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Abstract.  With the use of differential quadrature method (DQM), forced vibrations and resonance frequency 

analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear 

deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. 

The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic 

substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size 

beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-

size beams exposed to dynamical load have been achieved by utilizing Eringen’s nonlocal differential law and 

Hamilton’s rule. Derived equations have solved via DQM based on simply supported-simply supported edge 

condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size 

beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors. 
 

Keywords:  forced vibrations; DQM; FG nanobeam; dynamic load; elastic substrate; nonlocal elasticity 

theory 

 
 
1. Introduction 

 
In a FG material, all material properties may change from one side to another side by means of 

a prescribed distribution. These two sides may be ceramic or metal. Mechanical characteristics of a 

FG material can be described based on the percentages of ceramic and metal phases. The material 

distribution in FG materials may be characterized via a power-law function. FG materials are not 

always perfect because of porosity production in them. Existence of porosities in the FG materials 

may significantly change their mechanical characteristics. For example, the elastic moduli of 

porous FG material is smaller than that of perfect FG material. Up to now, many authors focused 

on wave propagation, vibration and buckling analyzes of FG structures having porosities (Jabbari 

et al. 2008, Chikh et al. 2016, Sobhy 2016, Lal et al. 2017, Bensaid and Kerboua 2019, Bekhadda 

et al. 2019). Also, there are several investigations concerning with the analysis of FG structures in 

thermal environments (Bouderba et al. 2016, El-Hassar et al. 2016). 

Recently, this kind of materials have found their applications in nano-scale structures. Vibration 

behavior of a nano-scale plate is not the same as a macro-scale plate (Lee et al. 2006, Zalesak et al. 

2016). This is because small-size effects are not present at macro scale. So, mathematical 
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modeling of a nanoplate can be done with the use of nonlocal elasticity (Eringen 1983) 

incorporating only one scale parameter (Berrabah et al. 2013, Zenkour and Abouelregal 2014a, b, 

Aissani et al. 2015, Besseghier et al. 2015, 2017, Elmerabet et al. 2017, Bouadi et al. 2018, Yazid 

et al. 2018). Due to the ignorance of strain gradient effect in nonlocal elasticity theory, a more 

general theory will be required (Natarajan et al. 2012, Daneshmehr and Rajabpoor 2014, 

Belkorissat et al. 2015, Ebrahimi and Barati 2016, Sobhy and Radwan 2017, Larbi Chaht et al. 

2015, Belmahi et al. 2019, Alassadi et al. 2019). Strain gradients at nano-scale are observed by 

many researchers (Lam et al. 2003, Lim et al. 2015, Mirsalehi et al. 2017). Thus, nonlocal-strain 

gradient theory was introduced as a general theory which contains an additional strain gradient 

parameter together with nonlocal parameter (Li et al. 2015, 2018, Li and Hu 2015, 2016, 2017, 

Barati and Zenkour 2017, Fenjan et al. 2019). The scale parameters used in nonlocal strain 

gradient theory can be obtained by fitting obtained theoretical results with available experimental 

data and even molecular dynamic (MD) simulations. 

This paper uses a higher order shear deformation beam formulation having three variables 

without using of shear correction factor. Based upon differential quadrature (DQ) approach and 

nonlocal elasticity formulation, forced vibrational analysis of shear deformable functionally graded 

(FG) nanobeam on elastic medium under partial dynamical load has been performed. The 

presented formulation incorporates a scale factor for examining vibrational behaviors of nano-

dimension beams. The material properties for FG beam are defined employing a power-law form. 

It is supposed that the nano-sized beam is exposed to transverse dynamic load for excitation 

frequency. The governing equations achieved by Hamilton’s principle are solved implementing 

DQM. Presented results indicate the prominence of material gradient index, nonlocal coefficient, 

material gradient coefficient, load location and substrate factors on vibrational properties of FG 

nano-size beam. 

