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Abstract.  This paper presents the performance of Teaching-Learning-Based Optimization (TLBO) 

algorithm for optimum static balancing of a robot manipulator. Static balancing of robot manipulator is an 

important aspect of the overall robot performance and the most demanding process in any robot system to 

match the need for the production requirements. The average force on the gripper in the working area is 

considered as an objective function. Length of the links, angle between them and stiffness of springs are 

considered as the design variables. Three robot manipulator configurations are optimized. The results show 

the better or competitive performance of the TLBO algorithm over the other optimization algorithms 

considered by the previous researchers. 
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1. Introduction 
 

Over the past few decades, the interest of researchers is growing in the field of design 

optimization of robot manipulator in order to improve robot system performance using advanced 

optimization techniques. The robot manipulator is a mechanism consisting of the major linkages, 

the minor linkages and the end effectors (gripper or tool).  

Static balancing is very important aspect in the design of robot manipulator. Statically balanced 

systems are in equilibrium in every configuration in their workspace, even when no friction is 

present. As a consequence, these systems can usually be operated with much less effort as 

compared to the unbalanced situation. In Static balancing the weight of the links does not produce 

any force at actuators for any configuration of the manipulator. A draw bridge for instance is 

usually provided with a counterweight so that the heavy bridge structure can be lifted by hand. The 

counterweight provides continuous equilibrium, or alternatively, complements the potential energy 

to a constant value so that the system does not have a preferred configuration and becomes 
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indifferent. The counterweight provides the energy for the bridge to move up and restores the 

energy when the bridge moves down. A statically balanced mechanism can be obtained by 

achieving a potential energy which remains constant irrespective of the position and orientation of 

the mechanism.  

Static balancing involves ensuring that the motors do not contribute towards supporting the 

mechanism’s weight, for any of the possible configurations. A mechanism can therefore remain 

stable in any position without the help of motors or brakes. This result can be obtained by using 

counterweights or springs. Balancing using springs has added advantages over mass balancing 

since it requires balancing of masses due to added counterweights. However, in spring balancing, a 

change in mass is insignificant since weight of the springs is very less compared to link weight. 

Over the past few decades, the interest of researchers is growing in the field of balancing of 

robot manipulator using advanced optimization techniques. Efforts were made to attempt 

balancing of robot manipulator by optimization researchers. Filaretov and Vukobratović (1993) 

presented static balancing and dynamic decoupling of the motion of manipulation robots. The 

authors analyzed the mechanical unloading of a multi-link manipulator from the moments due to 

gravitational forces. The specificity of dynamic decoupling of the manipulator motion was 

considered. Examples of different types of balancing and unloading with manipulation 

mechanisms were presented. 

Segla (1998) presented statical balancing of a robot manipulator using genetic algorithm. As 

objective function the average force on the gripper in the working area was used. The lengths of 

the links and angles between them as well as the stiffness of springs were considered as design 

variables. The author had considered as an industrial robot with 6-DOF. The robot had a spring 

balancing system that had to be optimized. 

Simionescu and Ciupitu (2000a, b) presented some new constructional solutions for the 

balancing of the weight forces of the robot arms, using the elastic forces of the helical springs. The 

authors had defined a new notion, namely efficaciousness coefficient, for the performance study of 

the static balancing mechanisms. This coefficient was equal to the ratio of the mechanical work 

consumed for acting the unbalanced arm and the mechanical work consumed for moving the 

balanced arm. 

Ouyang and Zhang (2003) described an integrated approach to design a real-time controllable 

(RTC) mechanism considering force balancing and trajectory tracking, simultaneously. A new 

approach called adjusting kinematic parameter (AKP) for the force balancing of RTC mechanisms 

was described. The authors had demonstrated that the force balanced mechanism by the AKP 

approach was more promising than those by other approaches in terms of the reduction of joint 

forces and torques in servomotors, and improvement of the trajectory tracking performance. Based 

on simulation, authors also showed the effects of two different control systems: PD and non-linear 

PD versus the AKP approach and the counterweight approach. 

Ouyang and Zhang (2004) proposed a force balancing method called adjusting kinematic 

parameters (AKP) for robotic mechanisms or real-time controllable (RTC) mechanisms. A 

particular implementation of the AKP method for the RTC mechanisms where two pivots on a link 

were adjustable was presented. A comparison of the two methods, namely the AKP method and 

the counterweights (CW) method, was made for two RTC mechanisms with different mass 

distribution. 

Russo et al. (2005) addressed the static balancing of spatial parallel manipulator and the 

conditions for balancing were derived. The authors had used two methods lead to static balancing, 

namely using counterweight and using springs. In both methods, the resulting mechanism was 
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fully balanced for gravity.  

Saravanan et al. (2008) presented optimum static balancing of an industrial robot mechanism. 

The authors had described the use of conventional and evolutionary optimization techniques such 

as Newton’s method (NM), conjugate gradient method (CGM), Genetic algorithm (GA), Elitist 

Non-dominated Sorting Genetic Algorithm (NSGA-II) and differential evolution (DE) to solve 

static balancing of robot mechanism problems. The average force on the gripper in the working 

area was taken as objective function and length of the links, angle between them and stiffness of 

spring were considered as design variables. 

