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Abstract.  Softening function is the primary input for modeling the fracture of concrete when the cohesive crack 

approach is used. In this paper, based on the laboratory data on notched beams, an inverse algorithm is proposed that 

can accurately find the softening curve of the concrete. This algorithm uses non-linear finite element analysis and the 

damage-plasticity model. It is based on the kinematics of the beam at the late stages of loading. The softening curve, 

obtained from the corresponding algorithm, has been compared to other softening curves in the literature. It was 

observed that in determining the behavior of concrete, the usage of the presented curve made accurate results in 

predicting the peak loads and the load-deflection curves of the beams with different concrete mixtures. In fact, the 

proposed algorithm leads to softening curves that can be used for modeling the tensile cracking of concrete precisely. 

Moreover, the advantage of this algorithm is the low number of iterations for converging to an appropriate answer. 
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1. Introduction 
 

1.1 Research background 
 

Concrete is a quasi-brittle material that has been widely used in structures for the last decades. 

Because of the quasi-brittle nature of this material, the existence of microcracks is inevitable, 

leading to stable growth of the cracking zone and the failure of the concrete element before the 

maximum load is reached. Due to the limitation of strength criteria, engineers should consider the 

fracture criteria to have a better prediction of concrete elements’ response under monotonic and 

cyclic loadings. The application of fracture mechanics is essential mainly for structures with high 

safety concerns, such as concrete dams and nuclear reactor vessels or containments (Bazant 2003, 

Karamloo and Mazloom 2018). 

The components of concrete, a heterogeneous material, are aggregates and cement paste 

bonded to each other at the interfacial transition zone (ITZ). Due to the limited bonding strength as 

well as the micro-cracks and flaws that occur during the hardening of the matrix, concrete has a 

low tensile strength (Mehta and Monteiro 2017). 

Under an external load, a tension zone forms adjacent to the crack tip; therefore, complex  
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Fig. 1 (a) FPZ location (b) Reduced elasticity modulus in the vicinity of the crack-tip (c) Cohesive

stresses acting on the crack faces (Shi 2009) 

 

 

micro-failure mechanisms occur in that region (Afzali et al. 2019, Salehi and Mazloom 2019a, 

Mazloom et al. 2020, Abna and Mazloom 2022). Fracture processes that cause energy absorption 

at the crack tip are called “crack inelastic toughening mechanisms.” The mechanisms of micro 

failure are micro cracking, crack deflection, crack branching, crack coalescence, and aggregate 

debonding from the hydrated cement matrix (Pavlovic 1996). Due to the development of the 

inelastic zone at the crack tip, linear elastic fracture mechanics, LEFM, cannot be used to analyze 

concrete failure (Salehi and Mazloom 2019b, Mazloom et al. 2021). Fig. 1 schematically shows 

the formation of the inelastic zone at the crack tip, called the fracture process zone (FPZ). FPZ is 

ideally composed of two zones: the bridging zone and the microcracking zone (Shi 2009). 

The bridging zone as an essential toughening mechanism results from a weak interface between 

aggregates and the matrix. According to Shi (2009), in the fracture process zone (FPZ), the 

effective modulus of elasticity (E*) reduces, and its value is lower than the elastic modulus of the 

undamaged parts of the material (E). 

Hillerborg et al. (1976) imagined a fictitious instead of physical fracture process zone (FPZ). 

This assumption is the concept of cohesive zone models, suggested by Dugdale (1960) and 

Barenblatt (1962). The fictitious crack is exposed to the closure tractions, as shown in Fig. 1(c). 

The closure stresses are mainly related to bridging grains and the presence of micro-cracks. As 
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shown in Fig. 1, the stress at the tip of the fictitious crack is the maximum stress, which is equal to 

the tensile strength of concrete (𝑓𝑡
′) (Hillerborg et al. 1976). These cohesive stresses correspond 

to the crack openings, and they reduce along the fictitious crack to zero, where the concrete 

opening displacement reaches its critical value (WC). At the faces of the crack where the crack 

opening is more than the critical value, the traction-free surface and the real crack form (Hillerborg 

et al. 1976). 

The relation between the cohesive stress acting across the crack faces and the crack opening, 

known as softening function, describes the local behavior of the material inside the FPZ when the 

fracture occurs in the material. 

It is worth noting that constitutive relations of continuous materials explain the fundamental 

behavior of the materials in compression and tension. Moreover, the function of traction separation 

and fracture energy are the main constitutive parameters for materials in FPZ. The traction 

separation function stipulates the transitional behavior of material from a continuous state to a 

discontinuous one. It clarifies how an increase in discontinuity in FPZ affects tension stresses at 

the crack tip (Shi 2009). 

Researchers found the shape of this constitutive relationship by using control displacement 

uniaxial tensile tests or other creative methods such as inverse methods. The narrow prismatic 

specimen was used by Reinhardt et al. (1986) to find the softening curve of concrete by the 

deformation-controlled uniaxial tests. The specimens had two saw-cuts. It was found that during 

the first stages of the tension test, the FPZ was not established at the same time as the initial micro 

cracks spread. It was established after the load reached its maximum value and the deformation of 

the specimen localized in the FPZ in this stage (Reinhardt et al. 1986). 

There are some deficiencies in performing direct tensile tests for obtaining softening curves, 

such as difficulties in propagating cracks stably and the dependence of the result on the size and 

shape of the specimen (Reinhardt et al. 1986, Van Mier 1986). For these reasons, most of the 

methods for finding the softening law depend on indirect approaches that are based on the 

parametric fit of experimental results obtained from bending beams or compact specimens 

(Wittmann et al. 1987, 1988). 

