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Abstract 
 

Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the so-

lution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-

based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape 

matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions. 

Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides 

aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solv-

ing the problems. 
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1. Introduction  

Shafts and beams are commonly used in mechanical com-

ponents, building structures, and bridges. Many mechanical 

and civil engineering courses include the topic of analyzing 

the stresses and deflections of simple beams and shafts under 

various lateral loadings. [1-3] A simple beam is a straight 

beam with a constant section, and the analyses are relatively 

easy to solve by hand without complex digital computer sim-

ulations. An example of a simple beam-loading problem is 

shown in Figure 1. Students need to calculate the shear force, 

bending moments, and deflections along the beam, and iden-

tify the location and magnitudes of their maximum values. 

Although the problems can be solved analytically on paper, 

the computational steps are usually tedious and prone to error. 

There are many commercial [4-6] and noncommercial [7, 8] 

software programs available for the analyses. There are also 

many systems [9-17] designed to be used as educational tools 

for the beam and structural analyses. Most of them are usual-

ly designed to generate solutions quickly and automate the 

processes for ease of use. Although effective in obtaining 

solutions, they may not be the best educational tools for 

learning the concept. Most of all, the user interfaces of the 

current educational software may not be ideal for educational 

purposes. They use the WIMP (Windows, Icons, Menus, and 

Pointers) based graphical user interfaces (GUI), in which 

users choose the loading conditions and parameters from the 

menus or icons or dialog boxes. This user interface deviates 

from the traditional learning mode that is using a pen on pa-

per. Recent studies [18, 19] show that the students will learn 

better in their learning when the user interface is closer to the 

familiar work practice. According to Oviatt et al. [19], using 

a graphical user interface (GUI) increases students’ cognitive 

load, causing distractions to learning. They conclude that 

learning performance is best with interfaces similar to the 

existing work practice of using pen-and-paper. In the tradi-

tional method, students learn by taking their time in drawing 

beams, marking loading symbols, writing and solving equa-

tions by hand. The magnitudes of loadings, shear forces, 

moments, and deflections along the beam are also drawn 

graphically by hand, based on the hand calculations. The 

 

 

 

 

Figure 1. A statically determinate beam under loads. 
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Figure 2. UI for writing singularity functions. 

 

Figure 3. UI for sketching graphs. 
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WIMP-based user interface is limited in bringing such manu-

al interfaces to the students. 

On the other hand, computer-based educational tools have 

advantages over the traditional pen-and-paper method in that 

they can give interactive feedback to the students, automate 

grading for instructors, and provide an easy way of archiving 

students’ works and progresses. 

A pen-based computer user interface can be a good alter-

native tool by taking the advantages of both the approaches. 

In this paper, the design and implementation of an education-

al software tool for the beam loading analysis using a pen-

based interface is described. Although there are many alter-

nate devices with the pen strokes interfaces available, the 

system described in this paper is implemented on a tablet PC. 

 

2. Beam analysis using singularity function 

Although there are a few different approaches, the beam 

problems can be systematically (and programmatically) 

solved by using the singularity functions [1]. A singularity 

function, fn(x), is expressed and defined as in Equation (1). 

Where n > -3 is an integer, and x is the distance along the 

beam and a is the value of x where the function begins. The 

Dirac delta, ,is a unit impulse function. A mathematical 

model of a load to a beam can be represented by a combina-

tion of one or more singularity functions. The singularity 

function is chosen because it is not only easy to write and 

solve by hand, but also easy to convert to computer algo-

rithms.  
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To add a certain load to a beam, students are required to 

write the singularity functions of the load in question. An 

alternative way is to draw a symbolic sketch of the load to 

the beam, and the symbol is recognized and converted to the 

corresponding one or more singularity functions. The system 

performs all computations based on the singularity functions 

internally. Detailed descriptions on solving the beam prob-

lem using the singularity functions can be found in [1-3]. 

 

3. User interface design 

Whenever it is applicable and appropriate, pen-based user 

interfaces such as stroke-gestures, sketching, and handwriting 

are used in this system. Figure 2 shows a screen shot of the 

system in defining the loads on a beam. The upper half of the 

window, the beam canvas area, displays a beam. Users can 

add loads to the beam by sketching the corresponding sym-

bols above the beam. The system recognizes the strokes as 

gesture inputs, and the matching load symbol is recognized. 

A corresponding singularity function of the recognized sym-

bol is automatically generated and added to the function list 

below. For compound loads, multiple singularity functions 

are generated.  

Conversely, users can also write singularity functions on 

the function input panel in the middle below the beam panel. 

Because all the singularity functions share a fixed format, 

users only write parameters (numbers) for better accuracy of 

recognizing the handwritings. As a user makes a checkmark 

gesture after finishing writing the parameters, the system 

recognizes the singularity function. At the same time, the 

load symbol for the recognized loading is also automatically 

drawn on the beam canvas as shown in Figure 2. 