Sangamesh and Ananthasuresh (2012) presented a technique to statically balance any planar 

revolute-jointed linkage having zero-free-length spring and constant load interactions between the 

bodies of the linkage. The technique involved only addition of zero-free-length springs but not any 

extra link, unlike spring-aided perfect static balancing techniques. Petković et al. (2012, 2013a, b, 

c, d, e) had presented many details of an adaptive compliant robot gripper.  

Martini et al. (2015) analytically performed gravity compensation of a 3-DOF spatial parallel 

mechanism. The authors presented a feasible solution with two balancing springs and one auxiliary 

linkage. Static balancing reduces the robot estimated energy requirements for common tasks. The 

compensation effectiveness is marginally affected by potential design inaccuracies. Pierezan et al. 

(2017) proposed a modified self-adaptive differential evolution approach for static modeling of a 

humanoid robot and the optimization of its static force capability. Hassan and Abomoharam 

(2017) proposed a general robot modeling and optimal design process. The authors presented 

NSGA-II algorithm for a multi-objective design of the gripper. The authors also performed a local 

sensitivity analysis of an optimal solution to identify the most critical links of the gripper. Quaglia 

and Yin (2015) proposed a method to design balancing devices for articulated robots in industry, 

based on robotic dynamics. The authors presented two aspects: One is the optimization for the 

position of the balancing system; the other is the design of the spring parameters. 

It has been observed that only few researchers had attempted the optimization of static 

balancing of a robot manipulator. Segla (1998) used GA, Saravanan et al. (2008) used 

conventional and evolutionary methods like NM, CGM, GA, NSGA-II and DE for optimum static 

balancing of robot manipulator. However, the parameters setting of the GA, NSGA-II and DE 

algorithms is a serious problem which influences their efficiency and affect the performance of the 

algorithms. For example, GA requires the crossover probability, mutation rate, and selection 

operator; NSGA-II requires crossover probability, real-parameter mutation probability, mutation 

parameter; DE requires the crossover probability and differential weight. Proper tuning of the 

algorithm-specific parameters is very crucial and affects the performance of the above mentioned 

algorithms. The improper tuning of algorithm-specific parameters either increases the 

computational effort or yields the local optimal solution. In addition to the tuning of algorithm-

specific parameters, the common control parameters need to be tuned which further enhances the 

effort. Finding the optimized value of these algorithm-specific parameters is an optimization 

problem itself. Considering this fact, Rao et al. (2011, 2012a, b) introduced the teaching-learning-

based optimization (TLBO) algorithm which does not require any algorithm-specific parameters 

thus making the implementation of TLBO algorithm simpler. This algorithm requires only the 

common control parameters and does not require any algorithm-specific control parameters. Since 

the tuning of any algorithm-specific parameters is not required in the TLBO algorithm, the 

achieved results can be more accurate. 

 In the literature, it is observed that the TLBO algorithm is not yet used in the field of static 

balancing of robot manipulator. Hence the same is now used for the parameter optimization of 
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static balancing of robot manipulator under consideration. In this work, efforts are carried out to 

investigate the performance of the TLBO algorithm to obtain the optimum set of design 

parameters for static balancing of robot manipulator and comparisons are made with various other 

optimization algorithms.  

The next section gives a brief description about the TLBO algorithm, which is used for the 

static balancing of the robot manipulator. 
   

 

2. Teaching-learning-based optimization (TLBO) 
 

The TLBO algorithm is a teaching-learning process inspired algorithm proposed by Rao et al. 

(2011, 2012a, b), Rao and Savsani (2012) and Rao and Patel (2012, 2013) based on the effect of 

influence of a teacher on the output of learners in a class.  The algorithm describes two basic 

modes of the learning: (i) through teacher (known as teacher phase) and (ii) interacting with the 

other learners (known as learner phase). In this optimization algorithm a group of learners is 

considered as population and different subjects offered to the learners are considered as different 
 

 

 
Fig. 1 Flowchart of TLBO algorithm (Rao et al. (2012) 
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design variables of the optimization problem and a learner’s result is analogous to the ‘fitness’ 

value of the optimization problem. The best solution in the entire population is considered as the 

teacher. The design variables are actually the parameters involved in the objective function of the 

given optimization problem and the best solution is the best value of the objective function. The 

working of TLBO is divided into two parts, ‘Teacher phase’ and ‘Learner phase’. The flowchart of 

teaching-learning-based optimization algorithm is shown in Fig. 1. For details of the algorithm and 

its code the readers may refer to https://sites.google.com/site/tlborao/. One complete iteration of 

the TLBO algorithm is demonstrated in the Appendix for minimization of a standard benchmark 

Sphere function.  

