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1. Introduction 
 

With the vigorous development of modern industry, the 

finite element method has been extensively used in civil 

engineering (Sadeghi and Nouban 2019), ocean engineering 

(Soeb et al. 2017), aerospace engineering (Träff et al. 

2021), automobile industry (Nwuzor et al. 2021) and other 

important areas. Considering the demand for shell analysis 

in these industries and related research fields, the 

development of high-performance shell elements has 

important theoretical and practical significance. In 

particular, the simulation of structural engineering under 

complex conditions puts forward higher requirements on 

the geometric nonlinear elements (Attia et al. 2022, Cho et 

al. 2018, Mororó et al. 2020). 

The flat shell has a simple structure and good 

applicability. Hence, researchers intend to develop various 

flat shell elements (Battini and Pacoste 2006, Choi and Lee 

2003, Lu et al. 2017, Pacoste 1998). The research of flat 

shell elements faces some difficulties and challenges, 

including membrane locking, shear locking, the singularity 
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of stiffness matrix due to lack of in-plane freedom (Ko et al. 

2017a), and sensitivity to mesh distortion (Cen et al. 2019). 

The flat shell is composed of membrane elements and plate 

elements. Many approaches, including generalized 

conforming theory (Long and Xin 1989), Reissner-

Mindlin’s theory (Mindlin 1951, Reissner 1945), discrete 

Kirchhoff theory (Batoz et al. 1980, Crisfield 1984, 

Jeyachandrabose et al. 1985), and mixed interpolation of 

tensorial components (Bucalem and Bathe 1993, Dvorkin 

and Bathe 1984, Lee et al. 2014), have been proposed to 

solve these inherent difficulties. The CR (Co-rotation) 

method is excellent for dealing with geometric nonlinear 

analysis. Compared with TL (Total Lagrangian) or UL 

(Updated Lagrangian) method, the CR method has higher 

accuracy and efficiency. The normalized EICR (Element 

Independent Corotational Formulation) was developed in 

1986 (Rankin and Brogan 1986). After decades of research 

(Felippa and Haugen 2005, Izzuddin 2005, Izzuddin and 

Liang 2016, Meek and Ristic 1997, Nour-Omid and Rankin 

1991, Pacoste 1998, Rankin and Nouromid 1988) by 

scholars, the CR method has been widely used. Bisegna et 

al. presented a triangular facet shell element to analyze thin 

piezo-actuated structures based on the CR method (Bisegna 

et al. 2017). Deng et al. presented an arbitrary Lagrangian-

Eulerian formulation based on the CR method to analyze 

planar curved viscoelastic beams (Deng et al. 2023). These 

studies demonstrate the potential of CR methods for 

developing geometrically nonlinear analysis elements. 
The existing studies have partially solved the above 

problems, but developing new and better high-performance 

elements is an ongoing pursuit. A flat shell element that 

comprehensively considers the problems of element 
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Fig. 1 Global coordinate system and natural coordinate 

system 
 

 

conforming, thickness universality, shear locking, 

membrane locking, structural efficiency and geometric 

nonlinear is needed. 

We proposed a new high-performance shell element 

DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin 

Generalized Conforming Quadrilateral) based on 

generalized conforming theory, discrete Kirchhoff plate 

theory, Reissner-Mindlin theory, and Co-rotational 

formulation. The DKMGQ-CR element thoroughly 

considers the conforming of elements, shear locking, 

membrane locking, versatility for shells of different 

thicknesses, capacity to resist mesh distortion, large 

deformation, and computational efficiency. We 

demonstrated the performance of the proposed shell 

element in linear and geometric nonlinear solutions by 

solving various shell problems with uniform and distorted 

meshes and different cases. We compared the solutions 

obtained by the DKMGQ-CR element with the analytical 

solutions or the solutions obtained by other classical 

elements. The results show that the DKMGQ-CR element 

can also obtain accurate results when the mesh distortion is 

relatively severe, or the element has large deformation. 

 

 

2. Formulations of DKMGQ-CR 
 

2.1 Coordinate description based on moving frame 
 

The following three coordinate systems are needed to 

describe the geometric shape of the shell element, 

displacement field, and global stiffness of space structure: 

local Cartesian coordinate system (x, y, z), natural 

coordinate system (ξ, η), and global Cartesian coordinate 

system (X, Y, Z). 

The relative position relationship between the global 

coordinate system and the natural coordinate system is 

shown in Fig. 1 (Katili et al. 2015a). 

The global coordinate of an arbitrary point q on the 

element is 

𝒙𝑞 = 𝒙𝑝 + 𝑧𝒏 = ∑ 𝑁𝑖𝒙𝑖 + 𝑧∑ 𝑁𝑖𝒏𝑖 ,
4
𝑖=1

4
𝑖=1   

(−
𝑡

2
≤ 𝑧 ≤

𝑡

2
)  

(1) 

where 

xp is the global coordinate of an in-plane point (z=0), 

𝒙𝑝 = [𝑋 𝑌 𝑍]𝑇 

xq is the global coordinate of an arbitrary point (𝑧 ∈
[−𝑡/2, 𝑡/2]), 𝒙𝑞 = [𝑋𝑞 𝑌𝑞 𝑍𝑞]𝑇 

xi is the global coordinate of node i𝑥𝑖 = [𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇,  

n is the normal vector at an arbitrary point on the 

surface of an element 

ni is the normal vector at the point i on the surface of an 

element, 𝒏𝑖 = [𝑛𝑋𝑖 𝑛𝑌𝑖 𝑛𝑍𝑖]𝑇 

Ni is the shape function of a quadrilateral element, as 

follows 

𝑁𝑖 =
1

4
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂), (𝑖 = 1,2,3,4)  (2) 

The relation between the global coordinates and the 

natural coordinates can be obtained from 𝒙𝑝 = ∑ 𝑁𝑖
4
𝑖=1 𝒙𝑖 , 

as follows 

{
𝑑𝑋
𝑑𝑌
𝑑𝑍
} = 𝑑𝒙𝑝 = (𝒙𝑝,𝜉)𝑑𝜉 + (𝒙𝑝,𝜂)𝑑𝜂 = [𝒂1 𝒂2] {

𝑑𝜉
𝑑𝜂
}  (3) 

where a1 and a2 can be regarded as the covariant basis, 

which are tangent vectors of natural coordinate axes ξ and 

η, respectively. 

𝒂1 = 𝒙𝑝,𝜉 = ∑ 𝑁𝑖,𝜉𝒙𝑖
4
𝑖=1   

𝒂2 = 𝒙𝑝,𝜂 = ∑ 𝑁𝑖,𝜂𝒙𝑖
4
𝑖=1   

(4) 

where 𝑁𝑖,𝜉  and 𝑁𝑖,𝜂  are the first partial derivatives of the 

shape function. 

The point-wise local coordinate basis is 𝑭0 =
[𝒂1 𝒂2 𝒏], where n is the unit vector of the z-axis 

𝒏 =
𝒂1×𝒂2

|𝒂1×𝒂2|
  (5) 

The metric tensor of a plane in the element is 

𝒂 = [
𝑎11 𝑎12
𝑎21 𝑎22

] = [
𝒂1 ⋅ 𝒂1 𝒂1 ⋅ 𝒂2
𝒂2 ⋅ 𝒂1 𝒂2 ⋅ 𝒂2

]  (6) 

The vector of the elemental area of the surface is 

𝑑𝑨 = 𝒂1𝑑𝜉 × 𝒂2𝑑𝜂 = |𝒂1 × 𝒂2|𝑑𝜉𝑑𝜂 ⋅ 𝒏 = √|𝒂| ⋅
𝑑𝜉𝑑𝜂 ⋅ 𝒏 = 𝑑𝐴 ⋅ 𝒏  

(7) 

where the elemental area is expressed as 

𝑑𝐴 = √|𝒂| ⋅ 𝑑𝜉𝑑𝜂  (8) 

The contravariant basis 𝑎1 and 𝑎2 are introduced to 

simplify the formulations, define [𝒂1 𝒂2 𝒏]𝑇 = 𝑭𝟎
−1 , 

then 

[𝒂1 𝒂2 𝒏]𝑇[𝒂1 𝒂2 𝒏] = 𝑰 (9) 

Then the two vectors 𝑎1 and 𝑎2 are expressed as 

𝒂1 =
1

|𝒂|
(𝑎22𝒂1 − 𝑎21𝒂2)  

𝒂2 =
1

|𝑎|
(−𝑎12𝒂1 + 𝑎11𝒂2)  

(10) 

It can be inferred from Eqs. (3), (9) and (10) that 

{
𝑑𝜉
𝑑𝜂
} = [𝒂1 𝒂2]𝑇 {

𝑑𝑋
𝑑𝑌
𝑑𝑍
}  (11) 
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Fig. 2 Covariant and contravariant basis 

 

 

Fig. 3 Global coordinate system and local Cartesian 

coordinate system 

 

 

Based on Eqs. (3) and (11), [𝑎1 𝑎2] are covariant basis 

and [𝑎1 𝑎2]𝑇  are contravariant basis between global and 

natural coordinate systems (Katili et al. 2015a), which are 

shown in Fig. 2. 