Li et al. (1987) proposed the J-integral method to obtain the softening curve. Miller et al. 

(1991) got the softening law from crack profiles by laser holography interferometry. Moire 

interferometry was used by Yon et al. (1997). Alam and Loukili (2020) considered the effects of 

the micro-macro crack in traction on the softening function utilizing digital image correlation and 

acoustic emission techniques. They showed that the micro-cracks interact with the macro-cracks 

and disrupt its smooth opening as the crack grows. 

 Many researchers have used inverse analysis to find the softening function. The wedge 

splitting test setup was applied experimentally by Østergaard et al. (2004). They used an inverse 

algorithm to extract the softening function. It was based on the non-linear cracked hinge model, 

which uses the fictitious crack concept for interpreting the results. 

In recent years, the fracture behavior of fiber-reinforced cementitious composites at ambient 

and elevated temperatures has also been considered (Karimpour and Mazloom 2022, Mazloom and 

Mirzamohammadi 2019, 2021a, 2021b). Reddy and Subramaniam (2017), using the inverse 

analysis and cracked hinge model, introduced an analytical formulation for macro-synthetic fiber 

reinforced concrete, in which the multi-linear cohesive stress-crack opening relationship was 

found from the flexural notched beam response. Bhosale et al. (2020) developed a softening 

function for hybrid fiber reinforced concrete (HFRC). They performed an inverse analysis based 

on the fictitious crack hinge model to derive the softening law by carefully calibrating model  
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 (a) (b)  

Fig. 2 Bilinear softening function (Bazant and Planas 2019) 

 
Table 1 Softening models for concrete 

Hillerborg et al. (1976) Linear softening curve (𝐺𝐹 , 𝑓𝑡
′) 

Petersson (1981) Bilinear softening curve (𝐺𝐹 , 𝑓𝑡
′) 

Fixed kink point at (
0.8𝐺𝐹

𝑓𝑡
′ ,

𝑓𝑡
′

3
) Gustafsson and Hillerborg (1985) 

Wittmann et al. (1988) 
Bilinear softening curve (𝐺𝐹 , 𝑓𝑡

′) 

Fixed stress kink point 0.25𝑓𝑡
′ 

Park et al. (2008) 
Bilinear softening curve(𝐺𝐹 , 𝐺𝑓 , 𝑓𝑡

′) 

Assume 𝑤𝑘 = 𝐶𝑇𝑂𝐷𝐶 

Ceb-Fip (1990) 
Bilinear softening curve (𝐺𝐹 , 𝑓𝑡

′, 𝑑𝑚𝑎𝑥) 

Fixed kink point at (
𝐺𝐹

𝑓𝑡
′  ,0.15𝑓𝑡

′) 

Guinea et al. (1994) 

Bilinear softening curve (𝐺𝐹 , 𝑓𝑡
′) 

Suggest two more empirical parameters for 

determining the kink point 

Zdeněk P. Bažant (2001) 
Bilinear softening curve(𝐺𝐹 , 𝐺𝑓 , 𝑓𝑡

′) 

The stress of the kink point (𝜓𝑓𝑡
′) 

 

 

parameters with the digital image correlation (DIC) measurements. 

 
1.2 Different softening functions 

 
With the efforts of many researchers, the concept of traction separation law has been accepted 

as the basis of concrete fracture mechanics. It is obligatory for cohesive crack computations to use 

the softening function as an input. 

Among various functions proposed for the softening of the concrete, such as linear and 

exponential, the bilinear softening functions have been widely used in the literature; consequently, 

it is decided to use the bilinear ones in this article. 

As shown in Fig. 2, the traction separation relation of concrete has two distinct characteristics. 

The first is a steep slope descending section due to the rapid loss of tensile strength in the initial 

softening stage. The second item is a long tail that indicates the consistent stress transfer capacity 
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of aggregates in the FPZ (Shi 2009). 

Table 1 summarizes the most widely used softening laws based on fracture parameters. 

Hillerborg et al. (1976) defined the linear softening law. The model characteristics were the tensile 

strength (𝑓𝑡
′) and the total fracture energy (GF). They used the cohesive crack model along with the 

finite element method to analyze concrete structures. 

Then, Petersson (1981) suggested a bilinear softening curve. The coordinates of its kink point, 

the point of the intersection of two lines in the bilinear softening curve, were fixed at (
0.8𝐺𝐹

𝑓𝑡
′ ,

𝑓𝑡
′

3
). A 

schematic bilinear softening curve is shown in Fig. 2. This bilinear model was adopted by 

Gustafsson and Hillerborg (1985), too. 

For the numerical assessment, Wittmann et al. (1988) recommended a bilinear softening curve 

with a kink point stress equal to 0.25𝑓𝑡
′. Park et al. (2008) suggested that the location of the kink 

point (𝑤𝑘) is the critical crack tip opening displacement (CTOCc). 

The Ceb-Fip (1990) proposed a bilinear softening function for Ordinary concrete with different 

strength levels. It could be defined by the tensile strength of the concrete (𝑓𝑡
′), the total fracture 

energy(𝐺𝐹), the maximum aggregate size, and a kink point stress of 0.15𝑓𝑡
′. The value of critical 

opening (𝑊𝑐) depends on the maximum aggregate size. The value of (𝑤1) is given by Eq. (1) in 

the units of millimeters. 𝑘𝑑 depends on the maximum size of the aggregates. 