 
2.1 Teacher phase 

  

It is the first part of the algorithm where learners learn through the teacher. During this phase a 

teacher tries to increase the mean result of the class in the subject taught by him or her depending 

on his or her capability. At any iteration i, assume that there are ‘m’ number of subjects (i.e., 

design variables), ‘n’ number of learners (i.e., population size, k=1,2,…,n) and Mj,i be the mean 

result of the learners in a particular subject ‘j’ (j=1,2,…,m)  The best overall result Xtotal-kbest,i  

considering all the subjects together obtained in the entire population of learners can be considered 

as the  result of best learner kbest. However, as the teacher is usually considered as a highly 

learned person who trains learners so that they can have better results, the best learner identified is 

considered by the algorithm as the teacher. The difference between the existing mean result of 

each subject and the corresponding result of the teacher for each subject is given by 

Difference_Meanj,k,i = ri (Xj,kbest,i -  TFMj,i) (1) 

where Xj,kbest,i is the result of the best learner (i.e. teacher) in subject j. TF is the teaching factor 

which decides the value of mean to be changed, and ri is the random number in the range [0, 1]. 

Value of TF can be either 1 or 2. The value of TF is decided randomly with equal probability as  

TF = round [1+rand(0,1){2-1}] (2) 

TF is not a parameter of the TLBO algorithm. The value of TF is not given as an input to the 

algorithm and its value is randomly decided by the algorithm using Eq. (2). After conducting a 

number of experiments on many benchmark functions it is concluded that the algorithm performs 

better if the value of TF is between 1 and 2. However, the  algorithm is found to perform much 

better if the value of TF is either 1 or 2 and hence to simplify the algorithm, the teaching factor is 

suggested to take either 1 or 2 depending on the rounding up criteria given by Eq.(2).     

Based on the Difference_Meanj,k,i, the existing solution is updated in the teacher phase 

according to the following expression  

X'j,k,i = Xj,k,i + Difference_Meanj,k,i (3) 

where X'j,k,i is the updated value of Xj,k,i.  Accept X'j,k,i if it gives better function value. All the 

accepted function values at the end of the teacher phase are maintained and these values become 

the input to the learner phase. The learner phase depends upon the teacher phase. 

 

2.2. Learner phase 
 

It is the second part of the algorithm where learners increase their knowledge by interaction 
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among themselves. A learner interacts randomly with other learners for enhancing his or her 

knowledge. A learner learns new things if the other learner has more knowledge than him or her. 

Considering a population size of ‘n’, the learning phenomenon of this phase is expressed below. 

Randomly select two learners P and Q such that X'total-P,i ≠ X'total-Q,i (where, X'total-P,i and X'total-Q,i 

are the updated values of Xtotal-P,i and Xtotal-Q,i respectively at the end of teacher phase). In the case 

of minimization problems 

X''j,P,i = X'j,P,i + ri (X'j,P,i -  X'j,Q,i) if X'total-P,i < X'total-Q,i (4a) 

X''j,P,i = X'j,P,i + ri (X'j,Q,i - X'j,P,i) if X'total-Q,I < X'total-P,i (4b) 

X''j,P,i  is accepted if it gives a better function value.  

The TLBO algorithm has been already tested on several constrained and unconstrained 

benchmark functions and proved better than the other advanced optimization techniques (Rao and 

Patel 2012, 2013, Rao 2016), Rao and Waghmare (2014) had evaluated the performance of the 

TLBO algorithm over a set of multi-objective unconstrained and constrained test functions and the 

results were compared against the other optimization algorithms. The TLBO algorithm was 

observed to outperform the other optimization algorithms for the multi-objective unconstrained 

and constrained benchmark problems. 

It may be mentioned that various researchers like Niknam et al. (2012), Rao et al. (2014), 

Baykasoğlu et al. (2014), Satapathy and Naik (2014), Medina et al. (2014), Basu (2014), Zou et al. 

(2014), Camp and Farshchin (2014), Moghadam and Seifi (2014) and Sultana and Roy (2014) 

proved the better performance of the TLBO algorithm as compared to the other evolutionary 

algorithms. 

Hence, literature showed that TLBO algorithm is proving better in various field of engineering 

applications. In the literature, it is observed that the TLBO algorithm is not yet used in the field of 

static balancing of robot manipulator. Hence the same is now used for the parameter optimization 

of static balancing of robot manipulator under consideration. 

The next section presents the details of the problem formulation for static balancing of the 

robot manipulator. 

 

 

3. Problem formulation 
 

A formal representation of an optimization model can be stated as follows 

To find 𝑋 = 

[
 
 
 
 
𝑥1

𝑥2

.

.
𝑥𝑛]

 
 
 
 

 which maximizes f(X) 

Subject to the constraints 

𝑔𝑖(𝑋) ≤ 0, 𝑖 = 1,2, … . ,𝑚  
𝑙𝑗(𝑋) ≤ 0, 𝑗 = 1,2, … . , 𝑝 

where X is an n-dimensional vector called the design vector, f(X) is called the objective function, 

and 𝑔𝑖(𝑋) and 𝑙𝑗(𝑋) are known as inequality and equality constraints, respectively. 