The relationship between the global coordinate system 

and the local Cartesian coordinate system is shown in Fig. 3 

(Katili et al. 2015a). 

Also, the relationship of two coordinate systems in Fig. 

3 can be expressed as 

{
𝑑𝑋
𝑑𝑌
𝑑𝑍
} = 𝑸 {

𝑑𝑥
𝑑𝑦
𝑑𝑧

} (12) 

where 

𝑸 = [𝒕1 𝒕2 𝒏] (13) 

where 

𝒕1 =
𝒏×𝒌

|𝒏×𝒌|
, if  𝒏 ≠ ±𝒌  

𝒕1 = 𝒊         , if  𝒏 = ±𝒌  

𝒕2 =
𝒏×𝒕1

|𝒏×𝒕1|
  

(14) 

The nodes of the local Cartesian coordinate system and 

the natural coordinate system are one-to-one 

correspondence. The four nodes of the element are  

numbered in the order of counterclockwise direction, as 

shown in Fig. 4. 

Combine Eqs. (11)-(12), we can derive that the 

conversion relation between the natural coordinate and the 

local Cartesian coordinate system is 

{
𝑑𝜉
𝑑𝜂
} = 𝑪0 {

𝑑𝑥
𝑑𝑦
} (15) 

 

  
(a) Local Cartesian 

coordinate system 

(b) Natural coordinate 

system 

Fig. 4 (a) Local Cartesian coordinate system and (b) Natural 

coordinate system (for 4-node element) 

 

 

where 

𝑪0 = [
𝐶11
0 𝐶12

0

𝐶21
0 𝐶22

0 ] = [
𝒂1𝒕1 𝒂1𝒕2
𝒂2𝒕1 𝒂2𝒕2

] (16) 

We can deduce the relationship between the first order 

partial derivative 𝑁∀,(x,y) of arbitrary shape function to the 

local coordinate axis and the first order partial derivative 

𝑁∀,(ξ,η) of arbitrary shape function to the natural coordinate 

axis from the relationship between natural coordinates and 

local coordinates, as follows 

{

𝜕𝑁∀

𝜕𝑥
𝜕𝑁∀

𝜕𝑦

} = (𝑪0)𝑇 {

𝜕𝑁∀

𝜕𝜉

𝜕𝑁∀

𝜕𝜂

}  (17) 

 

2.2 Linear formulations of DKMGQ-CR 
 

Some shell elements have only five DOFs (degrees of 

freedom) per node, missing one in-plane rotation DOF, 

while the most popular spatial beam elements have six 

DOFs per node. Additional modeling and computational 

work are needed when shell elements (with five DOFs per 

node) and beam elements (with six DOFs per node) are 

modelled together (Lu et al. 2017). Six DOFs per node for 

the new shell element are necessary to avoid additional 

work and improve accuracy. Generally, a flat shell element 

consists of a membrane element and a plate element, as 

shown in Fig. 5. The membrane has three DOFs (u, v and 

θz) per node, and the plate also has three DOFs (w, θx and 

θy) per node. 

There are six DOFs at each node of the shell as follows 

𝜹𝑖
𝑒 = [𝑢𝑖 𝑣𝑖 𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖 𝜃𝑧𝑖]𝑇 , (𝑖 = 1, 2, 3, 4) (18) 

For quadrilateral shell elements, the nodal displacement 

vector is 

𝜹𝑒 = [𝜹1
𝑠 𝜹2

𝑠 𝜹3
𝑠 𝜹4

𝑠]𝑇 (19) 

 

2.2.1 Formulations of the membrane and plate 
element 

The properties of the shell element are highly dependent 

on the properties of the membrane and plate element that 

comprise it. 

Z

Y

X

k

j
i

1

2

34

n

z

p

px

y

x

1t

2t

O

1 2

3
4

1 1( , )x y
2 2( , )x y

3 3( , )x y

4 4( , )x yy

xo ( 1, 1)− −

( 1,1)− (1,1)

(1, 1)−
1

34

2



0

225



 

Zuohua Li, Jiafei Ning, Qingfei Shan, Hui Pan, Qitao Yang and Jun Teng 

 

 
 

GQ12 (Xu and Long 1993) is a 4-node membrane 

element with three DOFs per node. The displacement of 

each node is 

𝜹𝑚𝑖 = [𝑢𝑖 𝑣𝑖 𝜃𝑧𝑖]
𝑇 , (𝑖 = 1,2,3,4)  (20) 

where ui and vi are the translational displacement, θzi is the 

rotational displacement in the additional plane of the node. 

Displacement vector of the element node can be written 

as 

𝜹𝑚 = [𝜹𝑚1 𝜹𝑚2 𝜹𝑚3 𝜹𝑚4]
𝑇 (21) 

The displacement field ω in the local coordinate system 

consists of a bilinear coordinated displacement field and an 

additional rigid body rotation displacement field. 

The displacement field of GQ12 is 

𝝎 = 𝝎0 +𝝎𝜃 (22) 

where 

𝝎0 = {
𝑢0
𝑣0
} = ∑ [

𝑁𝑖 0
0 𝑁𝑖

]4
𝑖=1 {

𝑢𝑖
𝑣𝑖
}  

𝝎𝜃 = {
𝑢𝜃
𝑣𝜃
} = ∑ {

𝑁𝑢𝜃𝑖
𝑁𝑣𝜃𝑖

}4
𝑖=1 𝜃𝑧𝑖  

(23) 

Then the formula of the displacement field can be 

obtained as follows 

𝝎 = {
𝑢
𝑣
} = {

𝑢0 + 𝑢𝜃
𝑣0 + 𝑣𝜃

} = 𝑵𝑚𝜹𝑚 =

∑ [
𝑁𝑖 0 𝑁𝑢𝜃𝑖
0 𝑁𝑖 𝑁𝑣𝜃𝑖

]4
𝑖=1 {

𝑢𝑖
𝑣𝑖
𝜃𝑧𝑖
} = ∑ 𝑵𝑖𝜹𝑖

𝑚4
𝑖=1   

(24) 

where Ni, Nuθi, and Nvθi can be written in detail as follows 

(Xu and Long 1993) 

{
  
 

  
 𝑁𝑖 =

1

4
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂)

𝑁𝑢𝜃𝑖 =
1

8
[𝜉𝑖(1 − 𝜉

2)(𝑏1 + 𝑏3𝜂𝑖)(1 + 𝜂𝑖𝜂) +

𝜂𝑖(1 − 𝜂
2)(𝑏2 + 𝑏3𝜉𝑖)(1 + 𝜉𝑖𝜉)]

𝑁𝑣𝜃𝑖 = −
1

8
[𝜉𝑖(1 − 𝜉

2)(𝑎1 + 𝑎3𝜂𝑖)(1 + 𝜂𝑖𝜂)

+𝜂𝑖(1 − 𝜂
2)(𝑎2 + 𝑎3𝜉𝑖)(1 + 𝜉𝑖𝜉)]

  (25) 

where a1, a2, a3, b1, b2, b3 are 

{
𝑎1 =

1

4
∑ 𝜉𝑖𝑥𝑖 , 𝑎2 =

1

4
∑ 𝜂𝑖𝑥𝑖 , 𝑎3 =

1

4
∑ 𝜉𝑖𝜂𝑖𝑥𝑖 ,
4
𝑖=1

4
𝑖=1

4
𝑖=1

𝑏1 =
1

4
∑ 𝜉𝑖𝑦𝑖 , 𝑏2 =

1

4
∑ 𝜂𝑖𝑦𝑖 , 𝑏3 =

1

4
∑ 𝜉𝑖𝜂𝑖𝑦𝑖 ,
4
𝑖=1

4
𝑖=1

4
𝑖=1

  (26) 

The strain matrix of membrane element in the local 

coordinate system is 

𝜀𝑚 = {

𝜀𝑥
𝜀𝑦
𝛾xy
} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥}
 
 

 
 

= 𝑩𝑚𝜹𝑚  (27) 

 

 

Fig. 6 8-node plate element 

 

 

where 

𝑩𝑚 = [𝑩𝑚1 𝑩𝑚2 𝑩𝑚3 𝑩𝑚4] (28) 

where Bmi (i=1, 2, 3, 4) is 

𝑩𝑚𝑖 =

[
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0

𝜕𝑁𝑢𝜃𝑖

𝜕𝑥

0
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑣𝜃𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑢𝜃𝑖

𝜕𝑦
+

𝜕𝑁𝑣𝜃𝑖

𝜕𝑥 ]
 
 
 
 

  (29) 

The stiffness matrix of membrane element in the local 

coordinate system is 

𝑲𝑚 = ∫ 𝑩𝑚
𝑇 𝑯𝑚𝑩𝑚𝑑𝐴𝐴

= ∫ ∫ 𝑩𝑚
𝑇 𝑯𝑚𝑩𝑚√|𝒂| ⋅

1

−1

1

−1

𝑑𝜉𝑑𝜂  
(30) 

where 

𝑯𝑚 = 𝐷𝑚 [

1 𝜇 0
𝜇 1 0

0 0
1−𝜇

2

] , 𝐷𝑚 =
𝐸𝑡

1−𝜇2
  (31) 

E is elasticity modulus, 

μ is Poisson’s ratio, 

t is thickness. 