 

 

2. Theories and formulations 
 

2.1 Effective properties for FGMs based upon neutral axis location 
 

FG materials have variable properties in transverse direction of the beam affected by the 

location of neutral axis (Tang et al. 2020). For incorporating exact location of neutral axis, the zms, 

zns have been measured from the middle and neutral axes, respectively. This leads to below 

relation 

∫ 𝐸(𝑧𝑚𝑠)(𝑧𝑚𝑠

ℎ/2

−ℎ/2

− ℎ0)𝑑𝑧𝑚𝑠 = 0 (1) 

 

so that the location (z = h0) may be determined as 

 

ℎ0 =
∫ 𝐸(𝑧𝑚𝑠)𝑧𝑚𝑠
ℎ/2

−ℎ/2
𝑑𝑧𝑚𝑠

∫ 𝐸(𝑧𝑚𝑠)
ℎ/2

−ℎ/2
𝑑𝑧𝑚𝑠

 (2) 

 

Based upon Mori-Tanaka scheme, the effective local bulk modulus, 𝐾𝑒, and shear modulus 𝜇𝑒 

may be defined by (Ebrahimi et al. 2016) 
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𝐾𝑒 − 𝐾𝑚
𝐾𝑐 − 𝐾𝑚

=
𝑉𝑐

1 + 𝑉𝑚(𝐾𝑐 − 𝐾𝑚)/(𝐾𝑚 + 4𝜇𝑚/3)
 (3) 

 
𝜇𝑒 − 𝜇𝑚
𝜇𝑐 − 𝜇𝑚

=
𝑉𝑐

1 + 𝑉𝑚(𝜇𝑐 − 𝜇𝑚)/[(𝜇𝑚 + 𝜇𝑚(9𝐾𝑚 + 8𝜇𝑚)/(6(𝐾𝑚 + 2𝜇𝑚))]
 (4) 

 

so that subscripts m and c are corresponding to metallic and ceramic constituents, respectively. 

Also, the below relation exists for volume fractions of the two constituents 
 

𝑉𝑐 + 𝑉𝑚 = 1 (5) 

 

in such a way that ceramic constituent has below volume fraction as a function of material 

exponent (p) 

𝑉𝑐(𝑧𝑛𝑠) = (
𝑧𝑛𝑠 + 𝐶

ℎ
+
1

2
)
 𝑝

 (6) 

 

Next, the effective Young’s modulus (E), Poisson’s ratio (𝜈) and mass density 𝜌 may be 

expressed by 

𝐸(𝑧𝑛𝑠) =
9𝐾𝑒𝜇𝑒
3𝐾𝑒 + 𝜇𝑒

 (7) 

 

𝜈(𝑧𝑛𝑠) =
3𝐾𝑒 − 2𝜇𝑒
6𝐾𝑒 + 2𝜇𝑒

 (8) 

 

𝜌(𝑧𝑛𝑠) = 𝜌 𝑐𝑉 𝑐 + 𝜌 𝑚𝑉 𝑚 (9) 

 

2.2 Kinematic relations 
 

Shear deformation are shown to have great influence on mechanical characteristics of nano-size 

beams (Tang et al. 2019a, b). By defining exact location of neutral axis, the displacement 

components based on axial u, bending wb and shear ws displacements may be introduced as 

(Besseghier et al. 2017, Fenjan et al. 2019) 
 

𝑢𝑥(𝑥, 𝑧𝑛𝑠) = 𝑢(𝑥) − 𝑧𝑛𝑠
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧𝑛𝑠)
𝜕𝑤𝑠
𝜕𝑥

 (10a) 

 

𝑢𝑧(𝑥, 𝑧𝑛𝑠) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) (10b) 

 

In this study, the shear strain function f(zns) is defined by 
 

𝑓(𝑧𝑛𝑠) = 𝑧𝑛𝑠 + ℎ0 − 𝑠𝑖𝑛( 𝜉(𝑧𝑛𝑠 + ℎ0))/𝜉 (11) 

 

where 𝜉 = 𝜋/ℎ. Finally, the strains based on the three-unknown beam model have been obtained 

as 

𝜀xx =
𝜕𝑢

𝜕𝑥
− 𝑧𝑛𝑠

𝜕2𝑤𝑏
𝜕𝑥2

− 𝑓(𝑧𝑛𝑠)
𝜕2𝑤𝑠
𝜕𝑥2

 (12a) 
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𝛾𝑥𝑧 = 𝑔(𝑧𝑛𝑠)
𝜕𝑤𝑠
𝜕𝑥

 (12b) 