In the present optimization model, the average force on the gripper in the working area is taken 

as an objective function. The design variables are the lengths of the links, angles between them  
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Fig. 2 Robot APR 20 (Segla 1998) 

 

 
Fig. 3 Scheme of robot APR 20 (Segla 1998) 

 

 
Fig. 4 Static equilibrium of the link 7 (Segla 1998) 

 

 

and stiffness of springs. An industrial robot with 6-degree-of-freedom (6-DOF) (APR 20) is 

considered as a numerical example. The same robot was considered by Segla  (1998) and 

Saravanan et al. (2008) and the details of the design variables, objective function and constraints 

are available in Segla (1998) and Saravanan et al. (2008). However, the important details are 

included in this paper for readers’ convenience. The robot has a spring balancing system that has  
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Fig. 5 Static equilibrium of the links 5 and 7 together (Segla 1998) 

 

 

to be optimized. The method described here can be applied to any robot or mechanism that has to 

be designed to produce a certain kinematic, static or dynamic behaviour.  

The industrial robot APR20 with 6-DOF (q1, q2, q3, q4, q5 and q6) is shown in Fig. 2. It is clear 

from Fig. 2 that the 6-DOF of the mechanism is to be balanced by only q2 and q3. When a mass of 

zero at the gripper is assumed, q4, q5 and q6 have no influence. When the robot is in a correctly 

vertical position, the rotation about the vertical axis (q1) is balanced. This simplifies the balancing 

considerably as the spatial robot can now be reduced to a planar mechanism with 2-DOF. It is 

proved that in the case of the links 5 and 7 of negligible mass the static gravity forces at the DOF 

q2 and q3 caused by gravitation forces of links 5 and 7 (Fig. 3) can be completely eliminated (Segla 

1998).  

The problem of the statically balancing of the robot taking into account masses of the links 6 

and 8 can be formulated as an optimization problem. Spring mechanisms are used to balance the 

robot APR 20 (Figs. 4 and 5). Fig. 4 shows statically balancing of link 7. The balancing moment is 

transmitted to link 7 by a mechanical belt and pulley transmission. The first pulley wheel of the 

transmission placed on the rotating base of the robot can rotate independently of the rotation of 

link 5. The second one (of the same diameter) is attached to link 7. One end of the spring rod of 

this balancing mechanism is connected to the lower pulley by a revolute joint at W and a balancing 

spring 2 of constant stiffness k2 is placed between the other end of the spring rod and a joint at V2 

(placed on the rotating base of the robot) which allows rotation and translation of the spring rod. 

Fig. 5 shows the balancing mechanism of link 5 that is similar to the previous one. The spring rod 

is connected to link 5 by a revolute joint at T. The parameters of both balancing mechanisms that 

minimize the forces Fx and Fyacting on point C (Fig. 3) are to be found. These forces have to 

ensure statical balance of the robot in any position of the robot gripper (M) in the working area of 

the robot EFGH. It should be noted that from a parallelogram ACBD, there is a simple relation 

between the position of the robot gripper (M) in the rectangle EFGH and the position of the joint C 

in the smaller rectangle E’F’G’H’. 

The position of point M in the rectangle EFGH corresponds to the position of point C in the 

rectangle E’F’G’H’ which is determined by intervals of coordinates x and y: 0.115 m ≤ x ≤ 0.295 

m and -0.025 m ≤ y ≤ 0.155 m. The forces Fx and Fy have to be minimized for all occurring 

positions of the robot. For this purpose a rectangular grid is used. So there are four sets of Fx and 

Fy corresponding to the corner points of the rectangle E’F’G’H’. The force acting on point C is the 

average of forces acting on the corner points of rectangle E’F’G’H’. The objective function is the 
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average force (fav) acting on point C that is needed to balance the robot. This average force is to 

be minimized (Saravanan et al. 2008): 

The following are important parameters to be considered. 

•Forces acting on point C in horizontal and vertical directions: Fx, Fy 

•Coordinates of the robot mechanism: ø1, ø2 

•Reaction forces: Ax, Ay, Bx, By 

•Stiffness of springs 1 and 2: k1, k2 

•Length of the unloaded springs 1 and 2: 𝑙01, 𝑙02 

•Lengths of spring rods: 𝑙1𝑇, 𝑙2𝑇 

•Distances determining position of point V1: 𝑙𝑥1, 𝑙𝑦1 

•Distances determining position of point V2: 𝑙𝑥2, 𝑙𝑦2 

•Distances between points ZT, ZW: e1, e2 

•Angle determining position of point T: ø10 

•Angle determining position of point W (when ø1 = ø2): ø20 

•Masses of robot links: m5=57.0 kg, m6=1.0 kg, m7 =97.43 kg (includes mass of robot gripper 

and nominal payload of 10 kg), m8=5.16 kg. 

•Length of links: l5=1.098 m, l6=0.18 m, l7=1.098 m, l8=0.918 m, Az=a=0.18m, DB=b= 0.18 m. 

•Lengths determining centers of gravity: CT8=c=0.458 m, DT7=d, ZT5=p=0.5 m, 

AT6=q=0.105 m. 

•Permissible spring deflections: tm1= 0.15 m, tm2=0.1  m.  