DKMQ (Katili 1993, Katili et al. 2015b, 2015a, Wong et 

al. 2017) is a 4-node quadrilateral plate element based on 

the Reissner-Mindlin theory that reduces shear locking. The 

right-handed rule determines the positive direction of the 

rotation angle. The three DOFs of the joint are deflection w, 

rotation around x-axis θx=βy, and rotation around y-axis θy=-

βx. 

The DKMQ plate element adds a midpoint to each edge 

of the element and condenses the DOFs of the four 

midpoints. The 8-node plate is shown in Fig. 6. 

Define that 

𝑥𝑗𝑖 = 𝑥𝑗 − 𝑥𝑖  

𝑦𝑗𝑖 = 𝑦𝑗 − 𝑦𝑖  

𝐶𝑘 = 𝑐𝑜𝑠𝑎𝑘 =𝑥𝑗𝑖/𝐿𝑘  

𝑆𝑘 = 𝑠𝑖𝑛𝑎𝑘 =𝑦𝑗𝑖/𝐿𝑘  

𝐿𝑘
2 = 𝑥𝑗𝑖

2 + 𝑦𝑗𝑖
2  

(32) 
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Fig. 5 Assembly of the flat shell element 
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The displacement vector of every node includes 3 

DOFs, which can be shown as 

𝜹𝑝𝑖 = [𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖]𝑇 , (𝑖 = 1,2,3,4) (33) 

The displacement vector of the plate element is 

𝜹𝑝 = [𝜹𝑝1 𝜹𝑝2 𝜹𝑝3 𝜹𝑝4]𝑇 (34) 

DOFs of the normal rotation angle of the midpoints can 

be expressed as 

Δ𝜷𝑛 = [Δ𝛽𝑠5 Δ𝛽𝑠6 Δ𝛽𝑠7 Δ𝛽𝑠8]
𝑇 (35) 

The cross-section rotation field is composed of a rigid 

body constant curvature field and a high-order interpolation 

function since the deflection of the plate is a bilinear field, 

as follows 

{
𝛽𝑥 = −∑ 𝑁𝑖𝜃𝑦𝑖

4
𝑖=1 −∑ 𝑁𝑘𝐶𝑘𝛥𝛽𝑠𝑘

8
𝑘=5

𝛽𝑦 = ∑ 𝑁𝑖𝜃𝑥𝑖
4
𝑖=1 −∑ 𝑁𝑘𝑆𝑘𝛥𝛽𝑠𝑘

8
𝑘=5

  (36) 

where the shape function is 

𝑁𝑖 =

{
 
 

 
 
1

4
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂), (𝑖 = 1,2,3,4)

1

2
(1 − 𝜉2)(1 + 𝜂𝑖𝜂), (𝑖 = 5,7)

1

2
(1 − 𝜂2)(1 + 𝜉𝑖𝜉), (𝑖 = 6,8)

  (37) 

Strain matrices of bending and shearing, respectively, 

are 

{
𝑩𝑏 = 𝑩𝑏𝛽 +𝑩𝑏𝛥𝛽𝑨𝑛

𝑩𝑠 = 𝑩𝑠𝛥𝛽𝑨𝑛
  (38) 

where Bbβ can be expressed as 

𝑩𝑏𝛽 = [𝑩𝑏𝛽1𝑩𝑏𝛽2𝑩𝑏𝛽3𝑩𝑏𝛽4](3×12)  (39) 

𝑩𝑏𝛽𝑖 =

[
 
 
 
 0 0

𝜕𝑁𝑖

𝜕𝑥

0 −
𝜕𝑁𝑖

𝜕𝑦
0

0 −
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖

𝜕𝑦 ]
 
 
 
 

, (𝑖 = 1,2,3,4)  (40) 

{

𝜕𝑁𝑖

𝜕𝑥
=

𝜕𝑁𝑖

𝜕𝜉
𝐶11
0 +

𝜕𝑁𝑖

𝜕𝜂
𝐶21
0

𝜕𝑁𝑖

𝜕𝑦
=

𝜕𝑁𝑖

𝜕𝜉
𝐶12
0 +

𝜕𝑁𝑖

𝜕𝜂
𝐶22
0

  (41) 

𝑩𝑏𝛥𝛽 can be expressed as 

𝑩𝑏Δ𝛽 = [𝑩𝑏Δ𝛽1𝑩𝑏Δ𝛽2𝑩𝑏Δ𝛽3𝑩𝑏Δ𝛽4](3×4) (42) 

where the components of 𝑩𝑏𝛥𝛽 are 

𝑩𝑏𝛥𝛽𝑖 =

{
 
 

 
 

𝜕𝑁𝑘

𝜕𝑥
𝐶𝑘

𝜕𝑁𝑘

𝜕𝑦
𝑆𝑘

𝜕𝑁𝑘

𝜕𝑦
𝐶𝑘 +

𝜕𝑁𝑘

𝜕𝑥
𝑆𝑘}
 
 

 
 

, (𝑖, 𝑘) ∈

{(1,5), (2,6), (3,7), (4,8)}  

(43) 

where 

{

𝜕𝑁𝑘

𝜕𝑥
=

𝜕𝑁𝑘

𝜕𝜉
𝐶11
0 +

𝜕𝑁𝑘

𝜕𝜂
𝐶21
0

𝜕𝑁𝑘

𝜕𝑦
=

𝜕𝑁𝑘

𝜕𝜉
𝐶12
0 +

𝜕𝑁𝑘

𝜕𝜂
𝐶22
0

  (44) 

Moreover, the strain matrix of shearing 𝑩𝑠𝛥𝛽  can be 

expressed as 

𝐵𝑠Δ𝛽 =

1

6
[
−𝐶11

0 (1 − 𝜂)𝐿5𝜙5 −𝐶21
0 (1 + 𝜉)𝐿6𝜙6 𝐶11

0 (1 + 𝜂)𝐿7𝜙7 𝐶21
0 (1 − 𝜉)𝐿8𝜙8

−𝐶12
0 (1 − 𝜂)𝐿5𝜙5 −𝐶22

0 (1 + 𝜉)𝐿6𝜙6 𝐶12
0 (1 + 𝜂)𝐿7𝜙7 𝐶22

0 (1 − 𝜉)𝐿8𝜙8
]  (45) 

Matrix An is a transformation matrix between δp and 

Δβn. 

𝑨𝑛𝜹𝑝 = 𝛥𝜷𝑛 (46) 

Then 

𝑨𝑛 = 𝑨𝛥
−1𝑨𝑤 (47) 

where 

𝑨𝛥 =

2

3
[

𝐿5(1 + 𝜙5) 0 0 0
0 𝐿6(1 + 𝜙6) 0 0
0 0 𝐿7(1 + 𝜙7) 0
0 0 0 𝐿8(1 + 𝜙8)

]  
(48) 

𝑨𝑤 =

[
 
 
 
 
 1

𝑦21

2

−𝑥21

2
−1

𝑦21

2

−𝑥21

2
0 0 0 0 0 0

0 0 0 1
𝑦32

2

−𝑥32

2
−1

𝑦32

2

−𝑥32

2
0 0 0

0 0 0 0 0 0 1
𝑦43

2

−𝑥43

2
−1

𝑦43

2

−𝑥43

2

−1
𝑦14

2

−𝑥14

2
0 0 0 0 0 0 1

𝑦14

2

−𝑥14

2 ]
 
 
 
 
 

  (49) 

The shear influence coefficient 𝜙𝑘 in Eq. (48) is 

𝜙𝑘 =
2

𝑘(1−𝜇)
(
𝑡2

𝐿𝑘
2) , (𝑘 =

5

6
)  (50) 

The relationship between bending moment and shear 

curvature is 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = 𝑯𝑏𝝌𝑏 , 𝑯𝑏 = 𝐷𝑏 [

1 𝜇 0
𝜇 1 0

0 0
1−𝜇

2

] , 𝐷𝑏 =
𝐸𝑡3

12(1−𝜇2)
  (51) 

{
𝑇𝑥
𝑇𝑦
} = 𝑯𝑠𝜸, 𝑯𝑠 = 𝐷𝑠 [

1 0
0 1

] , 𝐷𝑠 =
𝐸𝑘𝑡

2(1+𝜇)
  (52) 

where 

E is the elastic modulus, 

μ is the Poisson ratio, 

t is the thickness of the element, 

k is the shear coefficient. 

