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Abstract.  In this paper, a simple refined shear deformation theory which eliminates the use of a shear correction 
factor was presented for free vibration analysis of FG sandwich plates composed of FG porous face sheets and an 
isotropic homogeneous core. Unlike any other theory, the number of unknown functions involved is only four, as 
against five in case of other shear deformation theories. Material properties of FGM layers are assumed to vary 
continuously across the plate thickness according to either power-law function in terms of the volume fractions of the 
constituents. The face layers are considered to be FG porous across each face thickness while the core is made of a 
ceramic homogeneous layer. Four models of porosity distribution are proposed. Governing equations and boundary 
conditions are derived from Hamilton’s principle. Analytical solutions were obtained for free vibration analysis of 
square sandwich plates with FG porous layers under various boundary conditions. Numerical results are presented to 
show the effect of the porosity volume fraction, type of porosity distribution model, side to thickness ratio, lay-up 
scheme, and boundary conditions on the free vibration of FG sandwich plates. The validity of the present theory is 
investigated by comparing some of the present results with other published results. 
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1. Introduction 

 
In recent years, functionally graded materials (FGMs) in which the volume fractions of material 

constituents vary gradually along certain direction have received great attention in many 
engineering applications (i.e., space vehicles, aircrafts, electronics, shipbuilding, biomedical 
applications and defense industries) owing to their superior mechanical and thermal properties. 
These new materials were proposed by material scientists in Japan in 1984 to eliminate interface 
problems and stress concentrations. With the developments in manufacturing methods, the FGMs 
are considered in the industry of the sandwich structures because of the gradual variation of 
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material properties at the interfaces between the face layers and the core. The key limitation in 
using FG sandwich structures in traditional industries is because of the high cost of production of 
this material. 

Because of the importance and applications of the FGM sandwich structures, understanding of 
their responses becomes an important task. Several researches have been performed to analyzed 
the free vibration behavior of FG sandwich plates. 

Zenkour (2005) presented a comprehensive analysis of functionally graded sandwich plates: 
Part 2—Buckling and free vibration. Ebrahimi and Salari (2016) studied thermal loading effects on 
electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent 
Timoshenko nanobeams. Ebrahimi and Salari (2017) developed semi-analytical vibration analysis 
of functionally graded size-dependent nanobeams with various boundary conditions. Ashoori et al. 
(2017) developed size-dependent axisymmetric vibration of functionally graded circular plates in 
bifurcation/limit point instability. 

In last years, many researchers interested in investigation of porous functionally graded 
materials; Wattanasakulpong and Ungbhakorn (2014) studied vibration characteristics of FGM 
porous beams by using differential transformation method with different kinds of elastic supports. 
Wang et al. (2014) developed a new suggestion for determining 2D porosities in DEM studies. 
Ebrahimi and Jafari (2016) investigated thermal vibration of FGM porous beams. Zouatnia et al. 
(2017) developed an analytical solution for bending and vibration responses of functionally graded 
beams with porosities. Akbaş (2017) examined the vibration and static analysis of functionally 
graded plates with porosity. Ebrahimi and Salari (2017) analyze the thermo-mechanical vibration 
of functionally graded micro/nanoscale beams with porosities based on modified couple stress 
theory. Ahmadi (2017) used a Galerkin Layerwise formulation for three-dimensional stress 
analysis in long sandwich plates. Wu et al. (2018) performed a finite element analysis to study the 
free and forced vibration FGM porous beam using both Euler-Bernoulli and Timoshenko beam 
theories. Yang et al. (2018) used Chebyshev-Ritz method to study buckling and free vibration of 
FGM graphene reinforced porous nanocomposite. Taati and Fallah (2019) presented forced 
vibration of sandwich modified strain gradient microbeams with FGM core. Salari et al. (2019) 
investigated the porosity-dependent asymmetric thermal buckling of inhomogeneous annular 
nanoplates resting on elastic substrate. Avcar (2019) investigated the free vibration of imperfect 
sigmoid and power law functionally graded beams.  Salari et al. (2020) studied nonlinear thermal 
behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through 
and postbuckling analysis. Salari and Vanini (2021) investigated of thermal preloading and 
porosity effects on the nonlocal nonlinear instability of FG nanobeams with geometrical 
imperfection. Cuong-Le et al. (2021) used a three-dimensional solution for free vibration and 
buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials 
using IGA. 

Since complex fabrication processes of the FGMs, micro voids and porosities often occur. 
During these procedures, due to the large difference in the solidification temperature of the FGM 
material constituents a certain number of defects appears. Then, we can say that the porosities are 
related with the distribution of the FGM material constituents. For these reasons, we present in this 
study, a new porosities distribution for free vibration analysis of new model of functionally graded 
material (FGM) sandwich plates. Material properties of FGM layers are assumed to vary 
continuously across the plate thickness according to either power-law function in terms of the 
volume fractions of the constituents. The four-variable refined plate theory is proposed to derive 
the field equations of the FG sandwich plates under various boundary conditions. The most 

294



 
 
 
 
 
 

Effect of porosity on the free vibration analysis of various functionally graded sandwich plates 

interesting feature of this theory is that it does not require the shear correction factor and satisfies 
equilibrium conditions at the top and bottom faces of the sandwich plate. Governing equations and 
boundary conditions are derived from Hamilton’s principle. Analytical solutions were obtained for 
free vibration analysis of square sandwich plates with FG porous layers under various boundary 
conditions. Numerical examples are presented to verify the accuracy of the present theory. 
Numerical results are presented to show the effect of the material distribution, the sandwich plate 
geometry and the porosity on the free vibration of FG sandwich plates. 

 
 

2. FGM sandwich plates 
 
Consider the case of a uniform thickness, rectangular FGM sandwich plate composed of three 

microscopically heterogeneous layers, with reference to rectangular coordinates (x, y, z) as 
depicted in Fig. 1. The upper and lower faces of the plate are at 𝑧 = േℎ/2, and the edges of the 
plate are parallel to the x and y axes. 

The sandwich plate is composed of three elastic layers, namely “Layer 1,” “Layer 2,” and 
“Layer 3” from the uppermost surface to the lowest surface of the plate. The vertical coordinates 
of the base, the two interfaces, and the top are denoted by ℎ଴ = −ℎ/2, ℎଵ, ℎଶ, and ℎଷ = +ℎ/2, 
respectively. 

For brevity, the ratio of the thickness of each layer from the base to the top is denoted by the 
combination of three numbers, i.e., “1–0–1,” “2–1–2,” and so on. 

The face layers of the sandwich plate are synthesized of an isotropic material with material 
properties varying smoothly in the z (thickness) direction only. The core layer is made of an 
isotropic homogeneous material as again illustrated in Fig. 1. The properties of P-FGM vary 
continuously due to gradually changing the volume fraction of the constituent materials, generally 
in the thickness direction only. The volume fraction of the sandwich plate faces varies according to 
a simple power law function of z while that of the core equals unity, and they are given as 

 𝑉(ଵ)(𝑧) = ൬ 𝑧 − ℎ଴
ℎଵ − ℎ଴൰, ℎ଴ ≤ 𝑧 ≤ ℎଵ (1a)

 
 

Fig. 1 Geometry and coordinates of FG sandwich plates
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𝑉(ଶ)(𝑧) = 1, ℎଵ ≤ 𝑧 ≤ ℎଶ (1b)
 𝑉(ଷ)(𝑧) = ൬ 𝑧 − ℎଷ

ℎଶ − ℎଷ൰, ℎଶ ≤ 𝑧 ≤ ℎଷ (1c)

 
Where 𝑘 denotes volume fraction index. When 𝑘 = 0 we return to the fully homogeneous 

ceramic plate. 
 