The formal mathematical model can be represented as follows 

𝑀𝑖𝑛. 𝑓𝑎𝑣 = ∑(√𝐹𝑥𝑖
2 + 𝐹𝑦𝑖

2 )

𝑁

𝑖=1

/𝑁 (5) 

where N is the number of points in the rectangular E’F’G’H’ at which the forces Fx and Fy are 

computed. For this purpose a rectangular grid will be used. The forces Fx and Fy  have to be 

minimized for all occurring positions of the robot. These forces are functions of the coordinate’s ø1 

and ø2 and the design variables of the robot.  

When the variables of the robot and its balancing mechanisms are known, the forces Fx and Fy 

can be computed from the following Eqs. (6) and (7) for all possible values of the coordinates ø1 

and ø2. In an ideal situation the forces will be zero. 

Where 

𝐹𝑥 = 𝑐𝑓1𝑐𝑣 (
𝐺5𝑝

𝑎
+ 𝐺6 + 𝑀5𝑃/(𝑐𝑓1𝑎) +

𝑙5𝐺7

𝑎
−

𝐺6𝑞

𝑙6
−

𝐺8𝑐

𝑙8
−

𝐺7𝑑

𝑏
+ 𝑀7𝑃 (𝑐𝑣𝑏) + 𝑙5𝐺8𝑐/(𝑎𝑙8))/𝑠𝑓2 (6) 

𝐹𝑦 = 𝑐𝑓1𝑠𝑣(−𝑙5𝑐𝐺8/𝑎𝑙8) +
𝐺8𝑐

𝑙8
−

𝑙5𝐺7

𝑎
−

𝐺5𝑝

𝑎
−

𝑀5𝑃

(𝑎𝑐𝑓1)
− 𝐺6)𝑠𝑓2 + 𝑠𝑓1𝑐𝑣 (−

𝑀7𝑃

𝑏𝑐𝑣
) +

𝐺7𝑑

𝑏
+ 𝐺6𝑞/𝑙6)𝑠𝑓2 + 𝐺8 (7) 

The coordinates ø1 and ø2 can be computed from the coordinates x and y of point C using the 

following equations 

ø2 = 2𝑎𝑟𝑐𝑠𝑖𝑛 (√(𝑥2 + 𝑦2)/2𝑎) (8) 

ø1 = 𝛱
2⁄ + ø

2⁄ − 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑦 √𝑥2 + 𝑦2⁄ ) (9) 
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𝑐𝑣 = 𝑐𝑜𝑠(ø1 − ø2) (10) 

𝑠𝑓1 = 𝑠𝑖𝑛ø1  (11) 

𝑠𝑓2 = 𝑠𝑖𝑛ø2 (12) 

𝑠𝑣 = 𝑠𝑖𝑛(ø1 − ø2) (13) 

𝑐𝑓1 = 𝑐𝑜𝑠ø1 (14) 

The balancing moments M5P and M7P are determined by following equations 

𝑀5𝑃 = −𝐾1 {𝑙01 − [𝑙1𝑇 − √𝑏1
2 + 𝑏2

2]} 𝑒1𝑠𝑖𝑛(𝛽1 + 𝛱 2⁄ − ø1 − ø10) (15) 

𝑏1 = 𝑒1𝑐𝑜𝑠(ø1 + ø10) − 𝑙𝑥1 (16) 

𝑏2 = −𝑒1𝑠𝑖𝑛(ø1 + ø10) − 𝑙𝑦1 (17) 

𝛽1 = 𝑎𝑟𝑐𝑡𝑔(𝑏1 𝑏2⁄ ) (18) 

𝑀7𝑃 = −𝐾2 {𝑙02 − [𝑙2𝑇 − √𝑎1
2 + 𝑎2

2]} 𝑒2𝑠𝑖𝑛(3𝛱 2 −⁄ 𝛽2 − ø20 − ø1 + ø2) (19) 

 𝑎1 = 𝑒2𝑐𝑜𝑠(3𝛱 2⁄ − ø20 − ø1 + ø2) + 𝑙𝑦2 (20) 

 𝑎2 = 𝑒2𝑠𝑖𝑛(3𝛱 2⁄ − ø20 − ø1 + ø2) + 𝑙𝑥2 (21) 

 𝛽2 = 𝑎𝑟𝑐𝑡𝑔(𝑎2 𝑎1⁄ ) (22) 

The appropriate lengths of the spring rods l1T and l2T are calculated from following equations 

 𝑙1𝑇 = √(𝑙𝑥1
2 + 𝑙𝑦1

2) + 𝑡𝑚1 (23) 

 𝑙2𝑇 = √(𝑒2 + 𝑙𝑦2)2 + 𝑙𝑥2
2 + 𝑡𝑚2 (24) 

For gravitational forces the relations are: 

𝐺𝑖 = 𝑚𝑖𝑔  (i= 5,…..,8) where g is the acceleration due to gravity.              

Search intervals for design variables are given in Table 1. e1 and e2 are introduced as the two 

new variables in addition with design variables considered by Segla (1998). In Table 1, the search 

intervals for all independent design variables are given. 