𝑤1 =
𝐺𝐹 − 22𝑊𝑐(

𝐺𝐹
𝑘𝑑

)0.95

150 (
𝐺𝐹
𝑘𝑑

)
0.95  (1) 

Guinea et al. (1994) defined two experimental parameters to demonstrate the shape of the 

softening curve. 

The above-mentioned softening laws have primarily been defined by two fracture parameters 

(𝑓𝑡
′ and GF). There is no consensus on the precise location of the kink point. This is not abnormal 

because different concrete mixtures can have different softening curves. Several methods exist in 

the literature to find the bilinear softening function and capture the main trends of the fracture 

processes and the size effect. Some methods usually overestimate the strength of normal-sized 

specimens  ( Bazant and Planas 2019). 

It is imperative to find a method to identify any bilinear softening curve to fit particular 

experimental data. This paper presents a new method for inferring the essential properties of the 

softening function from the experiments performed on notched beams and with the aid of the non-

linear finite element method. The proposed algorithm is based on a simple model that determines 

the bilinear softening curve of plain concrete with limited iterations and with the help of a finite 

element software available to researchers and engineers. However, this method can only be used in 

plain concrete with a bilinear softening curve. A multi-linear (σ-w) relationship must be considered 

for fiber-reinforced concrete using the integration method (Gao et al. 2021). 

Four algorithm input parameters are estimated from the standard tests. These tests are based on 

the ASTM Standard C469 (2002) for elastic modulus, the ASTM C 469/C 496M (2004) for 

splitting tensile strength, and the RILEM work-of-fracture recommendation (1985) for fracture 

energy. In this study, these parameters are obtained from the results presented by the second author 

previously (Afzali-Naniz and Mazloom 2019). 

The resulting softening curve is compared with other bilinear softening curves found in the 

literature. The results show that the presented method in this paper leads to more accurate results 

than the others. 
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2. The analytical formulation for finding the softening function 
 

The softening functions capture the vital facts that describe the fracture behavior of the 

concrete. The steepest part represents the large-scale debonding or fracture of aggregates, and the 

shallow part of the diagram demonstrates the frictional pull-out of aggregate in the concrete 

(Guinea et al. 1994). 

Fig. 2 shows the typical curve of the bilinear function. 

It can be expressed explicitly as a function of softening curve parameters. In this function, 
(𝜎𝑘 , 𝑤𝑘) are the coordinates of the kink point and 𝑤𝑐 is the critical opening. The expression of 

softening function in terms of bilinear softening curve parameters is 

𝜎 = 𝑓𝑡
′ (1 −

𝑤

𝑤1
) , for 0 ≤ 𝑤 ≤ 𝑤𝑘 

𝜎 = 𝜎𝑘 (
𝑤 − 𝑤𝑐

𝑤𝑘 − 𝑤𝑐
) , for 𝑤𝑘 ≤ 𝑤 ≤ 𝑤𝑐 

𝜎 = 0, for 𝑤 ≥ 𝑤𝑐 

(2) 

As shown in Fig. 2, the parameters that must be identified experimentally to characterize the 

softening function are the tensile strength (𝑓𝑡
′), the total fracture energy (𝐺𝐹), and the specific 

fracture energy (𝐺𝑓). For finding the tensile strength (𝑓𝑡
′) due to the lack of a reliable direct tension 

test, the researchers use the result of a Brazilian splitting test. The Tensile strength is calculated by 

an equation, which presumes isotropic material properties (ASTM C 469/C 496M 2004). The total 

fracture (𝐺𝐹) is measured by the RILEM standard method. It is based on three-point bending 

tests on notched beams. The measured value of 𝐺𝐹in this approach is obtained by dividing the 

measured work of fracture 𝑊𝐹 by the original uncracked ligament area (RILEM 1985). 

𝐺𝐹 =
𝑊𝐹

𝑏(𝑑 − 𝑎0)
 (3)

 

Where 𝑊𝐹  is corresponding to the area under the load-displacement curve up to the 

displacement in which load returns to zero; b is the beam width, d is the beam depth, and 𝑎0 is 

the initial notch depth of the beam. The specific fracture energy (𝐺𝑓) is determined based on the 

size effect method (SEM) proposed by Bazant and Pfeiffer (1987). This method is based on the 

effective elastic crack model described by Shah (1990). The specific fracture energy (𝐺𝑓) does not  

 

 

 

Fig. 3 Rigid body kinematics towards the end of the test 
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depend on the size and shape of the specimen (ACI 446.3R-97 1997). According to RILEM 

(1990), the fracture parameters can be determined by three-point bending tests on notched beams 

with different sizes and similar geometries. The dimensions of the beams depend on the maximum 

size of aggregate (𝑑𝑚𝑎𝑥). 

Other parameters, which are obligatory for the definition of softening function, are the abscissa 

of the center of gravity of the softening area (𝑤̅), the critical displacement (𝑤𝑐) and coordinates of 

the kink point(𝜎𝑘 , 𝑤𝑘). For finding these parameters, the following steps are suggested. 

Consider the free body diagram of the beam, as shown in Fig. 3, in which an approximation of 

the kinematic of the beam at the late loading stages is depicted. It is presumed that two halves of 

the beam are rigid and bridged by a cohesive zone (Guinea et al. 1994). In the last loading stage, 

when the crack fully extends at the height of the concrete beam, there are no tensile and 

compressive stresses in the cross-section except for cohesive stresses applied on both sides of the 

crack edges (Broujerdian et al. 2018). The following equation can calculate the crack opening 

𝜔 = 2𝜃𝑥 (4) 

In Eq. (4), 𝑥 is shown in Fig. 3, and 𝜃 is the rotation of each half of the specimen. The angle 

𝜃 is assumed to be small. 