 

3. Porosity-dependent FG sandwich plates 
 
Effective material properties of FGMs are influenced by various factors such as high 

temperature, humidity and porosity. In this paper, the porosity effect is investigated. Numerous 
models of porosities distribution have been proposed by the researchers to compute the effective 
material properties of porous FGM plate (Wattanasakulpong and Ungbhakorn 2014, Shahsavari et 
al. 2018, Gupta and Talha 2018). In this paper, for the first time, the porosities are distributed 
independently in each FGM layer of sandwich. Four models of porosity are used. 

 
3.1 Imperfect FGM with even porosities (Imperfect I) 
 
Let us assume that the FG sandwich plate is fabricated of a mixture of metal and ceramic. The 

influence of porosities, which may exist inside the materials of FGM layers during the production, 
is included. The porosities uniformly distributed over the FGM sandwich layers, whereas the core 
layer is perfect (nonporous) and made of ceramic. By using the rule of mixture, the effective 
material properties 𝑃(௡) of layer 𝑛 (𝑛 = 1, 2, 3) with evenly distributed porosities (imperfect I), 
are stated as (Daikh and Zenkour 2019) 

 𝑃(ଵ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଵ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠)𝑃(ଶ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଶ)(𝑧) + 𝑃௠𝑃(ଷ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଷ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠) 
(2)

 
where 𝛼  denotes the porosity coefficient (𝛼 ≺≺ 1) . 𝑃௖  and 𝑃௠  are the corresponding 
properties of the ceramic and metal, respectively. 

 
3.2 Imperfect FGM with uneven porosities (Imperfect II) 
 
Here, the porosities may spread functionally during the thickness direction of the FGM 

sandwich as follow (Daikh and Zenkour 2019) 
 𝑃(ଵ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଵ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠) ቈ1 − |2𝑧 − ℎ଴ − ℎଵ|

ℎଵ − ℎ଴ ቉ 𝑃(ଶ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଶ)(𝑧) + 𝑃௠ 𝑃(ଷ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଷ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠) ቈ1 − |2𝑧 − ℎଷ − ℎଶ|
ℎଷ − ℎଶ ቉ 

(3)
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3.3 Imperfect FGM with logarithmic-uneven porosities (Imperfect III) 
 
Another uneven model based on a logarithmic function can be expressed as (Daikh and 

Zenkour 2019) 
 𝑃(ଵ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଵ)(𝑧) + 𝑃௠ − 𝑙𝑜𝑔 ቀ1 + 𝛼2ቁ (𝑃௖ + 𝑃௠) ቈ1 − |2𝑧 − ℎ଴ − ℎଵ|

ℎଵ − ℎ଴ ቉ 𝑃(ଶ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଶ)(𝑧) + 𝑃௠ 𝑃(ଷ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଷ)(𝑧) + 𝑃௠ − 𝑙𝑜𝑔 ቀ1 + 𝛼2ቁ (𝑃௖ + 𝑃௠) ቈ1 − |2𝑧 − ℎଷ − ℎଶ|
ℎଷ − ℎଶ ቉ 

(4)

 
3.4 Imperfect FGM with linear-uneven porosities (Imperfect IV) 
 
The density of porosity is low at the outer surfaces of the sandwich and high at the two 

interfaces positions, and change across the FGM layers with linear function as (Daikh and Zenkour 
2019) 𝑃(ଵ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଵ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠) ൤1 − 𝑧 − ℎଵ

ℎ଴ − ℎଵ൨ 𝑃(ଶ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଶ)(𝑧) + 𝑃௠ 𝑃(ଷ)(𝑧) = (𝑃௖ − 𝑃௠)𝑉(ଷ)(𝑧) + 𝑃௠ − 𝛼2 (𝑃௖ + 𝑃௠) ൤ 𝑧 − ℎଷ
ℎଶ − ℎଷ൨ 

(5)

 
 

4. Mathematical formulation 
 
4.1 Kinematics and constitutive equations 
 
The displacement field of the present refined theory is given by 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢଴(𝑥, 𝑦, 𝑡) − 𝑧 𝜕𝑤௕𝜕𝑥 − 𝑓(𝑧) 𝜕𝑤௦𝜕𝑥𝑣(𝑥, 𝑦, 𝑧) = 𝑣଴(𝑥, 𝑦, 𝑡) − 𝑧 𝜕𝑤௕𝜕𝑦 − 𝑓(𝑧) 𝜕𝑤௦𝜕𝑦𝑤(𝑥, 𝑦, 𝑧) = 𝑤௕(𝑥, 𝑦) + 𝑤௦(𝑥, 𝑦) 

(6)

 
Where 𝑢଴, 𝑣଴ denote the displacements along the x and y coordinate directions of a point on 

the mid-plane of the plate. 𝑤௕ and 𝑤௦ are the bending and shear components of the transverse 
displacement, respectively. It is clear that the displacement field in Eq. (6) contains only four 
unknowns (𝑢଴ , 𝑣଴ , 𝑤௕ , 𝑤௦ ). The shape function 𝑓(𝑧)  is chosen to satisfy the stress-free 
boundary conditions on the top and bottom surfaces of the plate, thus a shear correction factor is 
not required. In this study, the shape function is considered 

 𝑓(𝑧) = 𝑧 ൤− 14 + 53 ቀ𝑧
ℎ

ቁଶ൨, (7)
 
The strains associated with the displacements in Eq. (6) are 
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𝜀௫ = 𝜀௫଴ + 𝑧 𝑘௫௕ + 𝑓(𝑧) 𝑘௫௦𝜀௬ = 𝜀௬଴ + 𝑧 𝑘௬௕ + 𝑓(𝑧) 𝑘௬௦𝛾௬௭ = 𝑔(𝑧) 𝛾௬௭௦  𝛾௫௭ = 𝑔(𝑧) 𝛾௫௭௦𝜀௭ = 0 

(8)

 

where 
 𝜀௫଴ = 𝜕𝑢଴𝜕𝑥 ,      𝑘௫௕ = − 𝜕ଶ𝑤௕𝜕𝑥ଶ , 𝑘௫௦ = − 𝜕ଶ𝑤௦𝜕𝑥ଶ ,𝜀௬଴ = 𝜕𝑣଴𝜕𝑥 ,          𝑘௬௕ = − 𝜕ଶ𝑤௕𝜕𝑦ଶ ,          𝑘௬௦ = − 𝜕ଶ𝑤௦𝜕𝑦ଶ , 𝛾௬௭௦ = 𝜕𝑤௦𝜕𝑥 ,     𝛾௫௭௦ = 𝜕𝑤௦𝜕𝑥 , 𝑔(𝑧) = 1 − 𝑓’(𝑧), 𝑓’(𝑧) = 𝑑𝑓(𝑧)𝑑𝑧  

(9)