The optimization results are obtained for three different values of d (length determining C. G. 

of DT7) for three cases. In the first case the value of d is considered as 0.2225 m and as 0 for the 

second case. For the third case the value of d is considered as 0.122236 m (Saravanan et al. 2008). 

The optimum objective function (fav) for all the three cases using different optimization methods 

are given in Table 2. 
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Table 1 Search intervals 

Variables (units) Lower bound Upper bound 

k1 (N/m) 0 4,000,000 

l01 (m) 0.15 0.4 

lx1 (m) -0.08 0.08 

ly1 (m) 0.035 0.234 

Ø  10 (rad) -0.3491 0.3491 

k2 (N/m) 0 600,000 

l02 (m) 0.1 0.45 

lx2 (m) -0.04 0.04 

ly2 (m) 0.024 0.18 

Ø  20 2.7925 3.4906 

e1 (m) 0.075 0.125 

e2 (m) 0.075 0.125 

 
Table 2 Optimum result obtained from various methods 

Case 

no. 
NM CGM GA NSGA-II DE TLBO 

1 26.38839785 26.37021773 16.8278733 16.7774657 16.52231619 16.36783591 

2 21.74875683 21.84766492 17.42968778 16.6944685 16.48118857 16.32845249 

3 26.05045689 22.35298544 12.17495621 12.01782274 11.9821382 11.61893467 

The results of NM, CGM, GA, NSGA-II and DE are from Saravanan et al. (2008). 

 
Table 3 Effects of new variable in the objective function for case 1 

Variables 

Without considering e1 

and e2 as variables 

(Segla 1998) 

With considering e1 and e2 as variables 

using DE (Saravanan 2008) 

With considering e1 and e2 as 

variables using  TLBO 

k1 (N/m) 64,957.72 76,215.15629 81,834.37846 

l01 (m) 0.3595802 0.292022486 0.317847382 

lx1 (m) - 0.04250812 0.016286408 0.011389923 

ly1 (m) 0.2047589 0.14144445 0.015795403 

Ø  10 (rad) 0.2047383 -0.116328825 -0.1848926 

k2 (N/m) 23157.98 19,614.97714 18,493.25784 

l02 (m) 0.299869 0.332661699 0.353795773 

lx2 (m) -0.01765858 0.010128801 0.009826437 

ly2 (m) 0.08741526 0.115916625 0.127464335 

Ø  20 3.331267 3.071067042 3.015784678 

e1 (m) 0.1 0.124999991 0.124999999 

e2 (m) 0.1 0.075000054 0.075000001 

fav (N) 36.68841365 16.52231619 16.36783591 
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Table 4 Effects of new variable in the objective function for case 2 

Variables 

Without considering e1 

and e2 as variables 

(Segla 1998) 

With considering e1 and e2 as 

variables using DE  

(Saravanan 2008) 

With considering e1 and e2 as 

variables using TLBO 

k1 (N/m) 77,470.14 74,815.38456 73,248.47826 

l01 (m) 0.325919 0.294678383 0.302748823 

lx1 (m) 0.01328951 0.000632288 - 0.000016753 

ly1 (m) 0.17534 0.145051132 0.136895461 

Ø  10 (rad) -0.07568362 -0.006002453 -0.003216754 

k2 (N/m) 6885.527 62,203.58799 68,709.53797 

l02 (m) 0.1778149 0.104730401 0.100045744 

lx2 (m) 0.001941306 0.022781915 0.024994635 

ly2 (m) 0.02669327 0.026304254 0.026218378 

Ø  20 3.143471 3.460829819 3.480167922 

e1 (m) 0.1 0.125 0.124999998 

e2 (m) 0.1 0.075000025 0.075 

fav (N) 35.56356433 16.48118857 16.32845249 

 
Table 5 Effects of new variable in the objective function for case 3 

Variables 

Without considering e1 

and e2 as variables 

(Segla 1998) 

With considering e1 and e2 as 

variables using DE  

(Saravanan 2008) 

With considering e1 and e2 as 

variables using TLBO 

k1 (N/m) 60,332.34 71,147.47273 78,753.28535 

l01 (m) 0.3582281 0.289520497 0.283778434 

lx1 (m) 0.07142384 0.015650483 0.012679357 

ly1 (m) 0.1961656 0.138887075 0.115673479 

Ø  10 (rad) -0.3489188 -0.113532087 -0.173911432 

k2 (N/m) 9764.061 8548.302991 8264.624757 

l02 (m) 0.331819 0.373253457 0.384256705 

lx2 (m) 0.004234375 0.022364905 0.030167546 

ly2 (m) 0.09313436 0.056932774 0.048356728 

Ø  20 3.061444 2.792500368 2.717442461 

e1 (m) 0.1 0.125 0.124999978 

e2 (m) 0.1 0.125 0.124999997 

fav (N) 42.40874757 11.9821382 11.61893467 

 

 

4. Results and discussion 
 

To check the effectiveness of the TLBO algorithm extensive computational experiments are 

conducted on static balancing of robot mechanism considered by Saravanan et al. (2008) and 

results are compared with other optimization algorithms. Saravanan et al. (2008) used optimization 
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methods using 10000 function evaluations. Hence to make fair comparison of results, the same 

number of function evaluation is considered. Hence, Population size of 50 and maximum number 

of generations of 100 are considered (it may be mentioned here that the number of function 

evaluations in TLBO algorithm=2×population size×number of generations). Like other 

optimization algorithms (e.g., PSO, ABC, ACO, etc.), TLBO algorithm also has not any special 

mechanism to handle the constraints. So, for the constrained optimization problems it is necessary 

to incorporate any constraint handling techniques with the TLBO algorithm. In the present 

experiments, Deb’s heuristic constrained handling method (Deb 2000) is used to handle the 

constraints with the TLBO algorithm. The TLBO code is written in MATLAB and implemented 

on a laptop having Intel core i3 2.53 GHz processor with 1.85 GB RAM. 