Then we get the bending stiffness formula as follows 

𝑲𝑏 = ∫ 𝑩𝑏
𝑇𝑯𝑏𝑩𝑏𝑑𝐴

𝐴 = ∫ ∫ 𝑩𝑏
𝑇𝑯𝑏𝑩𝑏√|𝒂| ⋅ 𝑑𝜉𝑑𝜂

1

−1

1

−1
  (53) 

The shear stiffness formula is 

𝑲𝑠 = ∫ 𝑩𝑠
𝑇𝑯𝑠𝑩𝑠𝑑𝐴

𝐴 = ∫ ∫ 𝑩𝑠
𝑇𝑯𝑠𝑩𝑠√|𝒂| ⋅ 𝑑𝜉𝑑𝜂

1

−1

1

−1
  (54) 

The total stiffness matrix in a local coordinate system of 

the plate is 

𝑲𝑝 = 𝑲𝑏 +𝑲𝑠  (55) 

 

2.2.2 Linear stiffness matrix formulation of DKMGQ-
CR 

The stiffness matrix of shell element DKMGQ-CR is a 

24×24 symmetry matrix composed of Km and Kp according 
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to the position index of their respective DOFs. For one DOF 

of the element DKMGQ-CR, the linear stiffness matrix is 

composed as follows 

 

(56) 

where 

𝑲𝑖𝑗
𝑚is the corresponding elements of Km 

𝑲𝑖𝑗
𝑝

is the corresponding elements of Kp 

Coordinate transformations are necessary to place all 

elements in the global coordinate system. The cosine of the 

angle between the local coordinate axis and the global 

coordinate axis can be expressed by a matrix λ 

𝝀 = [𝒕1 𝒕2 𝒏]𝑇 (57) 

The element stiffness matrix in global coordinates can 

be expressed as 

𝑲 = 𝑻𝑇𝑲𝑒𝑻 (58) 

where T is the transfer matrix between the local Cartesian 

and global coordinates, as follows 

𝑻 = [

𝑳 𝟎 𝟎 𝟎
𝟎 𝑳 𝟎 𝟎
𝟎 𝟎 𝑳 𝟎
𝟎 𝟎 𝟎 𝑳

] , 𝑳 = [
𝝀 𝟎
𝟎 𝝀

]  (59) 

 

2.2.3 Equivalent nodal load of uniform surface load 
The nodal load vector in the global coordinate system of 

the shell element is 

𝑭𝑒 = [𝑭1 𝑭2 𝑭3 𝑭4]
𝑇
 (60) 

The load vector for each node is 

𝑭𝑖 = [𝐹𝑥𝑖 𝐹𝑦𝑖 𝑀𝑧𝑖 𝑀𝜃𝑥𝑖 𝑀𝜃𝑦𝑖 𝑀𝜃𝑧𝑖], 

(𝑖 = 1, 2, 3, 4) 
(61) 

Then the equivalent nodal load of a uniform surface load 

of shell element DKMGQ-CR in the global coordinate 

system is 

𝑭𝑖
𝑇 = ∫ 𝑁𝑖

{
 
 

 
 
𝑞𝑥
𝑞𝑦
𝑞𝑧
0
0
0 }
 
 

 
 

𝑑𝐴
𝐴

=

{
 
 

 
 
𝑞𝑥
𝑞𝑦
𝑞𝑧
0
0
0 }
 
 

 
 

∑ ∑ 𝑁𝑖√|𝒂|𝜔𝑖𝜔𝑗
𝑁𝐺
𝑗=1

𝑁𝐺
𝑖=1   (62) 

 

2.3 Geometric nonlinear formulations of DKMGQ-CR 
 

By introducing the CR method, we present the 

geometric nonlinear formulations of the new 4-node shell 

element DKMGQ-CR. CR method has higher accuracy and 

efficiency than TL (Total Lagrangian) or UL (Updated 

Lagrangian) method. Furthermore, the geometric linear 

element formulas can be applied to calculate the internal 

forces in the co-rotational coordinate system without 

modification. 

 

2.3.1 Generalized stress-strain and strain-
displacement relationship of shell element 

Firstly, the stress-strain formula for large rotation and 

small strain is derived. The material is in the elastic stage in 

the small strain state, and the stress-strain relationship is 

linear. 

The generalized stress-strain relationship (Zhang et al. 

2007) is 

𝝈∗ = 𝑫∗𝜺∗ (63) 

where 

𝝈∗ = [𝑵 𝑴 𝑸]𝑇 (64) 

𝑫∗ = [

𝑯𝒎 𝟎 𝟎
𝟎 𝑯𝒃 𝟎
𝟎 𝟎 𝑯𝒔

] (65) 

𝜺∗ = [𝜺𝑚 𝜺𝑏 𝜸]𝑇 (66) 

𝑵 = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦]𝑇 (67) 

𝑴 = [𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦]𝑇 (68) 

𝑸 = [𝑄𝑥 𝑄𝑦]𝑇 (69) 

The internal force of the shell element is shown in Fig. 

7. Components of N, M and Q in Eq. (64) are not the 

internal force of the corresponding cross-section but the 

internal force per unit length of the section. 

In geometric nonlinear problems, the strain-

displacement relationship is nonlinear. Therefore, the 

incremental formula is necessary as follows 

𝝈 = 𝝈0 + 𝛥𝝈 = 𝝈0 +𝑫
∗𝛥𝜺 (70) 

The linear strain-displacement relationship is 

𝜺0 = {

𝜺𝑚
𝝌𝑏
𝜸
} = {

𝑩𝑚𝜹𝑚
𝑩𝑏𝜹𝑝
𝑩𝑠𝜹𝑝

} = [

𝑩𝒎 𝟎
𝟎 𝑩𝒃
𝟎 𝑩𝒔

] {
𝜹𝑚
𝜹𝑝
} = 𝑩0𝜹m-p

𝑒  (71) 

The strain matrix is a function of displacement 𝜹m-p
𝑒  in a 

large deformation problem. By representing the 

displacement-related parts in the strain matrix by BL, the 

formula of the strain matrix is 

𝑩 = 𝑩0 + 𝑩𝐿 (72) 

The incremental relationship of strain-displacement is 

𝛥𝜺 = 𝑩𝛥𝜹m-p
𝑒  (73) 

 

2.3.2 Geometric nonlinear incremental equilibrium 
equations 

ui

vi

θxi 

θyi

θzi

wi 

ui   vi θxiθyiθzi   wi 

m m

e p

m m

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ij ij

ij ij

ij ij

 
 
 
 
 

=  
 
 
  

K K

K K

K K
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Fig. 7 Internal force of shell element 

 

 

Based on the principle of virtual work and the 

incremental relationship of stress-strain and strain-

displacement, geometric nonlinear incremental equilibrium 

equations can be derived. 

We define 𝑓m-p
𝑒  as the resulting force vector of internal 

and external forces of a node in the local system and define 

𝑑𝛿m-p
𝑒  as the virtual displacement of an element in the local 

system under the current configuration. The principle of 

virtual work is written as follows 

(𝑑𝜹m-p
𝑒 )

𝑇
𝒇m-p
𝑒 = ∫𝑑𝜺𝑇 𝝈𝑑𝐴 − (𝑑𝜹m-p

𝑒 )
𝑇
𝑭m-p
𝑒 =

(𝑑𝜹m-p
𝑒 )

𝑇
(∫𝑩𝑇 𝝈𝑑𝐴 − 𝑭m-p

𝑒 )=𝟎  
(74) 

The symbol (  )m-p
𝑒  represents matrix or vector elements 

in the local system that are sorted according to displacement 

DOFs of first the membrane and then the plate. 

(𝑑𝜹m-p
𝑒 )

𝑇
 is eliminated in Eq. (74) to obtain equilibrium 

equations for general cases, which can apply to large and 

small deformation. 

𝒇m-p
𝑒 = ∫𝑩𝑇 𝝈𝑑𝐴 − 𝑭m-p

𝑒 = 𝟎 (75) 

Newton-Raphson method is usually used to solve Eq. 