 

where 𝑔(𝑧𝑛𝑠) = 1 − 𝑑𝑓(𝑧𝑛𝑠)/𝑑𝑧𝑛𝑠. Next, one might express the Hamilton’s rule as follows based 

on strain energy (U) and kinetic energy (T) 
 

∫ 𝛿(𝑈 + 𝑉 − 𝐾)𝑑𝑡 = 0
𝑡

0

 (13) 

 

and 𝑉is the work of non-conservative loads. Based on above relation we have 
 

𝛿𝑈 = ∫𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉 =
𝑣

∫(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
𝑣

 (14) 

 

Placing Eqs. (12a)-(12b) into Eq. (14) leads to 
 

𝛿𝑈 = ∫ (𝑁
𝜕𝛿𝑢

𝜕𝑥
−𝑀𝑏

𝜕2𝛿𝑤𝑏
𝜕𝑥2

−𝑀𝑠
𝜕2𝛿𝑤𝑠
𝜕𝑥2

+ 𝑄
𝜕𝛿𝑤𝑠
𝜕𝑥

)
𝐿

0

𝑑𝑥 (15) 

 

where 
 

(𝑁,𝑀𝑏 , 𝑀𝑠) = ∫ (1, 𝑧𝑛𝑠 , 𝑓)𝜎𝑥𝑥

ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝑧𝑛𝑠 , 𝑄 = ∫ 𝑔𝜎𝑥𝑧

ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝐴 (16) 

 

The variation for the work of non-conservative force is expressed by 

 

𝛿𝑉 = ∫ (
𝐿

0

(𝑞 + 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐)𝛿(𝑤𝑏 +𝑤𝑠))𝑑𝑥 (17) 

 

The external force q due to Winkler-Pasternak substrate may be defined as 

 

𝑞 = −𝑘𝑤(𝑤𝑏 +𝑤𝑠) + 𝑘𝑝
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
 (18) 

 

in such a way that 𝑘𝑤 and 𝑘𝑝 define Winkler and Pasternak factors of substrate, respectively. 

Also, the kinetic energy variation is obtained as 

 

𝛿𝐾 = ∫ (𝐼0 [
𝜕𝑢

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
+ (

𝜕𝑤𝑏
𝜕𝑡

+
𝜕𝑤𝑠
𝜕𝑡
) (
𝜕𝛿𝑤𝑏
𝜕𝑡

+
𝜕𝛿𝑤𝑠
𝜕𝑡

)] − 𝐼1 (
𝜕𝑢

𝜕𝑡

𝜕2𝛿𝑤𝑏
𝜕𝑥𝜕𝑡

+
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
)

𝐿

0

  

          +𝐼2 (
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑏
𝜕𝑥𝜕𝑡

) − 𝐽1 (
𝜕𝑢

𝜕𝑡

𝜕2𝛿𝑤𝑠
𝜕𝑥𝜕𝑡

+
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
) + 𝐾2 (

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑠
𝜕𝑥𝜕𝑡

) 

          +𝐽2 (
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑠
𝜕𝑥𝜕𝑡

+
𝜕2𝑤𝑠
𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤𝑏
𝜕𝑥𝜕𝑡

))𝑑𝑥 

(19) 

 

so that 
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(𝐼0, 𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐾2) = ∫ 𝜌(𝑧𝑛𝑠)(1, 𝑧𝑛𝑠, 𝑓, 𝑧𝑛𝑠
2

ℎ/2−ℎ0

−ℎ/2−ℎ0

, 𝑧𝑛𝑠𝑓, 𝑓
2)𝑑𝑧𝑛𝑠 (20) 

 

Substituting Eqs. (15)-(19) into Eq. (13) then collecting the coefficients for field variables 

results in three equations of motion 
 

𝜕𝑁

𝜕𝑥
= 𝐼0

𝜕2𝑢

𝜕𝑡2
− 𝐼1

𝜕3𝑤𝑏
𝜕𝑥𝜕𝑡2

− 𝐽1
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑡2

 (21) 

 

𝜕2𝑀𝑏
𝜕𝑥2

= 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐼0 (
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) + 𝐼1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
− 𝐼2

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

 