 
For elastic and isotropic FGMs, the constitutive relations can be written as 
 

⎩⎪⎨
⎪⎧ 𝜎௫𝜎௬𝜏௬௭𝜏௫௭𝜏௫௬⎭⎪⎬

⎪⎫(௡)
= ⎣⎢⎢

⎢⎡𝐶ଵଵ 𝐶ଵଶ 0 0 0𝐶ଵଶ 𝐶ଶଶ 0 0 00 0 𝐶ସସ 0 00 0 0 𝐶ହହ 00 0 0 0 𝐶଺଺⎦⎥⎥
⎥⎤(௡)

⎩⎪⎨
⎪⎧ 𝜀௫𝜀௬𝛾௬௭𝛾௫௭𝛾௫௬⎭⎪⎬

⎪⎫(௡)
 (10)

 

where 
 𝐶ଵଵ(𝑧) = 𝐸(𝑧)(1 − 𝑣ଶ), 𝐶ଵଶ(𝑧) = 𝜈𝐶ଵଵ(𝑧) (11)
 

and 
 𝐶ସସ(𝑧) = 𝐶ହହ(𝑧) = 𝐶଺଺(𝑧) = 𝐸(𝑧)2(1 + 𝜈) (12)

 
4.3 Governing equations 
 
Hamilton’s principle is used herein to derive equations of motion. The principle can be stated in 

an analytical form as (Delale and Erdogan 1983) 
 න (𝛿𝑈 − 𝛿𝑇)௧

଴ = 0 (13)
 

where 𝛿 𝑈 is the variation of strain energy and 𝛿 𝑇 is the variation of kinetic energy. The 
variation of strain energy of the plate is calculated by 

 𝛿 𝑈 = න ൣ𝜎௫𝛿 𝜀௫ + 𝜎௬𝛿 𝜀௬ + 𝜏௫௬𝛿 𝛾௫௬ + 𝜏௬௭𝛿 𝛾௬௭ + 𝜏௫௭𝛿 𝛾௫௭൧௏ 𝑑𝑉       = න ൣ𝑁௫𝛿 𝜀௫଴ + 𝑁௬𝛿 𝜀௬଴ + 𝑁௫௬𝛿 𝛾௫௬଴ + 𝑀௫௕𝛿 𝑘௫௕ + 𝑀௬௕𝛿 𝑘௬௕ + 𝑀௫௬௕ 𝛿 𝑘௫௬௕஺              + 𝑀௫௦𝛿 𝑘௫௦ + 𝑀௬௦𝛿 𝑘௬௦ + 𝑀௫௬௦ 𝛿 𝑘௫௬௦ + 𝑆௬௭௦ 𝛿 𝛾௬௭௦ + 𝑆௫௭௦ 𝛿 𝛾௫௭௦ ൧ 𝑑𝐴 = 0 

(14)
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where 𝐴 is the top surface and the stress resultants 𝑁, 𝑀, and 𝑆 are defined by 
 ቐ 𝑁௫ 𝑁௬ 𝑁௫௬𝑀௫௕ 𝑀௬௕ 𝑀௫௬௕𝑀௫௦ 𝑀௬௦ 𝑀௫௬௦ ቑ = ෍ න ൫𝜎௫, 𝜎௬, 𝜏௫௬൯ℎ೙

ℎ೙షభ
ଷ

௡ୀଵ
(௡) ൝1𝑧𝑓(𝑧)ൡ 𝑑𝑧 (15a)

 ൫𝑆௫௭௦ , 𝑆௬௭௦ ൯ = ෍ න ൫𝜏௫௭, 𝜏௬௭൯ℎ೙
ℎ೙షభ

ଷ
௡ୀଵ

(௡) 𝑔(𝑧)𝑑𝑧 (15b)

 
where ℎ௡ିଵ and ℎ௡ are the top and bottom z-coordinates of the nth layer. 

Substituting Eq. (10) into Eq. (15) and integrating through the thickness of the plate, the stress 
resultants are given as 

 ൝ 𝑁𝑀௕𝑀௦ ൡ = ൥ 𝐴 𝐵 𝐵௦𝐵 𝐷 𝐷௦𝐵௦ 𝐷௦ 𝐻௦൩ ቊ 𝜀𝑘௕𝑘௦ ቋ , 𝑆 = 𝐴௦𝛾 (16)
 

in which 
 𝑁 = ൛𝑁௫, 𝑁௬, 𝑁௫௬ൟ௧,          𝑀௕ = ൛𝑀௫௕, 𝑀௬௕, 𝑀௫௬௕ ൟ௧, 𝑀௦ = ൛𝑀௫௦, 𝑀௬௦, 𝑀௫௬௦ ൟ௧, (17a)
 𝜀 = ൛𝜀௫଴, 𝜀௬଴, 𝛾௫௬଴ ൟ௧,              𝑘௕ = ൛𝑘௫௕, 𝑘௬௕, 𝑘௫௬௕ ൟ௧, 𝑘௦ = ൛𝑘௫௦ , 𝑘௬௦ , 𝑘௫௬௦ ൟ௧,      (17b)
 𝐴 = ൥𝐴ଵଵ 𝐴ଵଶ 0𝐴ଵଶ 𝐴ଶଶ 00 0 𝐴଺଺൩ ,        𝐴 = ൥𝐵ଵଵ 𝐵ଵଶ 0𝐵ଵଶ 𝐵ଶଶ 00 0 𝐵଺଺൩ , 𝐷 = ൥𝐷ଵଵ 𝐷ଵଶ 0𝐷ଵଶ 𝐷ଶଶ 00 0 𝐷଺଺൩,    (17c)

 𝐵௦ = ቎𝐵ଵଵ௦ 𝐵ଵଶ௦ 0𝐵ଵଶ௦ 𝐵ଶଶ௦ 00 0 𝐵଺଺௦ ቏,       𝐷௦ = ቎𝐷ଵଵ௦ 𝐷ଵଶ௦ 0𝐷ଵଶ௦ 𝐷ଶଶ௦ 00 0 𝐷଺଺௦ ቏, 𝐻௦ = ቎𝐻ଵଵ௦ 𝐻ଵଶ௦ 0𝐻ଵଶ௦ 𝐻ଶଶ௦ 00 0 𝐻଺଺௦ ቏, (17d)

 𝑆 = ൛𝑆௫௭௦ , 𝑆௬௭௦ ൟ௧,          𝛾 = ൛𝛾௫௭, 𝛾௬௭ൟ௧, 𝐴௦ = ൤𝐴ସସ௦ 00 𝐴ହହ௦ ൨, (17e)
 

and stiffness components are given as 
 ቐ𝐴ଵଵ 𝐵ଵଵ 𝐷ଵଵ 𝐵ଵଵ௦ 𝐷ଵଵ௦ 𝐻ଵଵ௦𝐴ଵଶ 𝐵ଵଶ 𝐷ଵଶ 𝐵ଵଶ௦ 𝐷ଵଶ௦ 𝐻ଵଶ௦𝐴଺଺ 𝐵଺଺ 𝐷଺଺ 𝐵଺଺௦ 𝐷଺଺௦ 𝐻଺଺௦ ቑ

= න 𝑄ଵଵ(1, 𝑧, 𝑧ଶ, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓ଶ(𝑧))ℎ/ଶ
ିℎ/ଶ ൞ 1𝜈(௡)1 − 𝜈(௡)2 ൢ 𝑑𝑧 

(18a)