(75) under geometric large deformation. We take the 

differential of Eq. (75) and obtain that 

𝑑𝒇m-p
𝑒 = ∫𝑑𝑩𝑇𝝈𝑑𝐴 + ∫𝑩𝑇𝑑𝝈𝑑𝐴 = ∫𝑑𝑩𝐿

𝑇𝝈𝑑𝐴 +

𝑲̄m-p
𝑒 𝛥𝜹m-p

𝑒   
(76) 

where 

∫𝑑𝑩𝐿
𝑇𝝈𝑑𝐴 = (𝑲𝜎)m-p

𝑒 𝛥𝜹m-p
𝑒   (77) 

and 

𝑲̄m-p
𝑒 = ∫𝑩𝑇𝑫∗𝑩𝑑𝐴 = ∫(𝑩0 + 𝑩𝐿)

𝑇𝑫∗(𝑩0 +

𝑩𝐿) 𝑑𝐴 = (𝑲0 +𝑲𝐿)m-p
𝑒   

(78) 

where the linear part is 

(𝑲0)m-p
𝑒 = ∫𝑩0

𝑇𝑫∗𝑩0 𝑑𝐴 (79) 

and the nonlinear part is 

(𝑲𝐿)m-p
𝑒 = ∫𝑩0

𝑇𝑫∗𝑩𝐿 + 𝑩𝐿
𝑇𝑫∗𝑩𝐿 +𝑩𝐿

𝑇𝑫∗𝑩0 𝑑𝐴  (80) 

Then Eq. (76) can be expressed as 

𝛥𝒇m-p
𝑒 = (𝑲𝑇)m-p

𝑒 𝛥𝜹m-p
𝑒   (81) 

After processing the location index, Eq. (76) is written 

as follows 

𝛥𝒇𝑒 = 𝑲𝑇
𝑒𝛥𝜹𝑒 (82) 

where 𝐾𝑇
𝑒  is the local tangent stiffness of the current 

configuration of the element, as follows 

𝑲𝑇
𝑒 = 𝑲0

𝑒 +𝑲𝐿
𝑒 +𝑲𝜎

𝑒  (83) 

where 

𝑲0
𝑒 is the material stiffness matrix, 

𝑲𝐿
𝑒 is the large displacement matrix, 

𝑲𝜎
𝑒  is the geometric stiffness matrix. 

Then global tangent stiffness is 

𝑲𝑇 = ∑(𝑻
𝑇𝑲𝑇

𝑒𝑻)  (84) 

where T is the transfer matrix. 

The resulting force vector of internal and external forces 

under the global system is 

𝛥𝒇 = ∑(𝑻𝑇𝛥𝒇𝑒)  (85) 

The incremental iterative equation of structure is 

𝛥𝒇 = 𝑲𝑇𝛥𝜹 (86) 

where 𝛥𝜹 is the global incremental displacement. 

 

2.3.3 Algorithms for spatial rotation 
The operation rules of small shell rotation are almost the 

same as vector. However, those operation rules are 

approximate methods that do not apply to large rotations. 

The quaternion method is needed to deal with the large 

rotation of the shell. 

The spatial shell element node has six DOFs, (u, v, w, 

θx, θy, θz), including translational and rotational 

displacement. During the nonlinear incremental analysis, 

new translational and rotational displacement increments 

are obtained at each step, and the corresponding 

displacement will update after each step. Among them, the 

translational displacement 𝒖 = [𝑢 𝑣 𝑤]𝑇  has vector 

superposition, which can be directly updated by vector 

addition. 

𝒖 = [𝑢 𝑣 𝑤]𝑇 (87) 

However, the rotational displacement 𝝎 =
[𝜃𝑥 𝜃𝑦 𝜃𝑧]𝑇 cannot be updated directly by addition. The 

quaternion method is used to store and update rotational 

displacement. Regard rotational displacement as a “pseudo 

vector” ω of spatial rotation, then 

𝝎 = {

𝜃𝑥
𝜃𝑦
𝜃𝑧

} = 𝜔1𝒆1 + 𝜔2𝒆2 + 𝜔3𝒆3 = 𝜔𝒆𝑟  (88) 

where ωi is the rotational component and ei is the unit base 

vector of the i-th axis of the global coordinate system. The 

pseudo vector includes the rotation angle 𝜔 = ‖𝝎‖ =

(𝜔1
2 + 𝜔2

2 +𝜔3
2)

1

2  and the direction of rotation e. The 

antisymmetric tensor is 
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Fig. 8 The coordinate description of co-rotational formulas 

 

 

𝜴(𝝎) = [

0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

] (89) 

Quaternion [q0, q]T (Argyris 1982) is used to calculate 

the rotational angle, as follows 

{
𝑞0
𝒒 } = {

𝑞0
𝑞1
𝑞2
𝑞3

} = {
cos

‖𝝎‖

2
𝜔

‖𝝎‖
sin

‖𝝎‖

2

}  (90) 

The initial state is [Δq0, Δq]T=[1 0 0 0]T. 

We take an utterly nonsingular rotation matrix R to store 

and update the rotational angle of large deformation shell 

elements in the global coordinate system 

𝑹 = 2

[
 
 
 
 𝑞0

2 + 𝑞1
2 −

1

2
𝑞1𝑞2 − 𝑞0𝑞3 𝑞1𝑞3 + 𝑞0𝑞2

𝑞1𝑞2 + 𝑞0𝑞3 𝑞0
2 + 𝑞2

2 −
1

2
𝑞2𝑞3 − 𝑞0𝑞1

𝑞1𝑞3 − 𝑞0𝑞2 𝑞2𝑞3 + 𝑞0𝑞1 𝑞0
2 + 𝑞3

2 −
1

2 ]
 
 
 
 

  (91) 

In the nonlinear analysis process, if the “pseudo-vector” 

increment ∆ω of the rotation angle is obtained, the 

quaternion variable [Δq0, Δq]T corresponding to ∆ω can be 

obtained. Then the corresponding incremental rotation 

matrix ∆R can be obtained, and the updated rotation matrix 

can be obtained as follows 

𝑹𝑡 = 𝛥𝑹𝑡𝑹𝑡−1 (92) 

If the incremental rotation matrix ∆R is known, the 

rotational increment can be extracted by second-order 

approximation 

𝜴(𝛥𝝎) =
2(𝛥𝑹−𝛥𝑹𝑇)

1+tr(𝛥𝑹)
  (93) 

where tr(𝛥𝑹) = 𝛥𝑅11 + 𝛥𝑅22 + 𝛥𝑅33. 

 

2.3.4 Pure deformation in Co-rotational coordinate 
system 

CR method assumes that the element produces rigid 

body displacement with only a small strain. The calculating 

of the pure deformation under the current load is most 

important in the CR method. Then the stiffness and internal 

force of the shell element in the CR system can be 

calculated by applying the elastic shell theory directly. 

Quadrilateral shell elements’ initial configuration, 

current configuration, and co-rotation configuration are 

shown in Fig. 8, also known as the co-rotational frame or 

CR frame (Deng et al. 2022, Kan et al. 2021). 

In initial configuration 

𝑿𝑔is Coordinate of a point, in global system 

𝑸𝑅 = [𝑟1
0 𝑟2

0 𝑟3
0], is transformation matrix of the CR 

coordinate system OX0Y0Z0 

𝑿0
𝑔

 is coordinate of the origin C0  

In current configuration 

𝒙𝑔 is coordinate of a point, in global system 

𝑸𝑅 = [𝒓1 𝒓2 𝒓3] , is the transformation matrix the 

CR coordinate system OXRYRZR 

𝒙0
𝑔

 is the coordinate of the origin CR  

𝑹𝑔 is the overall rotation matrix 

𝒖𝑔 is the overall translational displacement matrix 

Relative displacement 

𝑹0
𝑔

 is the rigid rotational displacement 

𝒖0
𝑔

 is the rigid translational displacement 

Therefore, pure deformation is the “pink slash shadow” 

in Fig. 8. 

The pure translation deformation displacement in CR 

coordinate system is 

𝒖̄𝑒 = 𝒙𝑒 − 𝑿𝑒 (94) 

where 

{

𝑿𝑒 = 𝑸0
𝑇(𝑿𝑔 − 𝑿0

𝑔
)

𝒙𝑒 = 𝑸𝑅
𝑇(𝒙𝑔 − 𝒙0

𝑔
)

𝒙𝑔 = 𝑿𝑔 + 𝒖𝑔
  (95) 

The rotation matrix corresponding to the pure rotation 

deformation displacement in the CR coordinate system is 

𝑹̄𝑒 = 𝑸𝑅
𝑇𝑹𝑔𝑸0 (96) 

where superscript ‘e’ indicates the CR coordinate system, 

and the hat ‘-’ indicates pure deformation. Generally, the 

pure deformation in the CR coordinate system is small, so 

the three components of pure rotational displacement can be 

extracted from Eq.(93). 

 

2.3.5 Geometric element stiffness matrix of DKMGQ-
CR 

The relationship between pure deformation 

displacement in the CR coordinate system and the global 

coordinate system is as follows 

𝑑𝜹̄𝑒 = 𝑯̄𝑷̄𝑻𝑑𝜹𝑔 (97) 

where 

𝑑𝜹̅𝑒 = [𝑑𝜹̅1
𝑒 𝑑𝜹̅2

𝑒 𝑑𝜹̅3
𝑒 𝑑𝜹̅4

𝑒]𝑇  is the incremental 

form of pure deformation in the CR system of an element, 

where 𝑑𝜹𝑖
𝑒
= [𝑑𝒖𝑖

𝑒 𝑑𝝎𝑖
𝑒]𝑇for per node. 