Now, the condition of equilibrium of moments with respect to the load point is written as the 

following equation 

𝑝𝑠

4
= ∫ 𝜎𝑥𝑏𝑑𝑥

𝑥𝑐

0

 (5) 

Where 𝑥𝑐 is the point where the softening is complete. Since the stress 𝜎 is the cohesive 

stress, so 𝜎 = 𝑓(𝑤). By substituting 𝑥 as a function of 𝑤 from (4), then 

𝑝 =
𝑏

𝑠𝜃2
∫ 𝑓(𝑤)𝑤𝑑𝑤

𝑤𝑐

0

 (6) 

Where 𝑤𝑐 is the opening displacement corresponding to 𝑥𝑐, i.e., 𝑤(𝑥𝑐) = 𝑤𝑐. If the rotation 

is large enough, the displacement at the notch will be greater than the critical displacement,𝑤 >
𝑤𝐶 , and the real crack will propagate. 

In Eq. (6), the integral is the first-order moment of the softening curve, which is equal to the 

abscissa 𝑤 of the center of gravity of the area enclosed by the curve and the axes times by this 

area, which is GF. Therefore, if 𝜃 is written as 𝜃 =
𝑈

(
𝑆

2
)
 Expression seven will be achieved. 

𝑝 =
𝑏𝑠

4𝑢2
𝐺𝐹𝑤 (7) 

Therefore, Eq. (5) could be written as 

𝑝 =
𝐴

𝑢2 and 𝐴 =
𝑏𝑠

4
𝐺𝐹𝑤 (8) 

According to Fig. 4, “A” is a parameter determined by the least-square fitting of a straight line 

through the origin. It should be noted that in the p-u-2 diagram, the first stages of the horizontal 

axis represent the last stages of the beam fracture. In fact, when u increases, the u-2 parameter 

decreases with the square power. The curve fitting is applied on the first stage of the curve 

according to the proposed model for the final loading stage (Fig. 4). 
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Fig. 4 Example of the determination of constant ‘A’ in Eq. (8) for a specific case 

 

 

If it is assumed that there is perfect weight compensation, the value of  𝑤 in terms of “A,” is 

𝑤 =
4𝐴

𝑏𝑠𝐺𝐹
 (9) 

Once 𝑤̅ has been determined; It is a simple geometrical problem to define the bilinear 

softening curve. 

Horizontal intercept, 𝑤1, could be determined from the softening function, shown in Fig. 2, as 

Eq. (10). 

𝑤1 =
2𝐺𝑓

𝑓𝑡
 (10) 

Where the specific fracture energy Gf is the size-independent fracture energy, which is 

determined using the size-effect law. In this method, extrapolations are applied to the results of 

experiments on notched beams with different depths. 

In addition, experimental relationships for finding W1, independent of Gf, have been proposed 

by researchers, such as the proposed standard formula of CEB-FIP 1990 formula given in Eq. (1). 

“Wc” is the critical crack opening, which could be obtained from the quadratic equation. 

𝑤𝑐
2 − 𝑤𝑐

6𝑤 (
𝐺𝐹

𝑓𝑡
′ ) − 2𝑤1 (

𝐺𝐹

𝑓𝑡
′ ) 

2 (
𝐺𝐹

𝑓𝑡
′ ) − 𝑤1

+

6𝑤𝑤1 (
𝐺𝐹

𝑓𝑡
′ ) − 4𝑤1 (

𝐺𝐹

𝑓𝑡
′ )

2

2 (
𝐺𝐹

𝑓𝑡
′ ) − 𝑤1

= 0 (11) 

and the coordinates of the kink point are given by 

𝑤𝑘 = 𝑤1

𝑤𝑐 − 2(
𝐺𝐹

𝑓𝑡
′ )

𝑤𝑐 − 𝑤1
 (12) 

𝜎𝑘 = 𝑓𝑡
′

2 (
𝐺𝐹

𝑓𝑡
′ ) − 𝑤1

𝑤𝑐 − 𝑤1
 (13) 

y = 2.9976x
R² = 0.9618
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Fig. 5 flowchart of the proposed algorithm 

*for the first iteration, a linear softening function can be used 

 

 

Derivations of Eqs. (11) to (13) are given in appendix1. In this paper, a semi-automatic 

algorithm is proposed to find the bilinear cohesive stress function of the concrete utilizing 

ABAQUS software. According to Fig. 5, in each step, ‘A’ is determined by drawing the trend line 

𝑝 − 𝑢−2 diagram, derived from finite element analysis. Afterward, the values of 𝑤̅ and 𝑤𝑐 are 

derived from Eq. (9) and Eq. (11), respectively. The coordinates of the kink point (𝜎𝑘 , 𝑤𝑘) are 

found by Eq. (12) and Eq. (13). The process continues once the difference between two sequent 

critical displacements 𝑤𝑐  becomes less than very small displacement, epsilon (𝜀). 𝜀, in this 

research, is selected as 0.0001 mm. 

The presented method provides precise responses in comparison with the results of 

experimental tests. Fig. 5 illustrates the flowchart of the proposed algorithm, explained previously, 

to find a softening function. 