 (𝐴ଶଶ, 𝐵ଶଶ, 𝐷ଶଶ, 𝐵ଶଶ௦ , 𝐷ଶଶ௦ , 𝐻ଶଶ௦ ) = (𝐴ଵଵ, 𝐵ଵଵ, 𝐷ଵଵ, 𝐵ଵଵ௦ , 𝐷ଵଵ௦ , 𝐻ଵଵ௦ ) (18b)
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𝐴ସସ௦ = 𝐴ହହ௦ = න 𝑄ସସሾ𝑔(𝑧)ሿଶ𝑑𝑧ℎ/ଶ
ିℎ/ଶ , (18c)

 
The variation of kinetic energy of the plate can be written as 
 𝛿 𝑇 = න න ሾ𝑢ሶ 𝛿 𝑢ሶ + 𝑣ሶ𝛿 𝑣ሶ + 𝑤ሶ 𝛿 𝑤ሶ ሿ 𝜌(𝑧)ఆ

ℎଶି
ℎଶ 𝑑𝐴 𝑑𝑧

        = න ሼ𝐼଴ሾ𝑢ሶ ଴𝛿𝑢ሶ ଴ + 𝑣ሶ଴𝛿𝑣ሶ଴ + (𝑤ሶ ௕ + 𝑤ሶ ௦)(𝛿𝑤ሶ ௕ + 𝛿𝑤ሶ ௦)ሿ஺               −𝐼ଵ ൬𝑢ሶ ଴ 𝜕𝛿𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑥 𝛿 𝑢ሶ ଴ + 𝑣ሶ଴ 𝜕𝛿𝑤ሶ ௕𝜕𝑦 + 𝜕𝑤ሶ ௕𝜕𝑦 𝛿 𝑣ሶ଴൰              −𝐼ଶ ൬𝑢ሶ ଴ 𝜕𝛿𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑥 𝛿 𝑢ሶ ଴ + 𝑣ሶ଴ 𝜕𝛿𝑤ሶ ௦𝜕𝑦 + 𝜕𝑤ሶ ௦𝜕𝑦 𝛿 𝑣ሶ଴൰              +𝐽ଵ ൬𝜕𝑤ሶ ௕𝜕𝑥 𝜕𝛿 𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑦 𝜕𝛿 𝑤ሶ ௕𝜕𝑦 ൰ + 𝐾ଶ ൬𝜕𝑤ሶ ௦𝜕𝑥 𝜕𝛿 𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑦 𝜕𝛿 𝑤ሶ ௦𝜕𝑦 ൰              +𝐽ଶ ൬𝜕𝑤ሶ ௕𝜕𝑥 𝜕𝛿 𝑤ሶ ௦𝜕𝑥 + 𝜕𝑤ሶ ௦𝜕𝑥 𝜕𝛿 𝑤ሶ ௕𝜕𝑥 + 𝜕𝑤ሶ ௕𝜕𝑦 𝜕𝛿 𝑤ሶ ௦𝜕𝑦 + 𝜕𝑤ሶ ௦𝜕𝑦 𝜕𝛿 𝑤ሶ ௕𝜕𝑦 ൰ൠ 𝑑𝐴 

(19)

 
where dot-superscript convention indicates the differentiation with respect to the time variable t, 𝜌(𝑧) is the mass density, and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 

 (𝐼଴, 𝐼ଵ, 𝐽ଵ, 𝐼ଶ, 𝐽ଶ, 𝐾ଶ) = ෍ න (1, 𝑧, 𝑓, 𝑧ଶ, 𝑧𝑓, 𝑓ଶ)𝑑𝑧ℎ೙
ℎ೙షభ

ଷ
௡ୀଵ  (20)

 
Substituting the expressions for 𝛿𝑈 and 𝛿𝑇 from equations (14), and (19) into equation (13) 

and integrating by parts, and collecting the coefficients of 𝛿𝑢଴ , 𝛿𝑣଴ , 𝛿𝑤௕ , and 𝛿𝑤௦ , the 
following equations of motion of the plate are obtained 

 𝛿 𝑢଴:   𝜕𝑁௫𝜕𝑥 + 𝜕𝑁௫௬𝜕𝑦 = 𝐼଴𝑢ሷ ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑥 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑥𝛿 𝑣଴:   𝜕𝑁௫௬𝜕𝑥 + 𝜕𝑁௬𝜕𝑦 = 𝐼଴ଵ𝑣ሷ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑦 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑦  𝛿 𝑤௕:   𝜕ଶ𝑀௫௕𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௕𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௕𝜕𝑦ଶ               = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐼ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐼ଶ𝛻ଶ𝑤ሷ ௕ − 𝐽ଶ𝛻ଶ𝑤ሷ ௦ 𝛿 𝑤௦:   𝜕ଶ𝑀௫௦𝜕𝑥ଶ + 2 𝜕ଶ𝑀௫௬௦𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬௦𝜕𝑦ଶ + 𝜕𝑆௫௭௦𝜕𝑥 + 𝜕𝑆௬௭௦𝜕𝑦             = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐽ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐽ଶ𝛻ଶ𝑤ሷ ௕ − 𝐾ଶ𝛻ଶ𝑤ሷ ௦ 

(21)

 
Introducing Eq. (16) into Eq. (21), the equations of motion can be expressed in terms of 

displacements (𝑢଴, 𝑣଴, 𝑤௕, 𝑤௦) and the appropriate equations take the form 
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𝐴ଵଵ 𝜕ଶ𝑢଴𝜕𝑥ଶ + 𝐴଺଺ 𝜕ଶ𝑢0𝜕𝑦ଶ + (𝐴ଵଶ + 𝐴଺଺) 𝜕ଶ𝑣𝜕𝑥𝜕𝑦 − 𝐵ଵଵ 𝜕ଷ𝑤௕𝜕𝑥ଷ − (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑤௕𝜕𝑥𝜕𝑦ଶ  −𝐵ଵଵ௦ 𝜕ଷ𝑤௦𝜕𝑥ଷ − (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑤௦𝜕𝑥𝜕𝑦ଶ = 𝐼଴𝑢ሷ ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑥 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑥 , (22a)

 (𝐴ଵଶ + 𝐴଺଺) 𝜕ଶ𝑢଴𝜕𝑥𝜕𝑦 + 𝐴଺଺ 𝜕ଶ𝑣଴𝜕𝑥ଶ + 𝐴ଶଶ 𝜕ଶ𝑣଴𝜕𝑦ଶ − (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑤௕𝜕𝑥ଶ𝜕𝑦 − 𝐵ଶଶ 𝜕ଷ𝑤௕𝜕𝑦ଷ  −𝐵ଶଶ௦ 𝜕ଷ𝑤௦𝜕𝑦ଷ − (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑤௦𝜕𝑥ଶ𝜕𝑦 = 𝐼଴𝑣ሷ଴ − 𝐼ଵ 𝜕𝑤ሷ ௕𝜕𝑦 − 𝐽ଵ 𝜕𝑤ሷ ௦𝜕𝑦  
(22b)