The optimum static balancing of robot mechanism is evaluated using TLBO algorithm for three 

cases. Three different values of d (length determining C. G. of DT7) are considered as three cases. 

In the first case the value of d is 0.2225 m (balancing of mechanism considering the payload 10 

kg). For the second case the value of d is 0. It means the center of gravity T7 is at joint D. For the 

third case the value of m7 is 87.43 kg (without the payload of 10 kg) and therefore the value of d is 

0.12236 m.  

The Table 1 provides the search intervals for different variables. The optimum objective 

function (fav) for all the three cases using different optimization methods are given in Table 2. 

From Table 2, it can be seen that the optimum value of the objective function is 16.36783591 for 

case1 when d value is 0.2225 which is better than the value obtained by other optimization 

methods like Newton’s method, Conjugate gradient method, GA, NSGA-II and DE. Also, it can be 

observed from the Table 2 for case 1 the function value is improved by 61.22%, 61.11%, 2.81%, 

2.50% and 0.934% using TLBO algorithm as compared to the values obtained by Newton’s 

method, Conjugate gradient method, GA, NSGA-II and DE respectively. 

Similarly, for case 2, the TLBO algorithm performs better and provides best function value 

among the six optimization methods considered for this problem. The best function value gained is 

16.32845249 for case 2 using TLBO algorithm when d value is 0. Also, it can be observed from 

the Table 2 for case 2 the function value is improved by 33.21%, 33.82%, 6.74%, 2.24% and 

0.934% using TLBO algorithm as compared to the values obtained by the Newton’s method, 

Conjugate gradient method, GA, NSGA-II and DE respectively. 

For the case 3, the best optimum function value is 11.61893467 obtained using the TLBO 

algorithm which is much better than the value obtained by conventional optimization methods. 

Also, it can be observed from the Table 2 for case 2 the function value is improved by 124.37%, 

92.50%, 4.85%, 3.44% and 3.18% using TLBO algorithm as compared to the values obtained by 

Newton’s method, Conjugate gradient method, GA, NSGA-II and DE respectively. 

The best result is gained for the third case when the value of d is 0.12236. It can be observed 

from Table 2 that TLBO gives better results than the other five optimization methods considered in 

all the three cases. 

Table 3 presents the effect of two new variables e1 and e2 (distance between the points z and T, 

z and W, respectively) in the objective function for case 1. Table 4 presents the effect of two new 

variables e1 and e2 (distance between the points z and T, z and W, respectively) in the objective 

function for case 2. Table 5 presents the effect of two new variables e1 and e2 (distance between 

the points z and T, z and W, respectively) in the objective function for case 3. In this work, 

improved Segla model with 12 variables proposed by Saravanan et al. (2008) is considered. From 

Tables 3-5 it can concluded that the best results are obtained when two new variables e1 and e2 are 

included in the original Segla model. 
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Fig. 6 Convergence plot of the TLBO algorithm for case 1 

 

 
Fig. 7 Convergence plot of the TLBO algorithm for case 2 

 

 

 
Fig. 8 Convergence plot of the TLBO algorithm for case 3 

 

 

Figs. 6-8 present the convergence process using TLBO algorithm for case 1, case 2 and case3 

respectively. From Figs. 6-8 it can be observed that the convergence pattern is smooth and are in 

lower region. Also, it can be seen that TLBO gives lowest value in comparison with other 

optimization methods. 

 

 

5. Conclusions 
 

In this work, the performance of the proposed TLBO algorithm is checked for static balancing 

of a robot manipulator. Three cases are considered to verify the efficiency and accuracy of the 

proposed method. The results of TLBO algorithm are compared with conventional and 

evolutionary optimization methods such as NM, CGM, GA, NSGA-II and DE. For case 1, the 

optimum value of the average force on the gripper in the working area is obtained as 16.36783591 

using the TLBO algorithm. The average force on the gripper is improved by 61.22%, 61.11%, 
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2.81%, 2.50% and 0.934% using the TLBO algorithm as compared to the values obtained by NM, 

CGM, GA, NSGA-II and DE algorithms  respectively. For case 2, the optimum value of the 

average force on the gripper in the working area is 16.32845249 obtained using the TLBO 

algorithm. The average force on the gripper is improved by 33.21%, 33.82%, 6.74%, 2.24% and 

0.934% using the TLBO algorithm as compared to the values obtained by NM, CGM, GA, NSGA-

II and DE respectively. For case 3, the optimum value of the average force on the gripper in the 

working area is 11.61893467 obtained using the TLBO algorithm. The average force on the 

gripper is improved by 124.37%, 92.50%, 4.85%, 3.44% and 3.18% using the TLBO algorithm as 

compared to the values obtained by NM, CGM, GA, NSGA-II and DE respectively. The 

computational results showed that for all the three cases the TLBO algorithm has obtained 

comparatively more accurate solutions than those obtained by using other optimization methods. 