 

 

3. FEM modeling 
 

Using non-linear fracture mechanics combined with numerical methods such as the finite 

element method (FEM) is inevitable for determining the actual response of concrete structures. 

For numerical modelling, the concrete matrix is established, and the solid element (CPS4R) is  
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Fig. 6 The geometry of the beam and the finite element mesh (four nodes, plane stress elements) 
 

 

assigned. Due to obtaining reliable results with less computational time, different element sizes for 

a couple of models were considered and compared together to evaluate the mesh sensitivity effect. 

Finally, the mesh size of 1.7 mm is distinguished to be the most suitable mesh size in this model 

(Fig. 6). 

Conventional approaches to model fracture in concrete structures can be primarily grouped into 

discrete crack models (Abbasnia and Aslami 2015, Broujerdian et al. 2019), the orthotropic 

smeared-crack models (Rots and Blaauwendraad 1989, Hsu and Zhu 2002, Vecchio and Collins 

1986, Broujerdian and Kazemi 2016), and the damage models (Ju 1989, Wu et al. 2006, Mazloom 

et al. 2019, Tesser et al. 2011, Feng et al. 2018, Faria et al. 1998, Lee and Fenves 1998). 

The discrete crack model considers the crack as a geometric entity (ACI 446.3R-97 1997). In 

this approach, re-meshing after each step of crack propagation is carried out until the crack length 

would be developed completely unless the crack path was predetermined (Broujerdian et al. 2019). 

Concrete, in smeared crack models, is assumed as an orthotropic material, in which cracks are 

modeled by altering the constitutive (stress-strain) relations in the vicinity of cracks and are 

smeared over entire elements (ACI 446.3R-97 1997). 

The significant advantage of the smeared crack model is its simplicity, but also, there is a 

severe objection against these models. 

The result of calculations made with the smeared crack model depends on the choice of mesh; 

nevertheless, an alternative approach is proposed by damage mechanics to make the concrete 

constitutive model. Concrete damage plasticity, CDP, lies in the continuum, plasticity, and the 

concrete damage, integrated into a framework for analyzing the concrete structures (Wu et al. 

2006, Tesser et al. 2011). Having considered the aforementioned advantages of CDPM, this 

approach has been used for modelling the beams in this study. 

Material degradation is indicated by an internal variable, i.e., the damage. By adjusting the laws 

for the evolution of damage, the conventional properties of concrete materials can be simulated. 

The total strain is divided into two parts. Hence, it is possible to represent the nonlinearity and 

irreversible deformation of the concrete based on elastic-plastic theory. 

𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙 (14) 

In which, 𝜀𝑒𝑙and 𝜀𝑝𝑙 are the elastic and plastic strains, respectively. CDP model provides a 

scalar damage variable, d, to consider the progressive material damage. It can take values from 

360



 

 

 

 

 

 

Determining a novel softening function for modeling the fracture of concrete 

zero to one (Abaqus 2013). The stress state function is as below. 

𝜎𝑖𝑗 = (1 − 𝑑)𝐷𝑖𝑗𝑘𝑙
𝑒𝑙 (𝜀𝑖𝑗 − 𝜀𝑖𝑗

𝑝𝑙
) (15) 

In which 𝐷𝑖𝑗𝑘𝑙
𝑒𝑙  is the initial elasticity matrix, 𝜀𝑖𝑗 is the strain tensor, and 𝜀𝑖𝑗

𝑝𝑙
 is the plastic 

strain tensor. 

For uniaxial monotonic loading conditions, the variable d can be replaced by 𝑑𝑐 and 𝑑𝑡, 

which represent damage in compression and tension, respectively. Consequently, Eq. (15) can be 

simplified into 

𝜎𝑐 = (1 − 𝑑𝑐)𝐸0(𝜀𝑐 − 𝜀𝑐
𝑝𝑙

) (16) 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸0(𝜀𝑡 − 𝜀𝑡
𝑝𝑙

) (17) 

Where 𝐸0 is the initial elastic modulus. 

To use CDPM in finite element modelling, it is necessary to determine the damage evolution 

and material degradation. Due to the incomprehensive understanding of the concrete failure 

phenomenon, there is no quantitative relationship between stress conditions and concrete 

degradations. Thus, empirical formulations have been proposed to predict the damage evolution 

(Xu and Sugiura 2013, Wang et al. 2014, Fang et al. 2013, Lu et al. 2009, Pavlovic et al. 2013, 

Pan et al. 2015, Xu et al. 2014, Yan et al. 2016). Some of these formulations are based on a simple 

assumption that the non-linear behavior of concrete before reaching peak stress (𝜎0) is only 

owing to plasticity, while Softening after the peak stress is caused only by damage. Consequently, 

for simplicity, the variable d is defined as a linear function of the stress in the softening region 

(𝜎∗) as in the following equation (Pavlovic et al. 2013) 

𝑑 = 1 −
𝜎∗

𝜎0
 (18) 

 

 

4. Results and discussion 
 

The proposed algorithm was validated by the results of the three-point beam bending (TPB) 

tests for different concrete mixtures, reported by Afzali-Naniz and Mazloom (2019). Self-

compacting lightweight concrete (SCLC) is categorized as high-performance concrete. The design 

of the mixtures is detailed in Table 2. 

Table 3 presents the mechanical properties such as tensile strength (𝑓𝑡
′), compressive strength 

(𝑓𝑐), and the modulus of elasticity (E) and fracture parameters of the SCSLC containing colloidal 

Nano-silica (Afzali-Naniz and Mazloom 2019). 