 𝐵ଵଵ 𝜕ଷ𝑢𝜕𝑥ଷ + (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑢𝜕𝑥𝜕𝑦ଶ + (𝐵ଵଶ + 2𝐵଺଺) 𝜕ଷ𝑣𝜕𝑥ଶ𝜕𝑦 + 𝐵ଶଶ 𝜕ଷ𝑣𝜕𝑦ଷ − 𝐷ଵଵ 𝜕ସ𝑤௕𝜕𝑥ସ  −2(𝐷ଵଶ + 2𝐷଺଺) 𝜕ସ𝑤௕𝜕𝑥ଶ𝜕𝑦ଶ − 𝐷ଶଶ 𝜕ସ𝑤௕𝜕𝑦ସ − 𝐷ଵଵ௦ 𝜕ସ𝑤௦𝜕𝑥ସ − 2(𝐷ଵଶ௦ + 2𝐷଺଺௦ ) 𝜕ସ𝑤௦𝜕𝑥ଶ𝜕𝑦ଶ − 𝐷ଶଶ௦ 𝜕ସ𝑤௦𝜕𝑦ସ  = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐼ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐼ଶ𝛻ଶ𝑤ሷ ௕ − 𝐽ଶ𝛻ଶ𝑤ሷ ௦, (22c)

 𝐵ଵଵ௦ 𝜕ଷ𝑢𝜕𝑥ଷ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑢𝜕𝑥𝜕𝑦ଶ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ ) 𝜕ଷ𝑣𝜕𝑥ଶ𝜕𝑦 + 𝐵ଶଶ௦ 𝜕ଷ𝑣𝜕𝑦ଷ − 𝐷ଵଵ௦ 𝜕ସ𝑤௕𝜕𝑥ସ  −2(𝐷ଵଶ௦ + 2𝐷଺଺௦ ) 𝜕ସ𝑤௕𝜕𝑥ଶ𝜕𝑦ଶ  − 𝐷ଶଶ௦ 𝜕ସ𝑤௕𝜕𝑦ସ − 𝐻ଵଵ௦ 𝜕ସ𝑤௦𝜕𝑥ସ − 2(𝐻ଵଶ௦ + 2𝐻଺଺௦ ) 𝜕ସ𝑤௦𝜕𝑥ଶ𝜕𝑦ଶ − 𝐻ଶଶ௦ 𝜕ସ𝑤௦𝜕𝑦ସ  +𝐴ହହ௦ 𝜕ଶ𝑤௦𝜕𝑥ଶ + 𝐴ସସ௦ 𝜕ଶ𝑤௦𝜕𝑦ଶ = 𝐼଴(𝑤ሷ ௕ + 𝑤ሷ ௦) + 𝐽ଵ ൬𝜕𝑢ሷ ଴𝜕𝑥 + 𝜕𝑣ሷ଴𝜕𝑦 ൰ − 𝐽ଶ𝛻ଶ𝑤ሷ ௕ − 𝐾ଶ𝛻ଶ𝑤ሷ ௦ 

(22d)

 
4.4 Exact solutions for P-FGMs sandwich plates 
 
The exact solution of Eq. (22) for the P-FGMs sandwich plate under various boundary 

conditions can be constructed. The boundary conditions for an arbitrary edge with simply 
supported, clamped and free edge conditions are 

 
- Simply supported (S) 
 𝑁௫ = 𝑣଴ = 𝑤௕ = 𝑤௦ = 𝑀௫ = 0 𝑎𝑡 𝑥 = 0, 𝑎 (23a)
 𝑁௬ = 𝑢଴ = 𝑤௕ = 𝑤௦ = 𝑀௬ = 0 𝑎𝑡 𝑦 = 0, 𝑏 (23b)
 
- Clamped (C) 
 𝑢଴ = 𝑣଴ = 𝑤௕ = 𝑤௦ = 𝜕𝑤௕𝜕𝑥 = 𝜕𝑤௦𝜕𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝑎 (24a)

 𝑢଴ = 𝑣଴ = 𝑤௕ = 𝑤௦ = 𝜕𝑤௕𝜕𝑦 = 𝜕𝑤௦𝜕𝑦 = 0 𝑎𝑡 𝑦 = 0, 𝑏 (24b)
 
- Free (F) 
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Table 1 The admissible functions 𝑋௠(𝑥) and 𝑌௡(𝑦) 
Boundary conditions The functions 𝑋௠(𝑥) and 𝑌௡(𝑦) 

Notation 𝑥 = 0 𝑦 = 0 𝑥 = 𝑎 𝑦 = 𝑏 𝑋௠(𝑥) 𝑌௡(𝑦) 
SSSS S S S S 𝑠𝑖𝑛(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑥) 
CSCS C S C S 𝑠𝑖𝑛ଶ(𝜆𝑥) 𝑠𝑖𝑛(𝜇𝑥) 
CCCC C C C C 𝑠𝑖𝑛ଶ(𝜆𝑥) 𝑠𝑖𝑛ଶ(𝜇𝑥) 
FCFC F C F C 𝑐𝑜𝑠ଶ(𝜆𝑥) ሾ𝑠𝑖𝑛ଶ(𝜆𝑥) + 1ሿ 𝑠𝑖𝑛ଶ(𝜇𝑥) 
 
 𝑁௫ = 𝑁௫௬ = 𝜕𝑀௫𝜕𝑥 + 2 𝜕𝑀௫௬𝜕𝑦 = 𝑄௫ = 𝑀௫ = 0 𝑎𝑡 𝑥 = 0, 𝑎 (25a)

 𝑁௫௬ = 𝑁௬ + 2 𝜕𝑀௫௬𝜕𝑦 + 𝜕𝑀௬𝜕𝑦 = 𝑄௬ = 𝑀௬ = 0 𝑎𝑡 𝑦 = 0, 𝑏 (25b)
 
In the present problem, the following expressions are considered for the displacements that 

satisfy the considered boundary conditions 
 

൞𝑢଴𝑣଴𝑤௕𝑤௦ ൢ =
⎩⎪⎪⎨
⎪⎪⎧𝑈௠௡ 𝜕𝑋௠(𝑥)𝜕𝑥 𝑌௡(𝑦)𝑒௜ఠ௧

𝑉௠௡𝑋௡(𝑥) 𝜕𝑌௡(𝑦)𝜕𝑦 𝑒௜ఠ௧𝑊௕௠௡𝑋௡(𝑥)𝑌௡(𝑦)𝑒௜ఠ௧𝑊௦௠௡𝑋௡(𝑥)𝑌௡(𝑦)𝑒௜ఠ௧ ⎭⎪⎪⎬
⎪⎪⎫

 (26)

 
where 𝑈௠௡ , 𝑉௠௡ , 𝑊௕௠௡ , and 𝑊௦௠௡  are arbitrary parameters and 𝜔 = 𝜔௠௡  denotes the 
eigenfrequency associated with (𝑚, 𝑛)௧௛ eigenmode. The functions 𝑋௠(𝑥)  and 𝑌௡(𝑦)  are 
suggested by Sobhy (2013) to satisfy at least the geometric boundary conditions given in Eqs. (23), 
(24) and (25) and represent approximate shapes of the deflected surface of the plate. These 
functions, for the different cases of boundary conditions, are listed in Table 1 noting that 𝜆 =𝑚𝜋/𝑎 and 𝜇 = 𝑛𝜋/𝑏. 