                −𝐽2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+ 𝑘𝑤(𝑤𝑏 +𝑤𝑠) − 𝑘𝑝
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

(22) 

 

𝜕2𝑀𝑠
𝜕𝑥2

+
𝜕𝑄

𝜕𝑥
= 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐼0 (

𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) + 𝐽1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
− 𝐽2

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

 

                           −𝐾2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

+ 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) − 𝑘𝑝
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
 

(23) 

 

2.3 The nonlocal elasticity model for refined FGM nanobeams 
 

In the context of nonlocal elastic field theory, the stress situation of every points within a 

structure may be defined as a function of strain of all neighboring points. Thus, a constitutive 

scheme has been employed for expressing the nonlocal stress field 𝜎𝑖𝑗 at point x based on below 

relation 

𝜎𝑖𝑗 = ∫𝜆(|𝑥
′ − 𝑥|, 𝜏)

𝑉

𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙(𝑥
′)𝑑𝑉(𝑥 ′) (24) 

 

where 𝐶𝑖𝑗𝑘𝑙  and 𝜀𝑘𝑙 are the elastic material properties and strain field, and the nonlocal kernel 

𝜆(|𝑥′ − 𝑥|, 𝜏) contains the effects of the strains of point 𝑥′on the stresses of point x within the 

structure and |𝑥 ′ − 𝑥| defines Euclidean distances. In differential form, the nonlocal stress-strain 

relations may be expressed by 
 

 (1 − (𝑒0𝑎)
2𝛻2)𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (25) 

 

where 𝛻2is used as Laplacian operator. Accordingly, the constitutive relations based on nonlocal 

refined FG nano-size beam may be introduced as 
 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥
𝜕𝑥2

= 𝐸(𝑧𝑛𝑠)𝜀𝑥𝑥 (26) 

 

𝜎𝑥𝑧 − 𝜇
𝜕2𝜎𝑥𝑧
𝜕𝑥2

= 𝐺(𝑧𝑛𝑠)𝛾𝑥𝑧 (27) 

 

where 𝜇 = (𝑒0𝑎)
2. Integration of Eqs. (26) and (27) about the beam thickness results in the below 
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forces and moments 
 

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= 𝐴

𝜕𝑢

𝜕𝑥
− 𝐵

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐵𝑠
𝜕2𝑤𝑠
𝜕𝑥2

 (28) 

 

𝑀𝑏 − 𝜇
𝜕2𝑀𝑏

𝜕𝑥2
= 𝐵

𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷𝑠
𝜕2𝑤𝑠
𝜕𝑥2

 (29) 

 

𝑀𝑠 − 𝜇
𝜕2𝑀𝑠
𝜕𝑥2

= 𝐵𝑠
𝜕𝑢

𝜕𝑥
− 𝐷𝑠

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐻𝑠
𝜕2𝑤𝑠
𝜕𝑥2

 (30) 

 

𝑄 − 𝜇
𝜕2𝑄

𝜕𝑥2
= 𝐴𝑠

𝜕𝑤𝑠
𝜕𝑥

 (31) 

 

where the cross-sectional rigidities are calculated as follows 
 

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠, 𝐻𝑠) = ∫ 𝐸(𝑧𝑛𝑠)(1, 𝑧𝑛𝑠, 𝑓, 𝑧𝑛𝑠
2, 𝑧𝑛𝑠𝑓, 𝑓

2)
ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝑧𝑛𝑠 (32) 

 

𝐴𝑠 = ∫ 𝑔2𝐺(𝑧𝑛𝑠)
ℎ/2−ℎ0

−ℎ/2−ℎ0

𝑑𝑧𝑛𝑠 (33) 

 