𝑯̄  is the relationship between the variation of the 

element pure deformation vector in the CR system and the 

variation of pure deformation pseudo-vector in the CR 

system, 

𝑷̄ is the projection matrix, 

𝑻 is the transfer matrix, 

𝑑𝜹𝑔 = [𝑑𝜹1
𝑔

𝑑𝜹1
𝑔

𝑑𝜹1
𝑔

𝑑𝜹1
𝑔
]𝑇  is the displacement 

variation in the global system, 

𝑑𝜹𝑖
𝑔
= [𝑑𝒖𝑖

𝑔
𝑑𝝎𝑖

𝑔
]
𝑇

 is the displacement variation in 

the global system of nodal point i. 
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Definition of 𝑯̄ is 

𝑯̄ = 𝑑𝑖𝑎𝑔[𝑰 𝑯̄1 . . . 𝑰 𝑯̄4]  (98) 

where 

𝑯̄𝑖 =
𝜕𝜽̄𝑖

𝑒

𝜕𝝎̄𝑖
𝑒 = 𝑰 −

1

2
𝜴(𝜽̄𝑖

𝑒) + 𝜂𝜴2(𝜽̄𝑖
𝑒)  (99) 

and 

𝜂 =
1−

1

2
𝜃 𝑐𝑜𝑡(

1

2
𝜃)

𝜃2
=

1

12
+

1

720
𝜃2 +

1

30240
𝜃4 +

1

1209600
𝜃6 +⋯  

(100) 

Matrix 𝑷̄ is the projection matrix that ensures that the 

element has accurate rigid body rotation balance and is 

suitable for element warping. 

The expression of 𝑷̄ is 

𝑷 = 𝑰24 − 𝑺𝑮 (101) 

where 

𝑮̄ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 1/𝛽
0 0 0

−𝑥2
𝑒/𝛼0 (𝑦4

𝑒 − 𝑦2
𝑒)/𝛼0 𝑧4

𝑒(𝑦4
𝑒 − 𝑦2

𝑒)/(𝛼0𝛽)

𝟎3×3
0 0 0
0 0 0

−𝑥3
𝑒/𝛼0 −𝑦3

𝑒/𝛼0 𝑧4
𝑒𝑦3

𝑒/(𝛼0𝛽)

𝟎3×3
0 0 0
0 0 0

𝑥2
𝑒/𝛼0 −(𝑦4

𝑒 − 𝑦2
𝑒)/𝛼0 −𝑧4

𝑒(𝑦4
𝑒 − 𝑦2

𝑒)/(𝛼0𝛽)

𝟎3×3
0 0 0
0 0 0

𝑥3
𝑒/𝛼0 𝑦3

𝑒/𝛼0 𝑧4
𝑒𝑦3

𝑒/(𝛼0𝛽)

𝟎3×3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(102) 

𝑺̄ = [𝑺̄1 𝑰 ⋯ 𝑺̄4 𝑰]𝑇 , 𝑺̄𝑖 = 𝜴(𝒙𝑖
𝑒) (103) 

For linear elastic problems, the element internal force 

vector 𝒇̄𝑒 in the CR coordinate system is 

𝒇̄𝑒 = 𝑲̄𝑒𝜹̄𝑒 (104) 

Then the internal force of the element in the global 

system is 

𝒇𝑒 = 𝑻𝑇𝑷̄𝑇𝑯̄𝑇𝒇̄𝑒 (105) 

The tangent stiffness of an element in the global system 

is 

𝑲′
𝑇 = 𝑻

𝑇(−𝑭̄nm𝑮̄ − 𝑮̄𝑭̄𝑛
𝑇𝑷̄ + 𝑷̄𝑇𝑳̄𝑷̄

+ 𝑷̄𝑇𝑯̄𝑇𝑲̄𝑒𝑯̄𝑷̄)𝑻 (106) 

where 

𝑭̄nm =

[
 
 
 
 
𝜴(𝒏̄1

𝑒)

𝜴(𝒎̄1
𝑒)

⋮
𝜴(𝒏̄4

𝑒)

𝜴(𝒎̄4
𝑒)]
 
 
 
 

,

[
 
 
 
 
𝒏̄1
𝑒

𝒎̄1
𝑒

⋮
𝒏̄4
𝑒

𝒎̄4
𝑒]
 
 
 
 

= 𝑷̄𝑇𝑯̄𝑇𝒇̄𝑒  (107) 

 

Fig. 9 Cook’s problem (2×2 meshes) 

 

 

𝑭̄𝑛
𝑇 = −[𝜴(𝒏̄1

𝑒) 𝟎 . . . ⋯ 𝜴(𝒏̄4
𝑒) 𝟎]  (108) 

𝑳̄ = 𝑑𝑖𝑎𝑔[𝟎 𝑳̄1 . . . 𝟎 𝑳̄4] (109) 

𝑳̄𝑖 = {𝜂 [(𝜽̄𝑖
eT𝒇̄𝑚𝑖

𝑒 )𝑰 + 𝜽̄𝑖
𝑒(𝒇̄𝑚𝑖

𝑒 )
𝑇
− 2𝒇̄𝑚𝑖

𝑒 𝜽̄𝑖
eT] +

𝜇𝜴2(𝜽̄𝑖
𝑒)𝒇̄𝑚𝑖

𝑒 𝜽̄𝑖
eT −

1

2
𝜴(𝒇̄𝑚𝑖

𝑒 )} 𝑯̄𝑖  
(110) 

where 𝑓̄𝑚𝑖
𝑒  is the moment sub-vector of 3×1 corresponding 

to the i-th node in the element’s internal force vector, as 

follows 

𝒇̄𝑚𝑖
𝑒 = 𝒎̄𝑖

𝑒 = [𝑀̄𝑖𝑥
𝑒 𝑀̄𝑖𝑦

𝑒 𝑀̄𝑖𝑧
𝑒 ]
𝑇
 (111) 

And μ is defined as 

𝜇 =
1

360
+

1

7560
𝜃2 +

1

201600
𝜃4 +

1

5987520
𝜃6+. ..  (112) 

The tangent stiffness of an element in the global system 

𝑲′
𝑇  is not symmetrical. The efficiency of existing linear 

matrix algorithms for large sparse asymmetric matrices is 

significantly lower than that of symmetric matrices. 

Therefore, a symmetrical stiffness matrix is necessary. The 

following symmetrical element tangent stiffness matrix can 

be applied to the practical calculation 

𝑲𝑇 =
1

2
(𝑲′

𝑇 + (𝑲
′
𝑇)
𝑇)  (113) 

 

 

3. Numerical tests 
 

3.1 Classical plane stress elastic problem 
 

In the plane stress elastic problem, elements are in the 

two-dimensional plane, and the forces are also in the same 

plane. These problems are mainly used to test the 

performance of the membrane behavior of shell elements. 

 

3.1.1 Cook’s beam problem 
Cook’s beam problem is a standard benchmark to test 

the deformation behavior of planar stress membrane 

elements. We test the in-plane bending and shearing 

behaviors of the element DKMGQ-CR through the solution 

to Cook’s problem. The irregular cantilever trapezoidal 

beam model with 2×2 mesh is subjected to shear force P at 

the right end, as shown in Fig. 9. 

We consider the vertical displacement of point C under 
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(a) 2×2 meshes (b) 4×4 meshes 

  
(c) 8×8 meshes (d) 16×16 meshes 

Fig. 10 Deformed shapes of Cook’s beam 

 

Table 1 The vertical displacement of point C in Cook’s 

problem 

Element 
Mesh 

2×2 4×4 8×8 16×16 

DKMGQ-CR 21.27 23.08 23.67 23.87 

GQ12 (Long et al. 2009, 

Xu and Long 1993) 
20.89 23.06 23.67 —— 

GQ12 (Gao et al. 2016) 21.27 23.07 23.67 —— 

Thick shell in SAP2000  20.50 22.73 23.58 23.84 

Reference solution 23.96 

 

 

Fig. 11 Results of Cook’s problem 

 

 

meshes of 2×2, 4×4, 8×8 and 16×16 elements, as shown in 

Fig. 10. The results from DKMGQ-CR and other types of 

elements are given in Table 1 for comparison. 

A comparison of calculation results between the 

DKMGQ-CR shell and other elements is shown in Fig. 11. 

DKMGQ-CR shell has high precision in calculating the 

deformation model of the membrane. For all kinds of 

elements shown in Fig. 11, finer meshes give more precise 

results. The calculated results of DKMGQ-CR are 

consistent with those of the improved GQ12 membrane 

(Gao et al. 2016). The membrane in the DKMGQ-CR shell 

element has improved the establishment of its local 

coordinate system based on the GQ12 membrane (Xu and 

Long 1993), so the calculation accuracy is slightly higher, 

especially in the cases of 2×2 and 4×4 meshes. 

Cook’s beam is an irregular trapezoidal beam. Irregular 

elements exist no matter how meshes are divided. 

Therefore, the mesh distortion sensitivity of the element can 

be well verified. DKMGQ-CR shell shows good 

performance in the distorted mesh model. 

 

3.1.2 MacNeal’s beam problem 
MacNeal’s beam problem (Macneal and Harder 1985) is 

a classic benchmark to test the ability to eliminate the 

membrane locking of an element. 