Once all the loads are added to the beam, students are re-

quired to sketch graphs for the various states of the beam due 

to the loads. Figure 3 displays the system in the graph-

drawing mode. If a user selects the Graphs tab in the middle 

of the window, a graph canvas replaces the function input 

panel so students can sketch graphs. Grids are displayed for 

guidelines, and students can draw loading, shear, moment, 

slope, and deflection of the beam. Figure 3 displays the dis-

tribution of the shear force along a beam under a set of loads 

generated by the system. In the learning mode, however, the 

graph is not displayed and students are required to sketch the 

curves.  

 

4. Setting beam properties 

The Young’s modulus of the beam material is required to 

calculate the deflections of a beam under loads. The moment 

Table 1 Beam section templates. 
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of inertia of the section geometry is also required. In the fol-

lowing subsections, pen-based user interfaces for assigning 

the beam properties are described. 

4.1 Setting material properties 

Users can specify the material by selecting one from a list 

of pre-defined materials in the beam definition dialog win-

dow as shown in Figure 4. Custom materials not on the list 

can be added by writing the value of the Young’s modulus. 

4.2 Beam section geometry 

The section geometry of a beam is sketched by the user on 

the right-hand side of beam definition dialog as shown in 

Figure 4. The system recognizes the sketch and finds the 

correct beam section in the beam section database. Currently, 

only the following set of pre-defined section geometry has 

been implemented for a concept proof as listed in Table 1. 

Additional shapes can be added to the database without mod-

ifying the algorithm.  

Once a user sketches a beam section and draws a check-

mark gesture, the system searches for a matching geometry 

from a section database. The following section describes the 

algorithm in detail. 

4.3 Shape matching algorithm 

Among various shape matching algorithms available, the 

shape histogram method [20] is modified and used as a shape 

descriptor in this application. In the shape histogram method, 

a sufficient number of points on a shape are randomly chosen, 

and the Euclidean distances between an exhaustive combina-

tion of pairs of the points is recorded. The distances are then 

normalized, and similar distances are grouped and put into a 

predefined number of bins. In this application, the normaliza-

tion is performed by simply dividing the distances by the 

longest distance. A histogram is then created by counting the 

number of point-pairs in each bin. Histograms of typical 

beam-section shapes are shown in Figure 5. In these histo-

grams, 50 bins are arranged horizontally in the order of dis-

tances, and the corresponding numbers of point-pairs in the 

bins are plotted in the vertical axis. Notice the distinctive 

characteristic of the histogram of each shape, and the similar-

ity of the histograms of the two I-beams even if they are in 

different orientations. 

Histograms for various shapes are generated and stored as 

templates in a database. When a user sketches a shape, its 

histogram is created and compared with all the template his-

tograms in the database. The shape is then recognized as the 

one that matches best.  

There are many methods to measure the similarities among 

histograms [20-22], and we use the Minkowski L2 Norm 

(Euclidean distance) method [20] in which a Probability 

Density Function, D, is computed for discrete sets of f and g 

 

Figure 5. Histograms of section templates. 

 

Figure 6. Distance-angle histogram. 

 

Figure 4. Setting beam properties. 
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as follows: 
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In general, shape descriptors are invariant to the orienta-

tions and sizes of the shapes such that similar shapes can be 

found regardless of their orientations and sizes. In this appli-

cation to the beam section, however, the orientation is im-

portant because the value of the moment of inertia is depend-

ent on the orientation. On the other hand, the matching algo-

rithm must be tolerant to certain misalignments in the orien-

tations as the sketch is drawn by hand. Therefore, we need to 

modify the shape descriptor that distinguishes significant 

differences but is invariant to slight differences in the orienta-

tion. It also needs to be invariant to any size differences. 

To distinguish the orientations of similar shapes, a two-

dimensional histogram is introduced. In addition to the dis-

tance histogram described above, we also compute the angles 

of the point-pairs with respect to a reference line (e.g., hori-

zontal X axis). Assuming that we can capture the orientation 

of a shape by checking the angles of the particular point-pairs 

that are far apart (long enough distances between the two 

points), we compute the angles only for the point-pairs 

whose distances are longer than a threshold distance to re-

duce the computation time. We choose the half of the diago-

nal distance of the bounding box of the shape as the threshold. 

For each distance bin in the histogram, angles of the point-

pairs in the bin are computed and put into sub-bins. We use 5 

degrees as the size of the sub-bins (second direction of the 

two dimensional array), so there may be at maximum 36 

(=180/5) sub-bins in each distance bin. We use a Hash data 

structure to save storage space and speed storing and pro-

cessing the 2-dimensional histogram. Figure 6 illustrates the 

two-dimensional histogram. Experiments show that the tool 

performs fast enough to be successfully used as an interac-
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Figure 7. Histograms of I-beam in two orientations. 
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tively by users. 