Three governing equations for presented beam model exposed to uniformly-type dynamical 

loads in terms of displacements have been stablished via placing Eqs. (28)-(31) into Eqs. (21)-(23) 

as follows 
 

𝐴(
𝜕2𝑢

𝜕𝑥2
+ 𝑔

𝜕3𝑢

𝜕𝑡𝜕𝑥2
) − 𝐵 (

𝜕3𝑤𝑏
𝜕𝑥3

+ 𝑔
𝜕4𝑤𝑏
𝜕𝑡𝜕𝑥3

) − 𝐵𝑠 (
𝜕3𝑤𝑠
𝜕𝑥3

+ 𝑔
𝜕4𝑤𝑠
𝜕𝑡𝜕𝑥3

) − 𝐼0
𝜕2𝑢

𝜕𝑡2
 

+𝐼1
𝜕3𝑤𝑏
𝜕𝑥𝜕𝑡2

+ 𝐽1
𝜕3𝑤𝑠
𝜕𝑥𝜕𝑡2

+ 𝜇 (𝐼0
𝜕4𝑢

𝜕𝑥2𝜕𝑡2
− 𝐼1

𝜕5𝑤𝑏
𝜕𝑥3𝜕𝑡2

− 𝐽1
𝜕5𝑤𝑠
𝜕𝑥3𝜕𝑡2

) = 0 

(34) 

 

𝐵 (
𝜕3𝑢

𝜕𝑥3
) − 𝐷 (

𝜕4𝑤𝑏
𝜕𝑥4

) − 𝐷𝑠 (
𝜕4𝑤𝑠
𝜕𝑥4

) − 𝐼0 (
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) − 𝐼1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐼2

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

 

+𝐽2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

− 𝑘𝑤(𝑤𝑏 + 𝑤𝑠) + 𝑘𝑝
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 𝜇 (+𝐼0 (

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

) 

+𝐼1
𝜕5𝑢

𝜕𝑥3𝜕𝑡2
− 𝐼2

𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑡2

− 𝐽2
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑡2

+ 𝑘𝑤
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
− 𝑘𝑝

𝜕4(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥4
) 

= 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝜇
𝜕2𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑥2
 

(35) 

 

𝐵𝑠 (
𝜕3𝑢

𝜕𝑥3
) − 𝐷𝑠 (

𝜕4𝑤𝑏
𝜕𝑥4

) − 𝐻𝑠 (
𝜕4𝑤𝑠
𝜕𝑥4

) + 𝐴𝑠 (
𝜕2𝑤𝑠
𝜕𝑥2

) − 𝐼0 (
𝜕2𝑤𝑏
𝜕𝑡2

+
𝜕2𝑤𝑠
𝜕𝑡2

) 

−𝐽1
𝜕3𝑢

𝜕𝑥𝜕𝑡2
+ 𝐽2

𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+ 𝐾2
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

− 𝑘𝑤(𝑤𝑏 +𝑤𝑠) + 𝑘𝑝
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
 

(36) 
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+𝜇 (+𝐼0 (
𝜕4𝑤𝑏
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤𝑠
𝜕𝑥2𝜕𝑡2

) + 𝐽1
𝜕5𝑢

𝜕𝑥3𝜕𝑡2
− 𝐽2

𝜕6𝑤𝑏
𝜕𝑥4𝜕𝑡2

− 𝐾2
𝜕6𝑤𝑠
𝜕𝑥4𝜕𝑡2

 

+𝑘𝑤
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
− 𝑘𝑝

𝜕4(𝑤𝑏 +𝑤𝑠)

𝜕𝑥4
) = 𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝜇

𝜕2𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑥2
 

(36) 

 

 

3. Solution procedure 
 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for FG nanobeam. According to DQM, at an assumed grid point (𝑥𝑖 , 𝑦𝑗) the 

derivatives for function F are supposed as weighted linear summation of all functional values 

within the computation domains as 
 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖 =∑𝑐𝑖𝑗

(𝑛)
𝐹(𝑥𝑗)

𝑁

𝑗=1

 (37) 

 

where 
 

𝐶𝑖𝑗
(1)
=

𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗 (38) 

 

in which 𝜋(𝑥𝑖) is defined by 
 

𝜋(𝑥𝑖) =∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (39) 

 

And when 𝑖 = 𝑗 
 

𝐶𝑖𝑗
(1)
= 𝑐𝑖𝑖

(1)
= −∑𝐶𝑖𝑘

(1)

𝑁

𝑘=1

,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗 (40) 

 

Then, weighting coefficients for high orders derivatives may be expressed by 
 

𝐶𝑖𝑗
(2)
= ∑𝐶𝑖𝑘

(1)
𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(3)
= ∑𝐶𝑖𝑘

(1)
𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑𝐶𝑖𝑘
(2)
𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)
= ∑𝐶𝑖𝑘

(1)
𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑𝐶𝑖𝑘
(3)
𝐶𝑘𝑗
(1)

𝑁

𝑘=1

          𝑖, 𝑗 = 1, 2, … , 𝑁. 