The left end of MacNeal’s beam is fixed, and the right 

end is subjected to unit shear load and moment, as shown in 

Fig. 12. There are generally three ways of meshing: 

rectangular (a), trapezoidal (b) and parallelogram (c). The 

results of MacNeal’s beam under unit shear load are shown 

in Table 2. 

The results of the DKMGQ-CR shell are not strictly 

consistent under three different meshes. The results under 

mesh (a) are the most accurate, indicating that regular mesh 

gives precise results. The results have no more than 15 

percent deviations under distorted mesh (b) and (c). The 

results of the DKMGQ-CR shell are in good agreement 

with those of the improved GQ12 membrane (Gao et al. 

2016), and the results are better than those of the early 

GQ12 membrane (Long and Xu 1994a, Xu and Long 1993). 

Furthermore, the DKMGQ-CR and the improved GQ12 

show better performance than the classical bilinear element 

Q4. The results of Q4 have been taken from the study of 

Gao et al (Gao et al. 2016). 

The DKMGQ-CR shell element shows low sensitivity in 

mesh distortion in Cook’s beam problem. The results of 

MacNeal’s beam show that the DKMGQ-CR effectively 

alleviates membrane locking. 

 

3.2 Square plate under uniform load problem 
 

The square plate under uniform load is shown in Fig. 13. 

The four sides of the plate are fixed. This test analyses the 

mesh distortion sensitivity of a 4-node plate element (Katili 

et al. 2015a). Due to the symmetry of this plate, 1/4 plate 

(ABCD shadow part) is used to be analyzed. 

Boundary conditions are: 

Side AB: 𝑢 = 𝑣 = 𝑤 = 𝜃𝑥 = 𝜃𝑧 = 0 

Side AD: 𝑢 = 𝑣 = 𝑤 = 𝜃𝑦 = 𝜃𝑧 = 0 

Side BC: 𝑢 = 𝜃𝑦 = 𝜃𝑧 = 0 

Side CD: 𝑣 = 𝜃𝑥 = 𝜃𝑧 = 0 

The reference solution of deflection of point C is 𝑤𝐶 =
62.830. 

We take three kinds of meshes (a), (b), and (c) to divide a 

square plate, as shown in Fig. 14 for 2×2 mesh and Fig. 15 

for 8×8 mesh. Mesh (a) is rectangular, while meshes (b) and 

(c) are irregular quadrilaterals. Irregularity of mesh (b) is 

between that of meshes (a) and (c). In addition to 2×2 

meshes, we also take 4×4, 8×8 and 16×16 meshes. 

Table 3 shows the typical deflection of point C of three 

2×2 4×4 8×8 16×16
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Table 2 Results of MacNeal’s beam problem 

Element 
Load P (Shear force) Load M (Moment) 

Mesh (a) Mesh (b) Mesh (c) Mesh (a) Mesh (b) Mesh (c) 

DKMGQ-

CR 
-0.0977 -0.0871 -0.0944 -0.0049 -0.0044 -0.0048 

GQ12 

(Long and 

Xu 1994a, 

Xu and 

Long 1993) 

-0.0904 -0.0767 -0.0860 —— —— —— 

GQ12 (Gao 

et al. 2016) 
-0.0977 -0.0871 -0.0944 —— —— —— 

Q4 -0.0904 -0.0710 -0.0800 —— —— —— 

Reference 

solution 

(Macneal 

and Harder 

1985) 

-0.1081 -0.0054 

 

 

shell elements, including DKMGQ-CR, TMQ (Cen et al. 

1999) and DKMQ24 (Katili et al. 2015a). The results 

indicate that the DKMGQ-CR can converge to the reference 

solution under all listed thickness-span ratios and meshes. 

The normalized results of the square plate problem with 

the span-thickness ratio of 0.1 are shown in Fig. 16. Since 

DKMGQ-CR and DKMQ24 (Katili et al. 2015a) are based 

on DKMQ plate element, they behave consistently under 

mesh (c). Although the DKMGQ-CR shell shows the 

highest accuracy under mesh (a), it shows the lowest 

accuracy under mesh (c). As the mesh becomes finer, the 

results under meshes (a), (b), and (c) of DKMGQ-CR are all 

converge to the reference solution. The results show that the 

DKMGQ-CR shell has high accuracy and is relatively not 

sensitive to mesh distortion. 

The normalized results of the square plate problem with 

different thickness-span ratios under mesh (a) are shown in 

Fig. 17. The results of DKMGQ for shells with different 

thickness-span ratios are consistent with the reference 

solution. The reason is that the plate part of the DKMGQ-

CR shell considers the shear effect based on Mindlin’s thick 

plate theory. However, the corresponding calculation error 

of the DKMGQ-CR does not exceed 5% 

 

 

Fig. 13 Four-sided clamped support square plate subjected 

to uniform load 

 

 
Fig. 14 Three different 2×2 meshes of a square plate 

 

 

Fig. 15 Three different 8×8 meshes of square plate 

 

 

when the thickness-span ratio is small to 0.01 and the mesh 

is 4×4 under mesh (a). The accuracy of DKMGQ-CR and 

TMQ is highly consistent when the thickness-span ratio is 

0.1. The analysis shows that the DKMGQ-CR suits thick 

and thin shells with high calculation accuracy. 

 

3.3 Razzaque skew plate problem 
 

Razzaque skew plate (Razzaque 1973) and its 

parameters are shown in Fig. 18. Razzaque plate has 
the “bridge-type” boundary condition. One pair of 
opposite sides (AB and CD) is simply supported, and the 
other pair (AD and BC) is free. The whole plate is 
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Fig. 12 Three kinds of the mesh of MacNeal’s beam, (a) Rectangular, (b) Trapezoidal and (c) Parallelogram 
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Fig. 16 Normalized results of square plate problem with 

thickness-span ratio=0.1 

 

 

Fig. 17 Normalized results of square plate problem under 

mesh (a) 

 

 

subjected to a uniform surface load. 

The solutions to the Razzaque skew plate problem under 

different mesh are shown in Table 4 and Fig. 19. In this 

 

 

Fig. 18 Razzaque skew plate 

 

 

problem, a comparison is made among six kinds of shell 

elements, proposed DKMGQ-CR shell element, ASQ-I 

(Wang et al. 2010), ATF-BQ4 (results taken from the study 

of Wang et.al (Wang et al. 2010)) ,DKMQ (Katili 1993), 

MITC4 (Bathe and Dvorkin 1985), and the thick shell in 

SAP2000. The accuracy of DKMGQ-CR is higher than the 

that of other five types of elements under 6×6, 8×8, and 

16×16 meshes. The accuracy of DKMGQ-CR is 

significantly higher than that of ATF-BQ4, DKMQ, 

MITC4, and thick shell in SAP2000 under the coarse mesh. 

This problem indicates that DKMGQ-CR can significantly 

reduce the influence of distorted meshes in both coarse and 

fine mesh. 

 

3.4 Pinched cylinder problem 
 

In the problem of the pinched cylinder (Belytschko and 

Leviathan 1994, Lu et al. 2017), the elements are in three- 

dimensional space. The element has both membrane and 

plate deformation under loads in this case. A pinched 

cylinder and its parameters are shown in Fig. 20. A pair of 

concentrated forces act on the side center of a cylindrical 
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Table 3 Typical deflection of point C with different t/L and meshes 

Shell element 
Thickness-span ratio 

t/L 
Mesh 

Deflection typical value of point C Reference solution 

(𝑤𝐶 ×
𝐺

𝑡𝑞
)  2×2 

mesh 

4×4 

mesh 

8×8 

mesh 

16×16 

mesh 

DKMGQ-CR 

0.01 

(a) 614376 555114 538188 533862 
531300 

(Cen et al. 1999) 
(b) 673890 569604 541800 534786 

(c) 715680 581658 544908 535542 

0.05 

(a) 1017.744 924.588 899.472 893.676 
890.3 

(Srinivas and Rao 1973) 
(b) 1112.244 947.688 905.184 895.104 

(c) 1177.848 966.168 909.720 896.112 

0.1 

(a) 70.5436 65.0335 63.6327 63.3017 
62.830 

(Srinivas and Rao 1973) 
(b) 76.3388 66.4256 63.9764 63.3870 

(c) 80.2548 67.4752 64.2266 63.4472 

0.2 

(a) 6.1685 5.8194 5.7311 5.7092 
5.688 

(Cen et al. 1999) 
(b) 6.5187 5.9022 5.7516 5.7143 

(c) 6.7456 5.9612 5.7663 5.7180 

0.3 

(a) 1.7969 1.7113 1.6901 1.6848 
1.673 

(Cen et al. 1999) 
(b) 1.8670 1.7283 1.6943 1.6858 

(c) 1.9150 1.7409 1.6975 1.6867 

TMQ 

(Cen et al. 1999) 
0.1 

(a) 70.476 65.016 63.630 63.294 
62.830 

(Srinivas and Rao 1973) 
(b) 76.440 66.486 64.008 63.378 

(c) 80.514 67.578 64.260 63.462 

DKMQ24 

(Katili et al. 2015a) 
0.1 (c) 80.653 67.876 64.596 63.798 

62.830 

(Srinivas and Rao 1973) 
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Fig. 19 Results of Razzaque skew plate problem 

 

 

Fig. 20 Pinched cylinder with rigid constraints at both ends 

 

 

shell with rigid partitions at both ends to verify the shell 

element’s in-plane and out-of-plane coupled state 

performance. The theoretical solution of load point 

displacement is 𝜔 = 1.8541 × 10−5. 