Substituting the Eq. (26) into the Eq. (22), and then multiplying each equation with the suitable 
eigenfunction and integrating over the domain of solution, after some mathematical rearraggement 
the following matrix format is gotten 

 

൮቎𝑎ଵଵ 𝑎ଵଶ𝑎ଵଶ 𝑎ଶଶ 𝑎ଵଷ 𝑎ଵସ𝑎ଶଷ 𝑎ଶସ𝑎ଵଷ 𝑎ଶଷ𝑎ଵସ 𝑎ଶସ 𝑎ଷଷ 𝑎ଷସ𝑎ଷସ 𝑎ସସ቏ − 𝜔ଶ ൦𝑚ଵଵ 00 𝑚ଶଶ 𝑚ଵଷ 𝑚ଵସ𝑚ଶଷ 𝑚ଶସ𝑚ଷଵ 𝑚ଷଶ𝑚ସଵ 𝑚ସଶ 𝑚ଷଷ 𝑚ଷସ𝑚ସଷ 𝑚ସସ൪൲ ൞𝑈௠௡𝑉௠௡𝑊௠௡𝑋௠௡ ൢ = ቐ0000ቑ (27)

 
in which 

 𝑎ଵଵ = 𝐴ଵଵ𝛼ଵଶ + 𝐴଺଺𝛼଼𝑎ଵଶ = (𝐴ଵଶ + 𝐴଺଺)𝛼଼ 𝑎ଵଷ = −𝐵ଵଵ𝛼ଵଶ − (𝐵ଵଶ + 2𝐵଺଺)𝛼଼       (28)
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 𝑎ଵସ = −(𝐵ଵଶ௦ + 2𝐵଺଺௦ )𝛼଼ − 𝐵ଵଵ௦ 𝛼ଵଶ𝑎ଶଵ = (𝐴ଵଶ + 𝐴଺଺)𝛼ଵ଴ 𝑎ଶଶ = 𝐴ଶଶ𝛼ସ + 𝐴଺଺𝛼ଵ଴ 𝑎ଶଷ = −𝐵ଶଶ𝛼ସ − (𝐵ଵଶ + 2𝐵଺଺)𝛼ଵ଴ 𝑎ଶସ = −(𝐵ଵଶ௦ + 2𝐵଺଺)𝛼ଵ଴ − 𝐵ଶଶ௦ 𝛼ସ 𝑎ଷଵ = 𝐵ଵଵ𝛼ଵଷ + (𝐵ଵଶ + 2𝐵଺଺)𝛼ଵଵ 𝑎ଷଶ = (𝐵ଵଶ + 2𝐵଺଺)𝛼ଵଵ + 𝐵ଶଶ𝛼ହ 𝑎ଷଷ = −𝐷ଵଵ𝛼ଵଷ − 2(𝐷ଵଶ + 2𝐷଺଺)𝛼ଵଵ − 𝐷ଶଶ𝛼ହ 𝑎ଷସ = −𝐷ଵଵ௦ 𝛼ଵଷ − 2(𝐷ଵଶ௦ + 2𝐷଺଺௦ )𝛼ଵଵ − 𝐷଺଺௦ 𝛼ହ 𝑎ସଵ = 𝐵ଵଵ௦ 𝛼ଵଷ + (𝐵ଵଶ௦ + 2𝐵଺଺௦ )𝛼ଵଵ 𝑎ସଶ = (𝐵ଵଶ௦ + 2𝐵଺଺௦ )𝛼ଵଵ + 𝐵ଶଶ௦ 𝛼ହ 𝑎ସଷ = −𝐷ଵଵ௦ 𝛼ଵଷ − 2(𝐷ଵଶ௦ + 2𝐷଺଺௦ )𝛼ଵଵ − 𝐷ଶଶ௦ 𝛼ହ𝑎ସସ = −𝐻ଵଵ௦ 𝛼ଵଷ − 2(𝐻ଵଶ௦ + 2𝐻଺଺௦ )𝛼ଵଵ − 𝐻ଶଶ௦ 𝛼ହ + 𝐴ସସ௦ 𝛼ଽ + 𝐴ହହ௦ 𝛼ଷ 

(28)

 

and 
 𝑚ଵଵ = −𝐼଴𝛼଺          𝑚ଵଷ = −𝐼ଵ𝛼଺𝑚ଷଶ = −𝐼ଵ𝛼ଷ          𝑚ଵସ = 𝐽ଵ𝛼଺𝑚ଷଷ = −𝐼଴𝛼ଵ + 𝐼ଶ(𝛼ଷ + 𝛼ଽ) 𝑚ଶଶ = −𝐼଴𝛼ଶ          and          𝑚ଷସ = −𝐼଴𝛼ଵ + 𝐽ଶ(𝛼ଷ + 𝛼ଽ) 𝑚ଶଷ = 𝐼ଵ𝛼ଶ             𝑚ସଵ = −𝐽ଵ𝛼ଽ 𝑚ଶସ = 𝐽ଵ𝛼ଶ             𝑚ସଶ = −𝐽ଵ𝛼ଷ𝑚ଷଵ = −𝐼ଵ𝛼ଽ          𝑚ସସ = −𝐼଴𝛼ଵ + 𝐾ଶ(𝛼ଷ + 𝛼ଽ) 

(29a)

 

with 
 (𝛼ଵ, 𝛼ଷ, 𝛼ହ) = න න ൫𝑋௠𝑌௡, 𝑋௠𝑌௡’’, 𝑋௠𝑌௡’’’’൯௔

଴
௕

଴ 𝑋௠𝑌௡𝑑𝑥𝑑𝑦(𝛼ଶ, 𝛼ସ, 𝛼ଵ଴) = න න ൫𝑋௠𝑌௡’ , 𝑋௠𝑌௡’’, 𝑋௠’’ 𝑌௡’൯௔
଴

௕
଴ 𝑋௠𝑌௡’𝑑𝑥𝑑𝑦 (𝛼଺, 𝛼଼, 𝛼ଵଶ) = න න ൫𝑋௠’ 𝑌௡, 𝑋௠’ 𝑌௡’’, 𝑋௠’’’𝑌௡൯௔

଴
௕

଴ 𝑋௠’ 𝑌௡𝑑𝑥𝑑𝑦 (𝛼଻, 𝛼ଽ, 𝛼ଵଵ, 𝛼ଵଷ) = න න ൫𝑋௠’ 𝑌௡’ , 𝑋௠’’ 𝑌௡, 𝑋௠’ 𝑌௡’’, 𝑋௠’’’’𝑌௡൯௔
଴

௕
଴ 𝑋௠𝑌௡𝑑𝑥𝑑𝑦 

(29b)

 
The nontrivial solution is obtained when the determinant of Eq. (27) equals zero. 
 
 

5. Numerical results and discussions 
 
In this section, a series of numerical examples for free and vibration analysis of FG sandwich 

plates with porosity effects under general boundary conditions is presented and discussed. 
Firstly, the validity, reliability and efficiency of the proposed solutions are verified by 

comparing the achieved numerical results with existing results in published literatures. Then, a 
parameter study regarding the effects of porosity parameters, porosity types, aspect ratio of the 
plates and boundary conditions is carried out systematically. The following five layer 
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configurations are used for multilayered P-FGM plates: 
 
The (1-0-1) FGM sandwich plate: The plate is made of two layers of equal thickness without 

a core: ℎଵ = ℎଷ = ℎ2,         ℎଶ = 0 
 
The (1-1-1) FGM sandwich plate: The plate is made of three equal-thickness layers: 
 ℎଵ = ℎଶ = ℎଷ = ℎ3 
 
The (1-2-1) FGM sandwich plate: The core thickness equals the sum of faces thickness: 
 ℎଵ = ℎଷ = ℎ4,         ℎଶ = ℎ2 
 
The (2-1-2) FGM sandwich plate: The upper layer thickness is twice the core layer while it is 

the same as the lower one: 
 ℎଵ = ℎଷ = 2ℎ5 ,         ℎଶ = ℎ5 
 
The (2-2-1) FGM sandwich plate: The core thickness is twice the upper face while it is the 

same as the lower one. 
 ℎଵ = ℎଶ = 2ℎ5 ,         ℎଷ = ℎ5. 
 