𝐶𝑖𝑗
(5)
= ∑𝐶𝑖𝑘

(1)
𝐶𝑘𝑗
(4)

𝑁

𝑘=1

= ∑𝐶𝑖𝑘
(4)
𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

(41) 
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𝐶𝑖𝑗
(6)
= ∑𝐶𝑖𝑘

(1)
𝐶𝑘𝑗
(5)

𝑁

𝑘=1

= ∑𝐶𝑖𝑘
(5)
𝐶𝑘𝑗
(1)

𝑁

𝑘=1

                                           (41) 

 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as 

 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, (42) 

 

Next, the displacement components may be determined by 

 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡 (43) 

 

{𝑤𝑏 , 𝑤𝑠}(𝑥, 𝑡) = {𝑊𝑏 ,𝑊𝑠}(𝑥)𝑒
𝑖𝜔𝑡 (44) 

 

where Wb and Ws denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as 

 

𝑤𝑏 = 𝑤𝑠 = 0,     
𝜕2𝑤𝑏
𝜕𝑥2

=
𝜕2𝑤𝑠
𝜕𝑥2

= 0     for     S-S (45) 

 

Now, one can express the modified weighting coefficients for all edges simply-supported as 

 

𝐶̅1,𝑗
(2)
= 𝐶̅𝑁,𝑗

(2)
= 0,       𝑖 = 1, 2, … ,𝑀, 

𝐶̅𝑖,1
(2)
= 𝐶1̅,𝑀

(2)
= 0,       𝑖 = 1, 2, … , 𝑁. 

(46) 

 

and 
 

𝐶̅𝑖𝑗
(3)
= ∑𝐶𝑖𝑘

(1)
𝐶̅𝑘𝑗
(2)

𝑁

𝑘=1

          𝐶̅𝑖𝑗
(4)
= ∑𝐶𝑖𝑘

(1)
𝐶̅𝑘𝑗
(3)

𝑁

𝑘=1

 (47) 

 

Inserting Eqs. (43)-(44) into Eqs. (34)-(36) gives 

 

{[𝐾] + [𝑀]𝜔2} {

𝑈
𝑊𝑏

𝑊𝑠

} = 0 (48) 

 

where 𝜔 defines vibration frequencies; [K] and [M] define the stiffness and mass matrices for 

FGM nano-size beam, respectively. Next, the dimensionless frequency and foundation factors have 

been selected by 

 

𝜔̃𝑛 = 𝜔𝑛𝐿
2√
𝜌𝑐𝐴

𝐸𝑐𝐼
,     𝐾𝑢 = 𝑘𝑢

𝐿4

𝐸𝑐𝐼
,     𝐾𝑙 = 𝑘𝑙

𝐿4

𝐸𝑐𝐼
𝐾𝑠 = 𝑘𝑠

𝐿2

𝐸𝑐𝐼
, (49) 
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In this paper, forced vibration of the nanobeam is due to applied partial dynamic load with 

sinusoidal variation as defined below 
 

𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑𝑄𝑛𝑠

∞

𝑛=1

𝑖𝑛 [
𝑛𝜋

𝐿
𝑥] 𝑠𝑖𝑛 𝜔 𝑡 (50) 

 

𝑄𝑛 =
2

𝐿
∫ sin [

𝑛𝜋

𝐿
𝑥]

𝑥0+𝑐

𝑥0−𝑐

𝑞(𝑥)𝑑𝑥 =
4𝑞0
𝑛𝜋

𝑠𝑖𝑛 [
𝑛𝜋

𝐿
𝑥0] 𝑠𝑖𝑛 [

𝑛𝜋

𝐿
𝑐]  (51) 

 

so that Qn defines the Fourier coefficients and q(x) = q0 indicates the uniform load magnitude and 

x0 is load central location. 