Figure 7 shows an example of the histograms of an I-beam 

that are in different orientations. In the angle histogram, the 

horizontal axis is the distance bins (larger than the threshold 

value), and the vertical axis represents the angle bins from 0° 

to 180°. The color code represents the number of point-pairs 

in each angle bin. Notice that the distance histograms are 

similar for both I-beams regardless of the orientation. But the 

angle histograms are different each other and distinguishable. 

The similarity of two histograms is measured by a score 

that is computed by a linear combination of the scores of the 

distance histogram and the angle histograms as follows: 

 

                                                                                  ( ) 

 

We set C1 and C2 to be 0.5, and Dd and Da are computed 

using Equation (2). 

Once a matching shape is recognized, the Beam Definition 

dialog shows the selected section shape and the users need to 

write the parameters specifying the exact size of the section 

as shown in Figure 8. 

 

5. Beam supports 

Currently, the system only allows determinate systems 

with up to two supports per beam. Users can add a fixed sup-

port (constraining the beam both horizontally and vertically) 

by sketching a triangle, and add a non-fixed support (con-

straining the beam vertically) by sketching a circle as shown 

in Figure 9. A cantilever beam has one support and a moment 

at one end of the beam. 

As a support is recognized, users are required to write the 

location (X coordinate) of the support as shown in Figures 9  

Table 2 Loads. 

Load Symbol Gesture Singularity Fn 
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(a) and (b). The sketched gestures are replaced by the support 

symbols as shown in Figure 9(c). The reaction forces are au-

tomatically computed whenever the user adds or modifies the 

loads to the beam, which may or may not be displayed to the 

students. A support can be edited at any time by tapping on 

the symbol with a stylus pen. 

 

6. Beam Loads 

6.1 Types of loads 

The loads can be added to a beam by sketching gestures on 

the beam canvas, or writing singularity functions correspond-

ing to the loads. The types of the loads supported are summa-

rized in Table 2. 

6.2 Adding loads by gesture input 

The load symbols are sketched in the beam canvas area. 

Instead of using symbol recognition [23, 24], a gesture-based 

interface [25] is used. Table 2 illustrates the loads and their 

gestures. The gestures are recognized by the first one or two 

strokes of the actual symbols. As a user sketches a gesture, 

the system prompts the user to write load parameters as 

shown in Figure 10(a).  

The user writes the values for the location and the magni-

tude of the load, and then the gesture strokes are replaced by 

the symbol of the recognized load at the correct location as 

shown in Figure 10(b). At the same time, corresponding sin-

gularity function(s) is (are) also created and displayed. Notice 

in that the reaction force is automatically recalculated after 

the load is added as illustrated in Figure 10. 

6.3 Adding loads by writing singularity functions 

Alternatively, users can also write singularity functions to 

 

Figure 8. Entering parameters for section geometry. 
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add loads using the load canvas panel. For the robust recog-

nition of equations, users will write each parameter of the 

singularity function in each compartment as shown in Figure 

11. 

After writing a singularity function, a user makes a 

checkmark gesture to let the system recognize the load. Then 

the corresponding symbol for the load is added to the beam 

graphics area. Compound loads can be represented by a 

combination of multiple singularity functions. 

 

7. Sketching loading graphs 

Each time a new load is added, the reaction forces at the 

supports are updated, and the distributions of the shear forces, 

moments, and deflections along the beam are recalculated. 

The graphics diagrams of the loads can be displayed with the 

maximum values. Figure 3 shows a shear force diagram dis-

played for the beam with the loads. 

The diagrams will not be displayed in the learning mode, 

however. Instead, students must sketch the diagram by hand, 

 

(a) 

   

(b) 

 

(c) 

Figure 9. Adding supports to a beam: (a) adding a fixed support, (b) adding a non-fixed support, (c) recognized supports. 
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and the correctness of the sketched diagrams is checked and 

graded automatically.  

7.1 Grading the graphs 

Students’ sketched diagrams cannot be directly compared 

with the computer-generated diagrams as the vertical scale is 

arbitrary and the sketch quality may not be compatible. 

Hence, the free-hand sketches must be checked qualitatively 

not quantitatively. Let the X-axis of a coordinate system be 

along the beam and the Y axis be vertical as illustrated in 

Figure 3. The hand-drawn diagrams are checked for their 

correctness based on the following criteria: 

 Correct local and global maxima values in Y-axis. 

Students write the global maximum value on the di-

agram canvas. 

 Correct relative Y values at the junction points 

where the loading conditions change. 

 Curve types – linear, monotonic, convex, or concave. 

The analyses of the hand-drawn graphs are performed by 

the following the steps. 