The combination of materials consists of aluminum and alumina with the following material 

properties: 
 Ceramic (alumina, AlଶOଷ):     𝐸௖ = 380 𝐺𝑃𝑎,   𝜈௖ = 0.3,   𝜌௖ = 3800 𝑘𝑔/𝑚ଷ. Metal (aluminum, Al):      𝐴𝐸௠ = 70 𝐺𝑃𝑎,     𝜈௠ = 0.3,     𝜌௠ = 2707 𝑘𝑔/𝑚ଷ. 
 

The frequency parameter 𝜔 = ఠ௔మ
ℎ

 is used to express the non-dimensional frequency results of 
the sandwich plate. 

 
5.1 Results verification 
 
As the first example, the natural frequencies of FG sandwich square plate with SSSS boundary 

conditions versus different lay-up schemes and power-law index are tabulated in Table 2 and 
compared with the results of Zenkour (2005) based on sinusoidal shear deformation plate theory 
(SSDPT), trigonometric shear plate theory (TSDPT), Meksi et al. (2017) based on the hyperbolic 
shear deformation plate theory (HSDPT), and Li et al. (2008) based on the three-dimensional (3D) 
solutions. Good agreement is achieved between the present solution and the published ones. 
Besides, as the present theory includes only four unknowns in contrast to the five unknowns in the 
SSDPT and TSDPT make the present formulation more valuable. 
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Table 2 Dimensionless fundamental frequency of simply supported square power-law FGM sandwich plates 
(a = 10h) 

k Theory 
Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

Present 1.8245 1.8245 1.8245 1.8245 1.8245 
3D (Li et al. 2008) 1.8268 1.8268 1.8268 1.8268 1.8268 

SSDPT (Zenkour 2005) 1.8245 1.8245 1.8245 1.8245 1.8245 
TSDPT (Zenkour 2005) 1.8245 1.8245 1.8245 1.8245 1.8245 

HSDPT (Meksi et al. 2017) 1.8257 1.8257 1.8257 1.8257 1.8257 

0.5 

Present 1.4442 1.4841 1.5192 1.5471 1.5745 
3D (Li 2008) 1.4461 1.4861 1.5213 1.5493 1.5767 

SSDPT (Zenkour 2005) 1.4444 1.4842 1.5193 1.5520 1.5745 
TSDPT (Zenkour 2005) 1.4442 1.4841 1.5192 1.5520 1.5727 

HSDPT (Meksi et al. 2017) 1.4448 1.4847 1.5199 1.5481 1.5756 

1 

Present 1.2432 1.3001 1.3533 1.3957 1.4393 
3D (Li 2008) 1.2447 1.3018 1.3552 1.3976 1.4414 

SSDPT (Zenkour 2005) 1.2434 1.3002 1.3534 1.4079 1.4393 
TSDPT (Zenkour 2005) 1.2432 1.3001 1.3533 1.4079 1.4393 

HSDPT (Meksi et al. 2017) 1.2432 1.3001 1.3533 1.4079 1.4393 

5 

Present 0.9460 0.9818 1.0446 1.1089 1.1739 
3D (Li 2008) 0.9448 0.9810 1.0453 1.1098 1.1757 

SSDPT (Zenkour 2005) 0.9463 0.9821 1.0448 1.1474 1.1740 
TSDPT (Zenkour 2005) 0.9460 0.9818 1.0447 1.1473 1.1740 

HSDPT (Meksi et al. 2017) 0.9455 0.9815 1.0446 1.1092 1.1744 

10 

Present 0.9284 0.9429 0.9955 1.0610 1.1231 
3D (Li 2008) 0.9273 0.9408 0.9952 1.0610 1.1247 

SSDPT (Zenkour 2005) 0.9288 0.9433 0.9952 1.0415 1.1346 
TSDPT (Zenkour 2005) 0.9284 0.9430 0.9955 1.1053 1.1231 

HSDPT (Meksi et al. 2017) 0.9279 0.9424 0.9952 1.0611 1.1234 
 
 
5.2 Parametric studies 
 
After verifying the accuracy of the present theory, parameter studies are carried out to 

investigate the influences of power law index k, thickness ratio of layers, i.e., scheme, boundary 
conditions, porosity parameters, and porosity types on natural frequency of FG sandwich plates. 

 
Study 1: 
The effects of power law index k and boundary conditions on the dimensionless fundamental 

frequencies of FG sandwich square plates are examined. The variations of the dimensionless 
fundamental frequencies of FG sandwich square plate versus different lay-up schemes and power-
law index k are presented under different boundary conditions in Table 3 and Fig. 2. It is observed 
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Table 3 Effect of boundary conditions on dimensionless fundamental frequency of square power-law FGM 
sandwich plates (a = 10h) 

Boundary 
conditions 𝑘 

Scheme 
1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 

0 1.8245 1.8245 1.8245 1.8245 1.8245 
0.5 1.4442 1.4841 1.5192 1.5471 1.5745 
1 1.2432 1.3001 13533 1.3957 1.4393 
5 0.9460 0.9818 1.0446 1.1089 1.1739 

10 0.9284 0.9429 0.9955 1.0610 1.1231 

CSCS 

0 2.6702 2.6702 2.6702 2.6702 2.6702 
0.5 2.1279 2.1863 2.2371 2.2768 2.3162 
1 1.8372 1.9212 1.9997 2.0594 2.1227 
5 1.4006 1.4575 1.5504 1.6440 1.7393 

10 1.3712 1.4000 1.4784 1.5739 1.6653 

CCCC 

0 3.2939 3.2939 3.2939 3.2939 3.2939 
0.5 2.6379 2.7100 2.7720 2.8200 2.8681 
1 2.2825 2.3870 2.4820 2.5560 2.6333 
5 1.7427 1.8170 1.9325 2.0474 2.1651 

10 1.7030 1.7456 1.8437 1.9611 2.0744 

FCFC 

0 3.4693 3.4693 3.4693 3.4693 3.4693 
0.5 2.7877 2.8637 2.9285 2.9783 3.0285 
1 2.4159 2.5263 2.6261 2.7032 2.7842 
5 1.8464 1.9278 2.0501 2.1706 2.2946 

10 1.8021 1.8522 1.9565 2.0799 2.1994 
 
 

Table 4 The first five dimensionless frequencies of square plates (a = 10h, k = 2) 
  

Scheme Mode (m, n) SSDPT 
(Zenkour 2005)

TSDPT 
(Zenkour 2005)

HPSDPT 
(Meksi et al. 2017) Present 

1-2-1 

1 (1,1) 1.3024 1.3025 1.3032 1.3024 
2 (1,2) 3.1569 3.1570 3.1602 3.1570 
3 (2,2) 4.9085 4.9088 4.9161 4.9092 
4 (1,3) 6.0262 6.0267 6.0378 6.0278 
5 (2,3) 7.6360 7.6367 7.6556 7.6402 

2-2-1 

1 (1,1) 1.2678 1.2678 1 .2444 1.2440 
2 (1,2) 3.0738 3.0735 3.1094 3.0177 
3 (2,2) 4.7807 4.7800 4.6995 4.6963 
4 (1,3) 5.8702 5.8692 5.7739 5.7692 
5 (2,3) 7.4400 7.4385 7.3239 7.3171 
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that the hardest and softest plates correspond to the FCFC and SSSS ones, respectively (see Fig. 3). 
The effect of the power law index k on fundamental natural frequency of FG sandwich square 
plates is illustrated in Fig. 2. The thickness ratio of the plate is taken equal to 10. It can be seen 
that increasing the power law index k results in reduction of natural frequency (see Fig. 2). This is 
due to the fact that higher power law index k corresponds to lower volume fraction of the ceramic 
phase. In other word, increasing the power law index will reduce the stiffness of the plate due to 
high portion of metal in comparison with the ceramic part, and consequently, leads to a reduction 
of natural frequency. 