Based on the fracture parameters, the proposed softening model predicts the load-deflection 

curves for the different concrete mixtures. 

Fig. 7(a-d) demonstrates the agreements between numerical predictions and the concrete 

mixtures’ experimental results. It is very promising that the model proposed in this paper can 

predict maximum load with high accuracy. 

As shown in Fig. 7 and Table 4, the Hillerborg linear model predicts maximum load much more 

than the experimental peak load. Moreover, by using the Hillorborg linear model as an input in 

FEM software, it is impossible to predict the softening response of concrete specimens precisely. 
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Table 2 Mixture proportions of SCLC (Afzali-Naniz and Mazloom 2019) 

Materials 
Weight (kg/m3) 

Mix. 1 Mix. 2 Mix. 3 Mix. 4 

Colloidal Nano-silica (CS) (%) 0 1 3 4 

Cement (C) 450 445.5 436.5 427.5 

Sand 800 800 800 800 

LECA 270 270 270 270 

Limestone powder 230 230 230 230 

Free water 157.5 157.5 157.5 157.5 

Super Plasticizer 9 9.45 11.7 13.5 

w/b 0.35 0.35 0.35 0.35 

 
Table 3 Fracture parameters and the mechanical properties of matrix (Afzali-Naniz and Mazloom 2019) 

Mixtures Mix. 1 Mix. 2 Mix. 3 Mix. 4 

𝑓𝑐(𝑀𝑝𝑎) 39.35 43.8 46.9 46 

𝑓𝑡
′(𝑀𝑝𝑎) 3.05 3.3 3.6 3.58 

𝐸(𝐺𝑝𝑎) 23.05 24.7 25.9 25.45 

𝑎0/𝑑 0.2 0.2 0.2 0.2 

𝐺𝑓(
𝑁

𝑚
) 33.98 38.3 42.6 39.75 

𝐺𝐹(
𝑁

𝑚
) 80.9 88.09 93.45 91.43 

𝐶𝑇𝑂𝐷𝑐 0.0183 0.0203 0.0217 0.0204 

 
Table 4 Peak loads obtained from numerical simulations and experimental data 

 
Experimental Data 

(Afzali-Naniz 2019) 

Numerical prediction 

Proposed 

algorithm 
(Hillerborg,1976) (Petersson1981) (CEB 1990) (Park 2008) 

Mix. 1 1393 1391.4 1500.47 1465.76 1470.98 1378.16 

Mix. 2 1396 1395.12 1500.43 1471.33 1480.74 1392.12 

Mix. 3 1513 1512.16 1859.54 1704.93 1717.21 1510.99 

Mix. 4 1502 1495.47 1845.25 1679.52 1598.27 1481.47 

 

 

Thus, the use of linear models of softening function in simulating concrete structures is highly 

error-prone in predicting the peak load and fracture behavior of concrete. 

As is evident from numerical simulation, the definition of the softening function has a vital role in 

predicting peak load and concrete fracture behavior. The peak load was obtained from finite 

element modelling using the softening curve proposed in this paper, and the proposed bilinear 

curves of Petersson (1981), CEB-FIP Model Code, and Park et al. (2008) are compared in Table 4. 

Fig. 8 shows the softening curves obtained from the proposed algorithm compared to the other 

softening curves presented in the literature for different mixtures. 

It is clear that the proposed bilinear models have better predictions than linear curves. Contrary  
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(a) (b) 

  
(c) (d) 

Fig. 7 Numerical predictions of load-deflection curves compared with experimental data (a) Mix. 1, (b) Mix. 

2, (c) Mix. 3, (d) Mix. 4 

 
Table 5 Characteristics of softening models obtained from the proposed algorithm 

 N* A parameter 
𝑤1(𝑚𝑚) 𝑤𝑐(𝑚𝑚) 𝑤𝑘(𝑚𝑚) 𝜎𝑘 

× 10−2 

Mix. 1 8 2.9976 2.23 17.22 1.779 61.48 

Mix. 2 11 3.5636 2.32 21.16 1.950 52.83 

Mix. 3 7 3.2352 2.37 19.56 1.977 59.14 

Mix. 4 5 3.2751 2.22 19.47 1.849 59.90 
*Number of iteration 

 

 

to the proposed model in this article, linear models estimate the peak loads up to ten percent higher 

than the experimental peak loads. The proposed method in this paper seems to have excellent 

capability and accuracy for use in finite element modelling to simulate concrete elements. Fig. 9 

illustrates the crack propagation in the depth of the beam, which matches the shape of the crack in 

the laboratory specimen. The coordinates of the bilinear curves obtained from the proposed 
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(a) (b) 

  
(c) (d) 

Fig. 8 The softening curves used in the FEM for comparison (a) Mix. 1, (b) Mix. 2, (c) Mix. 3 and (d) Mix. 4 

 

 

Fig. 9 Crack propagation in the depth of the beam 

 

 

algorithm for different mixtures are given in Table 5. The N parameter is the number of iterations 

made to achieve convergence in this table. 
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Table 6 comparison between the double-k fracture parameters derived from experimental and proposed 

algorithm results 

 initial cracking toughness, 𝐾𝐼𝐶
𝑖𝑛𝑖 unstable fracture toughness, 𝐾𝐼𝐶

𝑢𝑛 

 Experimental results 
FEM analysis using the 

proposed algorithm 
Experimental results 

FEM analysis using the 

proposed algorithm 

Mix. 1 0.338 0.337 0.829 0.828 

Mix. 2 0.339 0.339 0.836 0.835 

Mix. 3 0.368 0.367 0.884 0.884 

Mix. 4 0.365 0.363 0.890 0.887 

 

