 10.

6.3 Adding loads by writing singularity functions

Alternatively, users can also write singularity functions to

Figure 8. Entering parameters for section geometry.

72

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

add loads using the load canvas panel. For the robust recog-

nition of equations, users will write each parameter of the

singularity function in each compartment as shown in Figure

11.

After writing a singularity function, a user makes a

checkmark gesture to let the system recognize the load. Then

the corresponding symbol for the load is added to the beam

graphics area. Compound loads can be represented by a

combination of multiple singularity functions.

7. Sketching loading graphs

Each time a new load is added, the reaction forces at the

supports are updated, and the distributions of the shear forces,

moments, and deflections along the beam are recalculated.

The graphics diagrams of the loads can be displayed with the

maximum values. Figure 3 shows a shear force diagram dis-

played for the beam with the loads.

The diagrams will not be displayed in the learning mode,

however. Instead, students must sketch the diagram by hand,

(a)

(b)

(c)

Figure 9. Adding supports to a beam: (a) adding a fixed support, (b) adding a non-fixed support, (c) recognized supports.

73

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

and the correctness of the sketched diagrams is checked and

graded automatically.

7.1 Grading the graphs

Students’ sketched diagrams cannot be directly compared

with the computer-generated diagrams as the vertical scale is

arbitrary and the sketch quality may not be compatible.

Hence, the free-hand sketches must be checked qualitatively

not quantitatively. Let the X-axis of a coordinate system be

along the beam and the Y axis be vertical as illustrated in

Figure 3. The hand-drawn diagrams are checked for their

correctness based on the following criteria:

 Correct local and global maxima values in Y-axis.

Students write the global maximum value on the di-

agram canvas.

 Correct relative Y values at the junction points

where the loading conditions change.

 Curve types – linear, monotonic, convex, or concave.

The analyses of the hand-drawn graphs are performed by

the following the steps.

1. Find the corner points of the strokes.

2. Split the strokes at the corner points. Divide the

graph into multiple spans at the characteristic points

including the corner points. Find the Y values at the

junctions.

3. For each span, classify the geometry of the curve.

Find the maxima points in each span.

4. Find the global maximum (and minimum) Y value

and its X location is checked.

5. Evaluate/grade the graphs based on the findings.

The following subsections describe the steps in detail.

7.2 Splitting graphs at characteristic points

In the pen-based tablet interface, the computer takes the

movement of a stylus pen into a stroke structure that is com-

posed of a series of ordered points. A continuous movement

without lifting the pen creates one stroke. Hence, a stroke

may contain multiple curves and lines as users draw them

Figure 11. Writing a singularity function.

(a)

(b)

Figure 10. Adding a ramp load by gesture input.

74

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

without lifting the pen. The stroke needs to be broken down

into multiple segments so that each segment can be repre-

sented by a continuous polynomial equation (thus, singularity

function). This can be done by finding the corner points in

the stroke, and splitting the stroke at the points.

Unfortunately, the corner detection problem of freehand

drawing is not trivial, and many different segmentation algo-

rithms [26-30] have been proposed. The sliding rectangle

method [31] is modified and adopted in the system. Before

applying the corner detection algorithm, the input strokes

must be re-sampled so that the points in the strokes are uni-

formly distributed. Figure 12 shows an example of corner

points identified from a hand-drawn graph.

Once the corner points are detected and the strokes are

split into multiple segments, the following analyses are per-

formed for each segment.

7.3 Identifying curve geometry

For each segment span of the hand-drawn graph, the in-

tended geometry is recognized and classified into one of the

following categories.

A stroke is identified as a line by fitting the points to a line

with the least squares method. If the error is smaller than a

threshold value, the segment is identified as a straight line. If

a segment is identified as a non-linear curve, check if the

curve is monotonic using the following simple algorithm

shown in Figure 13.

7.4 A rubric for grading graphs

After the sketched graph is analyzed, it is graded based

on the followings:

1. Check the location of the overall maximum (or min-

imum) point of the graph. Students may write the

magnitude of the maximum value on the graph can-

vas. Also, the X location of the maximum value

along the beam needs to be checked.

2. Check the spans of the segments. Find and check the

locations of the characteristic points such as corner

points and intercepts. The relative Y values are

checked by ordering the points along to the Y-axis.