In order to perform forced vibrational study, placing the displacement fields and the dynamical 

force expressed in Eq. (50) into Eq. (48) results in below system 
 

{[𝐾] + 𝜔𝑒𝑥
2 [𝑀]} {

𝑈
𝑊𝑏

𝑊𝑠

} =

{
 
 

 
 
0

𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝜇
𝜕2𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑥2

𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝜇
𝜕2𝑞𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜕𝑥2 }
 
 

 
 

 (52) 

 

in which 𝜔𝑒𝑥 is the excitation frequency. Solving Eq. (52) results in amplitude-frequency curves 

which are discussed in following section. The dimensionless excitation frequency and forced 

vibration amplitude have been selected as 
 

𝛺 = 𝜔𝑒𝑥𝐿
2√
𝜌𝑐𝐴

𝐸𝑐𝐼
, 𝑊̄𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑊

𝐸𝑐𝐼

𝐿4𝑞0
 (53) 

 

 

4. Discussions on results 
 

Thorough the present section, results are provided for forced vibration investigation of scale-

dependent FGM nano-scale beams formulated by a three-unknown refined beam theory and 
 

 

 

Fig. 1 Configuration of embedded FGM nano-size beam under partial dynamical load 
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Table 1 Material properties for FGM constituents 

Property Steel Alumina (𝐴𝑙2𝑂3) 

E 210 (GPa) 390 (GPa) 

ρ 7800 (𝑘𝑔/𝑚3) 3960 (𝑘𝑔/𝑚3) 

ν 0.3 0.24 

 

 

Table 2 Comparison of the dimensionless frequency for nonlocal FG nanobeams (L/h = 20) 

B.C. β 

p = 0.1 p = 5 p = 1 

CBT (Eltaher 

et al. 2012 

Present 

HOBT 

CBT (Eltaher 

et al. 2012 

Present 

HOBT 

CBT (Eltaher 

et al. 2012 

Present 

HOBT 

S-S 

0 9.2129 9.16130 7.8061 7.71504 7.0904 6.96751 

1 8.7879 8.74014 7.4458 7.36037 6.7631 6.6472 

2 8.4166 8.37218 7.1312 7.05050 6.4774 6.36736 

3 8.0887 8.04711 6.8533 6.77674 6.2251 6.12012 

 

 

Table 3 Comparison of dynamic deflection of the nanobeams based on refined shear defamation and Euler-

Bernoulli beam theories (L/h = 10) 

µ 
Ω = 7 Ω = 7.5 

CBT Present HOBT CBT Present HOBT 

0 0.0521 0.0591 0.0604 0.0631 

1 0.0607 0.0679 0.0701 0.0753 

2 0.1123 0.1246 0.3145 0.3226 

 

 

nonlocal elasticity. The nano-size beam under a periodic dynamical loading has been depicted in 

Fig. 1. Table 1 presents material coefficients for the FG material. Accordingly, the present 

formulation and DQ solution is capable of giving accurate results of nanobeams. Also, Table 3 

present a comparison between obtained dynamic deflections of the nanobeam based on refined and 

classic beam (CBT) theories at different nonlocal parameters. According to this table, obtained 

dynamic deflections based on refined beam theory are greater than those of classic beam theory. 

In Fig. 2, the variations of normalized deflections of a FG nano-dimension beam versus 

excitation frequency of mechanical loading are represented for several nonlocality (µ) coefficients 

when L/h = 10. By selecting µ = 0, the deflections and vibrational frequencies based upon classic 

beam assumption will be derived. Actually, selecting µ = 0 gives the deflections in the context of 

classic elasticity theory and discarding nonlocal impacts. Exerting higher values of excitation 

frequency leads to larger deflections and finally resonance of the beam. It can be understand from 

Fig. 2 that normalized deflection of system will rise with nonlocality coefficient. This observation 

is valid for excitation frequencies before resonance. So, forced vibration behavior of the nanobeam 

system is dependent on scale effects. 

Figs. 3 and 4 respectively indicate the influences of Winkler and Pasternak factors on 

dynamical deflections of FGM nano-size beams versus external frequency (Ω) assuming L/h = 10 

and p = 1. Also, load location and configuration have been selected as x0/L = 0.5 and c/L = 0.5. 