 
Study 2: 
To verify for higher-order modes, Table 4 shows the comparison of the first five natural 

frequencies of (1-2-1) and (2-2-1) FG sandwich plates. The thickness ratio a/h and power law 
index k of the plate are taken as 10 and 2, respectively. The obtained results are compared with 
those predicted by SSDT (Zenkour 2005), TSDT (Zenkour 2005) and HSDT (Meksi et al. 2017). A 
good agreement between the results is obtained for all vibration modes which confirm the 
accuracy of the present theory. 

 
Study 3: 
The influence of porosities distribution on the free vibration of P-FGM sandwich plates for 

side-to-thickness a/h = 10 and volume fraction index k = 1 is depicted in Table 5. The porosity 
coefficient is chosen as 𝛼 = 0.1, 0.2. It is clear that the frequency obtained for perfect plates (𝛼 = 0) is greater than that for 𝛼 = 0.1 and the latter is greater than that for 𝛼 = 0.2. In Fig. 4, 
the relationship between side-to-thickness (a/h) and fundamental frequency is presented for 

 
 

Table 5 Effects of porosity on the dimensionless fundamental frequency of simply supported square power-
law FGM sandwich plates (a = 10h, k = 1) 

Sheme Theories Perfect 𝛼 = 0 
Imperfect I Imperfect II Imperfect III Imperfect IV 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.1 𝛼 = 0.2

1-0-1 
Present 1.2432 1.1775 1.0990 1.2327 1.2209 1.2330 1.2221 1.2504 1.2584
TSDPT 1.2432 1.1775 1.0990 1.2327 1.2209 1.2330 1.2221 1.2505 1.2585
SSDPT 1.2434 1.1777 1.0992 1.2329 1.2212 1.2332 1.2223 1.2506 1.2586

1-1-1 
Present 1.3533 1.2953 1.2297 1.3369 1.3191 1.3373 1.3208 1.3475 1.3412
TSDPT 1.3533 1.2953 1.2297 1.3369 1.3191 1.3373 1.3208 1.3475 1.3413
SSDPT 1.3534 1.2954 1.2298 1.3369 1.3192 1.3374 1.3209 1.3476 1.3414

1-2-1 
Present 1.4393 1.3910 1.3379 1.4242 1.4081 1.4246 1.4096 1.4306 1.4213
TSDPT 1.4393 1.3910 1.3379 1.4242 1.4081 1.4246 1.4096 1.4306 1.4213
SSDPT 1.4393 1.3909 1.3379 1.4242 1.4081 1.4246 1.4096 1.4306 1.4213

2-1-2 
Present 1.3001 1.2374 1.1648 1.2847 1.2678 1.2851 1.2694 1.2987 1.2972
TSDPT 1.3001 1.2374 1.1649 1.2847 1.2678 1.2851 1.2694 1.2987 1.2972
SSDPT 1.3002 1.2375 1.1649 1.2849 1.2679 1.2853 1.2696 1.2989 1.2974

2-2-1 
Present 1.3957 1.3484 1.2942 1.3805 1.3641 1.3809 1.3657 1.3897 1.3833
TSDPT 1.4069 1.3638 1.3149 1.3938 1.3796 1.3941 1.3809 1.4023 1.3973
SSDPT 1.4070 1.3638 1.3149 1.3938 1.3797 1.3942 1.3810 1.4023 1.3973
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different porosity models for scheme of layers (1-1-1) with k = 1 and 𝛼 = 0.1. It is seen from Fig. 
4 that the results of frequencies increase with increasing of side-to-thickness ratio a/h. Also, the 
difference among the porosity models increases with increasing of a/h ratio. In higher values of 
a/h, the porosity distributions play important role on the free vibration behavior of sandwich FGM 
porous plates. 

Fig. 5 show the effects of porosity coefficient (𝛼)  on the dimensionless fundamental 
frequencies for scheme of layer (1-1-1) for k = 2 and a/h = 10. As seen from Fig. 5, increasing the 
porosity coefficient (𝛼) yields to increase the difference among of porosity models, significantly. 
The results of porosity model imperfect II and III are very close to each other. 
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Fig. 2 Effect of power law index k on dimensionless fundamental frequency 𝜔 of square plates (a = 10h)
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Fig. 3 Effect of boundary conditions on dimensionless fundamental frequency 𝜔 of FG sandwich 
square plates (k = 1) 
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Fig. 4 Effect of side-to-thickness on dimensionless fundamental frequency 𝜔 of perfect and porous 
FG sandwich square plate (1-1-1) (k = 1)
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Fig. 5 Effect of porosity coefficient 𝛼 on the dimensionless fundamental frequency 𝜔 of FG 
sandwich square plate (1-1-1)

 
 

6. Conclusions 
 
A simple refined shear deformation theory which eliminates the use of a shear correction factor 

was presented for FG sandwich plates composed of FG porous face sheets and an isotropic 
homogeneous core. Four models of porosity distribution are proposed. Governing equations and 
boundary conditions are derived from Hamilton’s principle. Analytical solutions were obtained for 
free vibration analysis of square sandwich plates with FG porous layers under various boundary 
conditions. Several parametrical studies were performed for examining the effects of the porosity 

309



 
 
 
 
 
 

Mohamed Saad, Lazreg Hadji and Abdelouahed Tounsi 

volume fraction, type of porosity distribution model, side to thickness ratio, lay-up scheme, and 
boundary conditions on the free vibration of the FG sandwich plates. 

Briefly, the following results were obtained: 
 

- An excellent agreement can be seen between the current theory and previous theories. 
- The values of the dimensionless fundamental frequency of FG sandwich plate decrease with 

the increase of the power-law index. 
- The highest values of dimensionless fundamental frequencies of FG sandwich plates occur 

in FCFC boundary conditions while the lowest ones occur in SSSS boundary conditions. 
- The side-to-thickness ration a/h has a significant influence on the free vibration frequencies, 

where the increasing of this geometrical parameter increases the non-dimensional 
frequencies. 

- The non-dimensional frequencies are maximum for non-porous FG sandwich plates and 
decrease when the porosity coefficient increases regardless the porosity type. 

 

Finally, it was concluded that the types of adopted porosity distribution model, porosity volume 
fraction, side to thickness ratio, lay-up scheme, and boundary conditions have significant effects 
on the free vibration of the FG sandwich plates. 
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