1. Find the corner points of the strokes. 

2. Split the strokes at the corner points. Divide the 

graph into multiple spans at the characteristic points 

including the corner points. Find the Y values at the 

junctions. 

3. For each span, classify the geometry of the curve. 

Find the maxima points in each span.  

4. Find the global maximum (and minimum) Y value 

and its X location is checked. 

5. Evaluate/grade the graphs based on the findings. 

The following subsections describe the steps in detail. 

7.2 Splitting graphs at characteristic points 

In the pen-based tablet interface, the computer takes the 

movement of a stylus pen into a stroke structure that is com-

posed of a series of ordered points. A continuous movement 

without lifting the pen creates one stroke. Hence, a stroke 

may contain multiple curves and lines as users draw them 

 

Figure 11. Writing a singularity function. 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 10. Adding a ramp load by gesture input. 
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without lifting the pen. The stroke needs to be broken down 

into multiple segments so that each segment can be repre-

sented by a continuous polynomial equation (thus, singularity 

function). This can be done by finding the corner points in 

the stroke, and splitting the stroke at the points. 

Unfortunately, the corner detection problem of freehand 

drawing is not trivial, and many different segmentation algo-

rithms [26-30] have been proposed. The sliding rectangle 

method [31] is modified and adopted in the system. Before 

applying the corner detection algorithm, the input strokes 

must be re-sampled so that the points in the strokes are uni-

formly distributed. Figure 12 shows an example of corner 

points identified from a hand-drawn graph. 

Once the corner points are detected and the strokes are 

split into multiple segments, the following analyses are per-

formed for each segment. 

7.3 Identifying curve geometry 

For each segment span of the hand-drawn graph, the in-

tended geometry is recognized and classified into one of the 

following categories. 

A stroke is identified as a line by fitting the points to a line 

with the least squares method. If the error is smaller than a 

threshold value, the segment is identified as a straight line. If 

a segment is identified as a non-linear curve, check if the 

curve is monotonic using the following simple algorithm 

shown in Figure 13.  

7.4 A rubric for grading graphs 

After the sketched graph is analyzed, it is graded based 

on the followings: 

1. Check the location of the overall maximum (or min-

imum) point of the graph. Students may write the 

magnitude of the maximum value on the graph can-

vas. Also, the X location of the maximum value 

along the beam needs to be checked. 

2. Check the spans of the segments. Find and check the 

locations of the characteristic points such as corner 

points and intercepts. The relative Y values are 

checked by ordering the points along to the Y-axis. 

Check if the orders are all correct. 

3. Check the geometric type of the segments ac-

cording to the classifications in Table 3. 

 

8. Implementation 

The software is implemented on a tablet PC running Mi-

crosoft Windows operating system. The Windows Presenta-

tion Foundation (WPF) is used for the graphics and user in-

terfaces with the Microsoft Visual Studio using C# language. 

For the handwriting and gesture recognitions, Microsoft 

WPF InkAnalysis module is used. Since the success rates of 

the recognizers will generally follow those of Microsoft’s, 

any statistical analysis of success rates is omitted in this work. 

 

9. Conclusions 

A design and implementation of an educational software 

tool for teaching beam analysis is presented. Based on recent 

studies, students learn effectively when the user interface is 

similar to the familiar work practice. Except the basic univer-

sal interfaces such as opening and saving files, most user 

interactions are performed using pen-based interfaces that are 

similar to solving problems on paper with a pen, a method 

 

Figure 12. Segmentation of a graph diagram. 

IncreasingSet = 0 

DecreasingSet = 0 

Point pt0 = strokePoints[0]; 

For i=1 to i< number of points 

 Point pt1 = strokePoints[i] 

 If ( pt0.Y < pt1.Y ) 

    IncreasingSet ++ 

 Else 

    DecreasingSet++ 

End 

Threshold = 95% of all points 

If (IncreasingSet > Threshold) 

 Return “monotonically increasing” 

Else if (DecreasingSet > Threshold) 

 Return “monotonically decreasing” 

Else 

 Return “Non-monotonous” 

End If 

Figure 13. Checking monotonicity of a curved stroke. 

Table 3. Geometry classification. 

Line 

Increasing 

Decreasing 

Horizontal 

Vertical 

Non-linear curve 
Monotonous 

Increasing 

Decreasing 

Non-monotonous 
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familiar to students. The pen-based interfaces let students 

take time writing and solving equations and drawing graphs. 

The computer-based learning tool also enables students to 

receive immediate feedback on their mistakes and automatic 

grading. Various known techniques of the pen-based inter-

faces such as corner detection, gesture and handwriting 

recognitions are used in the program. To realize the pen-

based interface in the beam loading analysis, a shape-

matching algorithm is modified to recognize sketched beam 

section geometry. This paper is focused on the design and 

implementation of the software, and the user studies and the 

effectiveness of the pedagogical approach are left for further 

studies. 
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