42



 

 

 

 

 

 

A review of effects of partial dynamic loading on dynamic response of… 

 

Fig. 2 Deflection-frequency results for FGM nano-size beam with varying external frequency and various 

nonlocal factors (L/h = 10, Kw = 0, Kp = 0, p = 0.2, x0/L = 0.5, c/L = 0.5) 

 

 

 

Different magnitudes of Winkler factor (Kw = 0, 25, 50, 75) and Pasternak factor (Kp = 0, 5, 10, 15) 

have been selected. One can observe that a rise in the magnitude of Winkler and Pasternak factors 

leads to reduction in vibration amplitudes of FGM nano-size beams. Actually, the nano-size beams 

become more rigid via increasing in foundation factors which leads to postponement of resonance 

frequency. An important finding is that Pasternak factor indicates more significant impact on 

deferment of resonance frequency. This is because Pasternak factor is corresponding to continuous 

interactions with the nano-size beam but Winkler factor leads to discontinuous interactions with 

the nano-size beam. Accordingly, the forced vibrations of FGM nano-size beams have been 

significantly influenced by elastic substrate. 

 

 

 

 

Fig. 3 Deflection-frequency results for FGM nano-size beam with varying external frequency and various 

Winkler factors (L/h = 10, Kp = 0, p = 1, x0/L = 0.5, c/L = 0.5) 
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Fig. 4 Deflection-frequency results for FGM nano-size beam with varying external frequency and various 

Pasternak factors (L/h = 10, Kw = 10, p = 1) 

 

 

 

Fig. 5 Deflection-frequency results for FGM nano-size beam with varying external frequency and 

different locations of dynamical load (L/h = 10, Kw = 25, Kp = 5, p = 1, µ = 1, c/L = 0.125) 

 

 

Study of the influence of dynamical force position (x0/L) on normalized deflections of FGM 

nano-size beams versus external to natural frequency ratios (Ω/ωn) has been carried out in Fig. 5. 

For the figure, other factors are selected as Kw = 25, Kp = 5, p = 1, µ = 1 and c/L = 0.125. One may 

observe that as the dynamical force moves away from the beam edges, the dynamical deflections 

increase. It means that the region of frequency– deflection curves for FGM nano-size beams 

become wider and the maximum amplitudes tend to take place at a higher external frequency. 

Impacts of material FG exponent (p = 0, 0.2, 1, 5) on dynamical deflections of FGM nano-size 

beams exposed to partial dynamical force with respect to the ratio of external to natural frequency 

(Ω/ωn) have been illustrated in Fig. 6 assuming L/h = 10, Kw = 25, Kp = 5 and µ = 1 nm2. One may 

see that at Ω/ωn = 1, the resonance frequency takes place. Furthermore, at Ω/ωn < 1 and Ω/ωn > 1 

the dynamical bending of FGM nano-size beam is remarkably influenced by FGM gradation. It is 
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Fig. 6 Deflection-frequency results for FGM nano-size beam with varying external frequency and for 

various FG exponents (L/h = 10, Kw = 25, Kp = 5, µ = 1) 

 

 

found that the magnitudes of dynamical deflections reduce via increase of material exponent (p). 

This is owning to higher portions of metallic constituent via increase of material exponent. Thus, 

choosing reliable values for material exponent is crucial for reasonable design of FG nano-size 

structures when they are exposed to dynamical excitation. 

 

 

5. Conclusions 
 
The presented article employed a higher order shear deformation beam formulation having 

three variables without using of shear correction factor. Based upon differential quadrature (DQ) 

approach and nonlocal elasticity formulation, forced vibrational analysis of shear deformable 

functionally graded (FG) nanobeam on elastic medium under partial dynamical load was 

performed. The presented formulation incorporated a scale factor for examining vibrational 

behaviors of nano-dimension beams. The material properties for FG beam were defined employing 

a power-law form. The governing equations achieved by Hamilton’s principle were solved 

implementing DQM. Presented results indicated the prominence of material gradient index, 

nonlocal coefficient, material gradient coefficient, load location and substrate factors on 

vibrational properties of FG nano-size beam. Especially, it was found that as the dynamical force 

moves away from the beam edges, the dynamical deflections increase. Aslo, it was observed that 

nonlocal factor increment results in smaller values for resonance frequency of FGM nano-size 

beam. 
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