 

To validate the proposed method at different loading stages with more accuracy, the results of 

double-k fracture toughness taken from the finite element (FEM) analysis and the experiment are 

compared in Table 6. According to the double-k fracture model, two size-independent criteria 

entitled as initial cracking toughness 𝐾𝐼𝐶
𝑖𝑛𝑖  and unstable fracture toughness 𝐾𝐼𝐶

𝑢𝑛  can predict 

different stages of the concrete fracture process. Initial toughness 𝐾𝐼𝐶
𝑖𝑛𝑖  is defined as the inherent 

toughness of a material and is calculated directly by the initial crack load 𝑃𝑖𝑛𝑖 and the initial notch 

𝑎0  using the linear elastic fracture mechanics (LEFM). Unstable crack toughness 𝐾𝐼𝐶
𝑢𝑛  can be 

obtained with the peak load 𝑃𝑢  and the effective crack length using the same LEFM formula, 

which indicates the beginning of unstable crack propagation. For an elastic concrete beam with a 

total height D, notch length a0, thickness B, and span length S, the deflection and the stress 

intensity factor (SIF) are written as 

𝛿𝑖 =
𝑃𝑖

4𝐵𝐸
(

𝑆

𝐷
)

3

[1 +
5𝑊𝑔𝑆

8𝑃𝑖
+ (

𝐷

𝑆
)

2

{2.70 + 1.35
𝑊𝑔𝑆

𝑃𝑖
} − 0.84 (

𝐷

𝑆
)

3

]

+
9𝑃𝑖

2𝐵𝐸
(1 +

𝑊𝑔𝑆

2𝑃𝑖
) (

𝑆

𝐷
)

2

𝐹2(𝛼0) 

(19) 

𝐹2(𝛼0) = ∫ 𝛽𝐹2(𝛽)𝑑𝛽
𝛼0

0

 (20) 

𝐾𝐼 = 𝜎𝑁√𝑎𝐹(𝛼) (21) 

Where 𝛼 =
𝑎

𝐷
, 𝛼0 =

𝑎0

𝐷
, and 𝐹(𝛼) is the geometric factor which depends on the S/D ratio of 

the beam. The term 𝑊𝑔 is the self-weight of the beam per unit length. 𝑃𝑖 is the elastic force 

corresponding to the elastic deflection 𝛿𝑖  of the concrete beam with the elastic modulus of E. 

Moreover, 𝜎𝑁 is the nominal stress of the beam with the “a” crack length (Kumar and Barai 2011). 

As shown in Table 6, there is a good consistency between the results of the double-k parameters 

derived from the experimental results and the FEM analysis, which indicates the strength of the 

proposed algorithm in predicting concrete behavior at different fracture stages (i.e., crack 

initiation, stable and unstable crack propagation). 

Concrete load-displacement curves have different zones, as shown in Fig. 10. The curve 

initially behaves linearly from zero to p2. After p2, the initial micro-cracks that existed before 

loading in the cement paste aggregate interface begin to grow. This non-elastic phase continues  
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Fig. 10 Load-deflection curve of the concrete beam (Mix. 2) 

 

 

until it reaches the ultimate loading capacity of the specimen, known as the peak load (p3). 

After (p3), the specimen is damaged and fractured due to the micro-crack coalescence, and the 

curve shows a downward trend (p4 & p5). As the curve descends, the micro-cracks become 

unstable, and localized cracking occurs over a narrow area of micro cracks, termed as the fracture 

process zone (FPZ). 

With increasing displacement, since concrete is a quasi-brittle material, micro-cracks become 

macro-cracks. 

As shown in Fig. 11, the beam initially has elastic behavior. In Fig. 11, p2b to p5b, the stress 

profile in the notched beam can be seen. The notched beam’s opening displacement and stress 

distribution in Fig. 11 correspond to loads and deflections in Fig. 10. 

With increasing the load in the beam, when the tensile stress reaches the cracking stress in the 

furthest tensile fiber, the crack is localized, and as the load increases, the length of the fictitious 

crack increases. In Fig. 11, p3c, p4c, and p5c show the rise in tension damage, which means crack 

propagation. When the crack opening reaches its critical value 𝑤𝑐 , the real crack begins to 

propagate. The crack can no longer transfer stresses at this stage (p5).  

The softening curve can be reproduced again using the stress output and crack opening output. 

Fig. 12 illustrates the Position of the points at the top of the notch (x=0) on the tensile stress-strain 

curve and the bilinear softening curve. According to Fig. 12, at p1 and p2, the cohesive stress is 

zero, and the stress-strain relationship is linear. 

The p3 is on the steepest part of the bilinear curve. 

The kink point occurs after the peak load on the softening branch of the load-displacement 

curve. The p4 is located on the shallow tail of the bilinear curve. Because 𝑤 ≥ 𝑤𝑐 at p5, the 

cohesive stress is zero. 
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p1.a p1.b P1.c 

   

p2.a p2.b P2.c 

  
 

p3.a p3.b P3.c 

  
 

p4.a p4.b P4.c 

Fig. 11. (a) Distribution of the opening displacement in the depth of the beam, (b) Stress distribution in the 

notched beam (c) Tension damage in the notched beam 
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p5.a p5.b p5.c 

Fig. 11. Continued 

 

  
(a) (b) 

Fig. 12 Position of the desired points at x=0 on the (a) Tensile stress-strain curve (b) Bilinear softening curve 

 

 

As shown from Fig. 10 and Fig. 12, the kink point occurs in the 0.8ppeak, at the softening branch 

of the load-displacement diagram. This indicates that the long tail of the softening curve 

corresponds to the softening part of the load-deflection curve, which is predicted precisely by the 

proposed algorithm. 