Check if the orders are all correct.

3. Check the geometric type of the segments ac-

cording to the classifications in Table 3.

8. Implementation

The software is implemented on a tablet PC running Mi-

crosoft Windows operating system. The Windows Presenta-

tion Foundation (WPF) is used for the graphics and user in-

terfaces with the Microsoft Visual Studio using C# language.

For the handwriting and gesture recognitions, Microsoft

WPF InkAnalysis module is used. Since the success rates of

the recognizers will generally follow those of Microsoft’s,

any statistical analysis of success rates is omitted in this work.

9. Conclusions

A design and implementation of an educational software

tool for teaching beam analysis is presented. Based on recent

studies, students learn effectively when the user interface is

similar to the familiar work practice. Except the basic univer-

sal interfaces such as opening and saving files, most user

interactions are performed using pen-based interfaces that are

similar to solving problems on paper with a pen, a method

Figure 12. Segmentation of a graph diagram.

IncreasingSet = 0

DecreasingSet = 0

Point pt0 = strokePoints[0];

For i=1 to i< number of points

 Point pt1 = strokePoints[i]

 If (pt0.Y < pt1.Y)

 IncreasingSet ++

 Else

 DecreasingSet++

End

Threshold = 95% of all points

If (IncreasingSet > Threshold)

 Return “monotonically increasing”

Else if (DecreasingSet > Threshold)

 Return “monotonically decreasing”

Else

 Return “Non-monotonous”

End If

Figure 13. Checking monotonicity of a curved stroke.

Table 3. Geometry classification.

Line

Increasing

Decreasing

Horizontal

Vertical

Non-linear curve
Monotonous

Increasing

Decreasing

Non-monotonous

75

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

familiar to students. The pen-based interfaces let students

take time writing and solving equations and drawing graphs.

The computer-based learning tool also enables students to

receive immediate feedback on their mistakes and automatic

grading. Various known techniques of the pen-based inter-

faces such as corner detection, gesture and handwriting

recognitions are used in the program. To realize the pen-

based interface in the beam loading analysis, a shape-

matching algorithm is modified to recognize sketched beam

section geometry. This paper is focused on the design and

implementation of the software, and the user studies and the

effectiveness of the pedagogical approach are left for further

studies.

References

[1] Norton RL. Machine design: an integrated approach. 3rd ed.

New Jersey: Prentice Hall; 2006. 984 p.

[2] Shigley J, Mischke C, Budynas R. Mechaincal engineering

design. 7
th
 ed. New York: McGraw-Hill; 2003. 1056 p.

[3] Huston, R.L. Practical stress analysis in engineering design,

3rd edition. CRC Press; 2012. 664 p.

[4] Company P, Piquer A, Contero M. On the evolution of geo-

metrical reconstruction as a core technology to sketch-based

modeling. In: Eurographics Workshop on Sketch-Based Inter-

faces and Modeling; 2004 August 30-31; Grenoble, France;

p.97-106.

[5] Alvarado C. Sketch recognition user interfaces: guidelines for

design and development. In: Proceedings of AAAI Fall Sym-

posium on Pen-Based Interfaces; 2004 October 21-24; Wash-

ington D.C.; p. 8-14.

[6] Varley PAC, Suzuki H. Interpreting line drawings of objects

with k-vertices. In: Geometric Modeling and Processing; 2004

April 13-15; Beijing, China; p. 249-258.

[7] Devenport W, Kapania R, Rojiani K, Singh K [Internet]. Beam

view - Java applets for engineering education. Available from:

http://www.engapplets.vt.edu/statics/BeamView/BeamView.ht

ml.

[8] Getze R [Internet]. Beamboy. Available from: http://www.geo

cities.com/richgetze/.

[9] Dempsey KM, Kane JJ, Kurtz JP. Beamtool: Interactive beam

analysis for today's student and tomorrow's engineer. Comput-

er Applications in Engineering Education. 2005; 13(4): 293-

305.

[10] Devenport W, Kappania R, Rojiani K, Singh K [Internet].

EngAPPLETS. Virginia Tech. Available from: http://www.

engapplets.vt.edu

[11] Alvarez-Caldas C, Garcia JLSR, B. Abella BM, Gonzalez AQ.