We can just analyze the 1/8 structure due to the 

symmetry of the cylindrical structure and the load form. 

The calculated solutions of the loading point along the 

loading direction are listed in Table 5. 

The normalized solutions are shown in Fig. 21 to 

intuitively display the variation trend of solution accuracy 

with different meshes. As shown in Fig. 21, solutions of the 

DKMGQ-CR shell quickly approach the theoretical solution 

with the mesh refinement, consistent with solutions of the 

NLDKGQ shell (Lu et al. 2017) and DKMQ24 (Katili et al. 

2015a) shell. Moreover, the accuracy of DKMGQ-CR is 

higher than that of GCR24, DKGQ, and the thin and thick 

shells in SAP2000. Solutions to the pinched cylinder 

problem demonstrate that DKMGQ-CR is highly suitable 

for comprehensive deformation analysis coupled with plate 

and membrane deformation. 

 

 

3.5 Large deformation problem of a slender cantilever 
beam 
 

The previous five problems are used to test the linear 

analysis performance of the DKMGQ-CR shell, and the 

following two problems are used to test its geometric 

nonlinear analysis performance. The slender cantilever 

beam is shown in Fig. 22. We analyze two cases, where (a) 

is the concentrated bending moment at the end of the beam 

(Arciniega and Reddy 2007a, 2007b, Gutierrez et al. 2016, 

Ko et al. 2017b, Li and Zhan 2000, Lu et al. 2017, Moita et 

al. 2016, Schulz and Filippou 2001, Sze et al. 2004, Yoon 

and Lee 2014) and (b) is the concentrated shear force at the 

end of the beam (Arciniega and Reddy 2007a, Gutierrez et 

al. 2016, Lu et al. 2017, Sze et al. 2004). The left end of the 

beam is fixed. 

In case (a), the large deformation of the beam will 

produce a circular arc configuration according to the elastic 

beam theory. The circular arc radius is R=EI/M, where 

I=bh3/12 (Schulz and Filippou 2001). 

We mesh the beam into ten elements along the length 

direction. The theoretical relation of the force-displacement 

curve can be derived from the bending moment-curvature 

relation as follows 

𝑢 =
𝐿

2𝜋𝜆
𝑠𝑖𝑛 2𝜋𝜆 − 𝐿 𝑤 =

𝐿

2𝜋𝜆
(1 − 𝑐𝑜𝑠 2𝜋𝜆)  (114) 

where 

𝜆 = 𝑀/𝑀max , 

𝑀max = 2𝜋𝐸𝐼/𝐿. 

The change of configuration with the bending moment 

is shown in Fig. 23. The slender cantilever beam forms 

a complete circle when M=Mmax, 

a 3/4 circle when M=0.75Mmax, 

a 1/2 circle when M=0.5Mmax, 

a 1/4 circle when M=0.25Mmax.  

The calculated results are consistent with the theoretical 

values in these typical configurations. 

The load-displacement curve of the slender cantilever 

beam under bending moment is shown in Fig. 24. The 

symbol u represents the displacement of the loading point in 

the x-direction, and w represents the displacement in the z-

direction. As shown in Fig. 24, the load-displacement 

curves in x and z directions are highly consistent with the 
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Table 4 Normalized results of Razzaque skew plate problem 

Element 
Mesh 

2×2 4×4 6×6 8×8 16×16 

DKMGQ-CR 0.892 0.976 0.989 0.994 0.997 

ASQ-I (Wang et al. 2010) 0.952 0.979 0.988 0.992 0.996 

ATF-BQ4 1.239 1.081 1.034 1.022 1.005 

DKMQ (Katili, 1993) 0.839 0.969 0.985 0.991 —— 

MITC4 (Bathe and Dvorkin 1985) 0.500 0.848 0.928 0.958 —— 

Thick shell in SAP2000  0.761 0.919 0.961 0.977 0.993 

Finite difference solution 

(Razzaque 1973) 
1.000* 

* The finite difference solution is 0.7945. 
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Fig. 21 Normalized results of pinched cylinder problem 

 

 

Fig. 22 Slender cantilever beam with (a) Bending moment 

and (b) Shear force 

 

 

Fig. 23 Bending deformation the shape of slender cantilever 

beam 

 

 

theoretical results. 

In case (b) of Fig. 22, the left end of the slender 

cantilever beam is fixed, and the right end is loaded by 

shear force P. There is no theoretical solution for case (b). 

Researchers usually consider the maximum shear load Pmax 

=4EI/L, where I=bh3/12. 

 

 

Fig. 24 Load-displacement curve of the slender cantilever 

beam under bending moment 

 

 

Fig. 25 Shear deformation shape of the slender cantilever 

beam 

 

 

The shear deformation diagram of the slender cantilever 

beam where the corresponding P equals 0, 0.25Pmax, 

0.5Pmax, 0.75Pmax and Pmax is shown in Fig. 25. 

The load-displacement curve of the slender cantilever 

beam under shear force is shown in Fig. 26. The symbol u 

represents the displacement of the loading point in the x-

direction, and w represents the displacement in the z-

direction. As shown in Fig. 26, the load-displacement 

curves under shear force P of shell element DKMGQ-CR 

are highly consistent with the solutions of S4R in Abaqus 

and the thick shell in SAP2000. 

The results of the cantilever beam problem show that the 

DKMGQ-CR shell for large deformation can accurately 

simulate the large rotational deformation of the shells. 
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Table 5 Normalized results of the pinched cylinder with diaphragm problem 

Shell element 
Mesh 

4×4 8×8 16×16 

DKMGQ-CR 0.629 0.938 1.005 

NLDKGQ in Opensees (Lu et al. 2017) 0.629 0.935 0.999 

DKMQ24(Katili et al. 2015a) 0.607 0.930 1.003 

GCR24(Long and Xu 1994b) 0.610 0.895 0.968 

DKGQ(Wang et al. 2016) 0.629 0.789 0.930 

Thick shell in SAP2000 0.630 0.656 0.670 

Thin shell in SAP2000 0.405 0.623 0.662 

Theoretical solution 

(Belytschko and Leviathan 1994) 
1.000* 

*The theoretical solution is 1.8541×10-5 
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Fig. 26 Load-displacement curve of the cantilever beam 

under shear force 

 

 

Fig. 27 Twisted cantilever beam 

 

 

Fig. 28 Shear deformation shape of the twisted cantilever 

beam 

 

 

3.6 Large deformation problem of a twisted cantilever 
beam 
 

The twisted cantilever beam problem is a classic 

benchmark to test the large deformation capacity of shell 

elements (Katili et al. 2015a, Kim et al. 2007, Ko et al. 

2017b, Yoon and Lee, 2014). The twisted cantilever beam is 

uniformly twisted by 90° from the fixed end to the free end, 

as shown in Fig. 27. The left end of the beam is fixed, and 

the right end is free. The free end is applied concentrated 

load Q. The maximum value of the load is Qmax=1000. We 

take meshes of 4×24 to calculate the displacement of the 

loading point. 

The shear deformation diagram of the twisted cantilever 

beam where the corresponding Q equals 0, 0.25Qmax, 

0.5Qmax, 0.75Qmax and Qmax is shown in Fig. 28. 

The load-displacement curve of the twisted cantilever 

beam under concentrated load Q is shown in Fig. 29. The 

curve of results derived from the DKMGQ-CR shell for 

large deformation is consistent with the results of thick shell 

and thin shell in SAP2000. 

 

Fig. 29 Load-displacement curve of the twisted beam under 

shear force 

 

 

4. Conclusions 
 

This paper proposed a high-performance shell element 

DKMGQ-CR with four nodes and 24 DOFs based on 

generalized conforming theory, discrete Kirchhoff plate 

theory, Reissner-Mindlin theory, and co-rotational 

formulation. The new element is suitable for geometric 

nonlinear analysis by introducing the Co-rotational 

formulation. The linear and nonlinear performance of the 

proposed shell element was validated through the numerical 

testing of various classical and strict benchmark examples. 

The advantages of the above element construction theory 

are well combined. Hence the DKMGQ-CR element has 

high precision, concise formulations, good capacity for 

resisting various mesh distortions, and versatility for shells 

of different thicknesses without locking. This high-

performance flat shell element DKMGQ-CR is expected to 

provide an accurate and convenient tool for the geometric 

nonlinear analysis of shells in related research fields. 
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