Moreover, it is inferred from the results that FPZ established itself entirely at the notch tip after the 

loading reached its peak load and in the softening branch of the load-displacement curve (Figs. 11, 

12). 

 

 

5. Conclusions 
 

The research described in this paper presents a novel inverse algorithm for predicting the 

softening function of concrete. This algorithm is based on the kinematics of the beams at the late 

stages of the loading. The motivation behind this study is that determining the softening functions 

is the primary and effective part of the cohesive crack model of the concrete. The parameters 

required for this algorithm can be obtained with the help of Common fracture tests. Actually, by 
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this algorithm and finite element analysis, the exact softening curve of concrete can be found. In 

fact, the finite element results of the notched beams led to numerical results that were in excellent 

agreement with the experimental peak loads and load-displacement curves of the specimens with 

different concrete mixtures. In addition, the fracture parameters derived from experimental results 

and the finite element analysis using the proposed algorithm were well consistent. It means that the 

presented algorithm can considerably reduce the number of tests to find the fracture behavior of 

concrete elements. 
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Appendix1.derivations of formulas 
 

The derivations of Eq. (11) to Eq. (13) are as follows. 

 

A. Finding wk and σk 
 

The area below the bilinear curve is equal to 𝐺𝐹. By writing the area below the bilinear curve 

in terms of 𝜎𝑘 and equating it with𝐺𝐹, Eq. (A.1) is found. 

𝐺𝐹 =
𝑊1𝑓𝑡

2
+

𝜎𝑘(𝑤𝑐 − 𝑤1)

2
 (A.1) 

By rearranging Eq. (A.1), 𝜎𝑘 is found as Eq. (A.2). 

𝜎𝑘 =
𝑓𝑡 (

2𝐺𝐹
𝑓𝑡

− 𝑤1)

𝑤𝑐 − 𝑤1
 

(A.2) 

 

 

Fig. A.1 The typical bilinear curve of concrete 

 

 

According to Fig. A.1, given the similarity of the triangles KK’1and O’O1, relation (A.3) is 

written as 

𝜎𝑘

𝑓𝑡
= 1 −

𝑤𝑘

𝑤1
 (A.3) 

By substituting Eq. (A.2) for 𝜎𝑘 ,𝑤𝑘 is written as 

𝑤𝑘 = 𝑤1

𝑤𝑐 − 2(
𝐺𝐹

𝑓𝑡
′ )

𝑤𝑐 − 𝑤1
 

(A.4) 

 

 

B. Finding a quadratic equation in terms of 𝑤𝑐 
 

The abscissa 𝑤 of the center of gravity of the area defined by the curve and the axes is 
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calculated by 

𝑤̅ =
∑ 𝐴𝑖𝑤𝑖̅̅ ̅

∑ 𝐴𝑖
 (A.5) 

According to Fig. A.1, the softening curve could be considered as two separated triangles o’ o1 

and k1c. By using Eq. (A.5) for finding the abscissa of the center of gravity, Eq. (A.6) is 

generated. 

𝑤̅ =

𝑓𝑡𝑤1
2

6
+ (

(𝑤1 − 𝑤𝑘) + (𝑤𝑐 − 𝑤𝑘)
3

+ 𝑤𝑘) (𝐺𝐹 −
𝑓𝑡𝑤𝑡

2

6
)

𝐺𝐹
 

(A.6) 

Eq. (A.6) is rearranged and rewritten as Eq. (A.7). 

𝑤̅𝐺𝐹= 
𝑓𝑡𝑤1

2

6
+ (

𝑤1+𝑤𝑐+𝑤𝑘

3
) (𝐺𝐹 −

𝑓𝑡𝑤𝑡
2

6
) (A.7) 

By substituting Eq. (A.4) for 𝑤𝑘 , Eq. (A.7) is written as Eq. (A.8). 

𝑤̅𝐺𝐹 =
𝑓𝑡𝑤1

2

6
+ (

1

3
) (𝑤1+𝑤𝑐 + 𝑤1

𝑤𝑐 − 2(
𝐺𝐹

𝑓𝑡
′ )

𝑤𝑐 − 𝑤1
) (𝐺𝐹 −

𝑓𝑡𝑤𝑡
2

6
) (A.8) 

Rearranging the Eq. (A.8) reproduce quadratic equation in terms of 𝑤𝑐. Solving this equation 

leads to find 𝑤𝑐 after finding 𝑤 in each step, as mentioned before. 

𝑤𝑐
2 − 𝑤𝑐

6𝑤 (
𝐺𝐹

𝑓𝑡
′ ) − 2𝑤1 (

𝐺𝐹

𝑓𝑡
′ ) 

2 (
𝐺𝐹

𝑓𝑡
′ ) − 𝑤1

+

6𝑤𝑤1 (
𝐺𝐹

𝑓𝑡
′ ) − 4𝑤1 (

𝐺𝐹

𝑓𝑡
′ )

2

2 (
𝐺𝐹

𝑓𝑡
′ ) − 𝑤1

= 0 (A.9) 
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