Educational software to design shafts and analyze them by

FEM. Computer Applications in Engineering Education. 2007;

15(1): 99-106.

[12] Barretto SFA, Piazzalunga R, Ribeiro VG. A web-based 2d

structural analysis educational software. Computer Applica-

tions in Engineering Education. 2003; 11(2): 83-92.

[13] Hillsman VS, Tomovic MM. Beam deflections via computer

algebra systems. In: Proceedings of the Frontiers in Education

Conference; 1995 Nov 1-4; Atlanta, GA; p. 4b4.1-4b4.4.

[14] Maiorana C, Sgarbossa L, Salomon V. New methodologies in

teaching e-structural mechanics using www. Computer Appli-

cations in Engineering Education. 2008; 16(8): 189-210.

[15] T. W. C. Hu [Internet]. Enhanced student learning in engineer-

ing courses with cas technology. Available from:

http://celt.ust.hk/tlsymp07/pdf/R13-ThomasHu.pdf

[16] JEl-Rimawi J, El-Hamalawi A. Dynamic strategy for teaching

structural analysis. Computer Applications in Engineering Ed-

ucation. 2002; 10 (4): 194-203.

[17] Murugappan S, Ramani K. Feasy: a sketch-based interface

integrating structural analysis in early design. In: ASME 2009

International Design Engineering Technical Conferences &

Computers in Information in Engineering Conference,

IDETC/CIE; 2009; San Diego, CA.

[18] Da Silva R, Bischel DT, Lee W, Peterson EJ, Calfree RC,

Stahovich TF. Kirchhoff's pen: a pen-based circuit analysis tu-

tor. In: EUROGRAPHICS Workshop on Sketch-Based Inter-

faces and Modeling. 2007; Riverside, CA; p.75-82.

[19] Oviatt S, Arthur A, Cohen J. Quiet interfaces that help student

think. In: The 19
th
 annual ACM Symposium on User Interface

Software and Technology; 2006; Montreux, Switzerland: p.

191-200.

[20] Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distri-

butions. ACM Transactions on Graphics (TOG); 2002; 21(4):

807-832.

[21] Zhang T, Peng Q. Shape distribution-based 3d shape retrieval

methods: review and evaluation. Computer-Aided Design and

Applications. 2009; 6(5): 721-735.

[22] Lp CY, Lapadat D, Sieger L, Regli WC. Using shape distribu-

tions to compare solid models. In: ACM Symposium on Solid

and Physical Modeling; 2002; Saarbrucken, Germany; p. 273-

280.

[23] Kara LB, Stahovich TF. An image-based, trainable symbol

recognizer for hand-drawn sketches. Computers & Graphics.

2005; 29(4): 501-517.

[24] Kara LB, Stahovich TF. Hierarchical parsing and recognition

of hand-sketched diagrams. In: 17
th
 ACM User Interface Soft-

ware Technology (UIST); 2004; Santa Fe, NM; p.13-22.

[25] Landay JA, Rowe LA, Rowe JA, Michiels J. Visual similarity

of pen gestures. In: SIGCHI Conference on Human Factors in

Computing Systems; 2000; The Hague, The Netherlands; p.

360-367.

[26] Kim DH, Kim MJ. A curvature estimation for pen input seg-

mentation in sketch-based modeling. Computer Aided Design.

2006; 38(3): 238-248.

[27] Stahovich TF. Segmentation of pen strokes using pen speed. In:

AAAI Fall Symposium Series 2004: Making Pen-Based Inter-

action Intelligent and Natural; 2004; Arlington, VA; p. 174.

[28] Qin SF, Wright DK, Jordanov IN. On-line segmentation of

freehand sketches by knowledge-based nonlinear thresholding

operations. Pattern Recognition. 2001; 34(10): 1885-1893.

[29] Sezgin TM. Feature point detection and curve approximation

for early processing of free-hand sketches. Department of

76

 Y. Suh / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77

Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge; 2001.

[30] Wolin A, Eoff B, Hammond T. Shortstraw: a simple and effec-

tive corner finder for polylines. In: Eurographics 2008-Sketch-

Based Interfaces and Modeling (SBIM); 2008; Annecy, France;

p. 33-40.

[31] Masood A, Sarfraz M. Corner detection by sliding rectangles

along planar curves. Computers & Graphics. 2007; 31: 440-

448.

77