Therefore, it can be stated that the TLBO algorithm is effective and has a potential for solving 

static balancing of robot manipulator problem. The present work will be extended in the near 

future to solve other design problems related to the robot manipulator. 
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Appendix: Demonstration of the working of TLBO algorithm 
 

A standard benchmark function of Sphere is considered for demonstration of working of the TLBO 

algorithm. The objective function is to find out the values of xi that minimize the value of Sphere function. 

Function: Minimize 

 
Variables range: -100≤ xi≤ 100 

The known solution to this benchmark function is 0 for all xi=0. Now to demonstrate the TLBO 

algorithm, let us assume a population size of 5 (i.e., number of learners), two design variables x1 and x2 (i.e., 

number of subjects) and one iteration as the termination criterion. The initial population is randomly 

generated within the ranges of the variables and the corresponding values of the objective function are 

shown in Table A1. 

 

 
Table A1 Initial population 

 

x1 x2 Value of objective function  

-55 36 4321  

0 41 1681  

96 -86 16612  

-64 31 5057  

-18 -27 1053 Teacher 

Mean -8.2 -1   

 
Table A2 Teacher phase 

x1 x2 Value of objective function 

-60.684 23.26 4224 

-5.684 28.26 830.9 

90.32 -98.74 17907 

-69.68 18.26 5189 

-23.68 -39.74 2140 

 

 
The mean values of x1and x2are also shown in Table A1. As it is a minimization function, the lowest 

value of f(x) is considered as the best learner (and is considered as equivalent to teacher). Now the teacher 

tries to improve the mean result of the class. Assuming random numbers r1= 0.58 for x1and r2= 0.49 for x2, 

and Tf= 1, the difference mean values for x1 and x2 are calculated as, 

difference_mean(x1) = 0.58*(-18-(-8.2))=-5.684 

difference_mean(x2) = 0.49*(-27-(-1))=-12.74 

The value of difference_mean(x1) is added to all the values under the x1 column and the value of 

difference_mean(x2) is added to all the values under the x2column of Table A1. Table A2 shows the new 

values of x1 and x2 and the corresponding values of the objective function. 

Now, the values of  f(x) of Tables A1 and A2 are compared and the best values of  f(x) are considered and 

placed in Table A3. This completes the teacher phase of the TLBO algorithm. 
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Table A3 Updated values of the variables and the objective function (teacher phase) 

x1 x2 fitness 

-60.684 23.26 4224 

-5.684 28.26 830.9 

96 -86 16612 

-64 31 5057 

-18 -27 1053 

 

Table A4 New values of the variables and the objective function (learner phase) 

x1 x2 Value of objective function Interaction 

-16.134 27.86 1036 1&2 

41.55 25.74 2389 2&4 

3.66 -31.72 1020 3&5 

-61.31 23.88 4330 4&1 

-110.3 27.28 12919 5&3 

 

 

Now, the learner phase starts and any student can interact with any other student for knowledge transfer. 

This interaction can be done in a random manner. In this example, interactions between learners 1 and 2, 2 

and 4, 3 and 5, 4 and 1, and 5 and 3 are considered. It is to be noted that every learner has to interact with 

any other learner. That is why, in this example, 5 interactions are considered (i.e., one interaction for each 

learner). Table A4 shows the new values of x1 and x2 for the learners after the interactions and considering 

random numbers r1=0.81 for x1 and r2=0.92 for x2. For example, the new values of x1 and x2 for learner 1 are 

calculated as explained below. As it is a minimization function, the value of f(x) is better for learner 1 as 

compared to that of learner 2 and hence the knowledge transfer is from learner 1 to learner 2. Hence the new 

values of x1and x2for learner 1 are calculated as 

(x1)new for learner 1=-60.684+0.81(-5.684-(-60.684)) =-16.134 

(x2)new for learner 1=23.26+0.92(28.26-23.26) =27.86 

Now, the values of f(x) of Tables A3 and Table A4 are compared and the best values of f(x) are 

considered and placed in Table A5. 
 

 

Table A5 Updated values of the variables and the objective function (learner phase) 

x1 x2 Value of objective function 

-16.13 27.86 1036 

-5.684 28.26 830.9 

3.66 -31.72 1020 

-61.31 23.88 4330 

-18 -27 1053 

 

 

This completes the learner phase and one iteration of the TLBO algorithm. The value of f(x) is reduced 

from 1053 at the beginning of iteration to 830.9 at the end of first iteration. Increasing the number of 

iterations will soon find the value of  f(x) reaching the known solution of 0 for x1=0 and x2=0. 
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