
 
 
 
 
 
 
Advances in Environmental Research, Vol. 1, No. 4 (2012) 257-276                              257 

 
 
 
 

Quantitative structure activity relationship (QSAR)  
between chlorinated alkene ELUMO and their chlorine 

 
Walter Z. Tang and Fang Wang 

 
Department of Civil and Environmental Engineering, Florida International University,  

10555 West Flagler Street, Miami, FL 33174, USA 
 

(Received June 23, 2012, Revised November 30, 2012, Accepted December 1, 2012) 
 

Abstract.  QSAR models for chlorinated alkenes were developed between ELUMO and their chlorine and 
carbon content. The aim is to provide valid QSAR model which is statistically validated for ELUMO 
prediction. Different molecular descriptors, NCl, NC and EHOMO have been used to take into account relevant 
information provided by molecular features and physicochemical properties. The best model were selected 
using Partial Least Square (PLS) and Multiple Linear Regression (MLR) led to models with satisfactory 
predictive ability for a data set of 15 chlorinated alkene compounds. 
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1. Introduction 
 

The chlorine substitution in aliphatic compounds results, by its electron attracting effect, in 
destabilization in alkanes and stabilization in alkenes. Thus, in alkenes, the stability of the 
molecule increases with the number of chlorine substitutions. Quantitative Structure Activity 
Relationship (QSAR) has been used intensively to screen and predict fate and toxicity of 
chemicals related to the environment. The essential assumption for QSAR studies is that biological, 
chemical and physical properties of compounds heavily dependent on their structural. Among 
various properties, energy of lowest unoccupied molecular orbital’s (ELUMO) is of critical 
importance for describing the ability to gain electron from other sources. 

The objective of this study is to describe and discuss new externally predictive Multiple Linear 
Regression (MLR) QSAR models for the prediction of ELUMO of chlorinated alkenes. Models have 
been developed including NCl as a molecular descriptor together with other theoretical descriptors, 
such as NC and EHOMO, while the other is to test the robustness of obtained model through some 
statistical methods. Furthermore, decision support has to take into account the uncertainty of the 
models. Since some of relevant study on QSAR often neglected the uncertainty analysis. A QSAR 
model without uncertainty test would be confined in practical prediction should not be used to 
interpret the toxicity behavior. 

According to the density functional theory, chemical potential (µ), chemical hardness (η) are 
defined as 
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where E is the total energy of the system, N is the number of electrons in the system and υ(r) is the 
external potential. µ is the negative of the electronegativity (χ) as defined by Iczkowski and 
Margrave (1961). E versus N plots is not straight lines but is generally convex upward. Their 
curvatures define another property of substantial importance, the hardness (η). 
The vertical ionization potential (I) of a system is the change of energy when an electron is 
removed from the system and variation of the energy when an electron is added to the system, 
known as electron affinity (A). In both electron withdrawing and electron addition, the external 
potential has to be kept fixed. Hence, using finite difference approximation, Eqs. (1) and (2) 
become 
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However, to obtain the IP and EA and hence µ and η, one needs three energy values (EN, EN+1 
and EN-1). To save computational time, chemical potential and chemical hardness have been 
calculated by using Koopmans’ theorem as 

2
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where ELUMO is the lowest unoccupied molecular orbital’s energy and EHOMO is the highest 
occupied molecular orbital’s energy. 

 
 

2. Dataset and methods 
 
2.1 Data set 
 
Data were collected for fifteen derivations of chlorinated alkene. Fig. 1 shows the structure of 

alkene compounds. QSAR model can be modeled due to their structural similarity which expected 
fall into similar mode of toxic action. From this set, two subsets were constructed by taking at 
random 12 compounds as the training sample and the remaining 3 compounds as the prediction 
sample. This proportion amounts for 80% of the compounds in the training set (Table 1). EHOMO 
and ELUMO values were calculated using SPARTAN Spartan Pro (Wavefunction Inc.). Ab initio 
calculations based on the orbital approximation were used and referred as Hartree-Fock method. 
Hartree-Fock molecular orbital models are generally satisfactory for a wide variety of thermo- 
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Fig. 1 Overview of structures of chlorinated alkenes used in this study 
 

 

chemical and kinetic comparisons. This method provides better results for the larger number of 
atomic orbitals employed. Hartree-Fock models are particularly attractive for the structure 
determinations of medium-size organic molecules such as chlorinated alkenes studied in this paper. 
These chlorinated alkene congeners differ in the number of chlorine and carbon on the carbon 
chain. Regression models are developed for the alkene congeners with calculated ELUMO, the 
chemical potential (μ) and the chemical hardness (η), number of chlorine (NCl), number of carbon 
(NC) and EHOMO were taken as independent variables. 

Those descriptor pairs with high collinear relationships (r ≥ 0.9) were eliminated. Multiple 
 
 

Table 1 Molecular property of 15 alkene congeners 

No. Compounds NCl NC EHOMO ELUMO μ η 

1 Tetrachloroethylene 4 2 -0.3634 0.0975 -0.133 0.230451 

2 Cis-1,2-dichloroethylene 2 2 -0.3633 0.1358 -0.11374 0.249547 

3 
1,1,2,3,3-

Pentachloropropene 
5 3 -0.3711 0.0771 -0.14702 0.22412 

4 1,2-dichloroethylene 2 2 -0.3625 0.1312 -0.11564 0.246871 

5 2-chloropropene 1 3 -0.3568 0.1616 -0.09761 0.259201 

6 1,1-dichloropropene 2 3 -0.3523 0.1429 -0.10469 0.247636 

7 Hexachlorocyclohexene 6 6 -0.3800 0.0768 -0.15165 0.228404 

8 Chloroethylene 1 2 -0.3687 0.1562 -0.10624 0.262442 

9 1,1-dichloroethylene 2 2 -0.3705 0.1337 -0.11841 0.2521 

10 3,4-dichloro-1-butene 2 4 -0.3864 0.1462 -0.12009 0.266343 

11 Hexachlorocyclopentadiene 6 5 -0.3388 0.0317 -0.15356 0.185223 

12 Trichloroethylene 3 2 -0.3636 0.1142 -0.12469 0.238862 

13 Trans-1,2-dichloroethylene 2 3 -0.3625 0.1313 -0.11562 0.246875 

14 1,3-dichloropropene 2 3 -0.3691 0.1318 -0.11862 0.250462 

15 Tetrachlorocyclopropene 4 3 -0.3780 0.1072 -0.13541 0.242608 
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linear regression analysis and variable selection were performed by the SAS software using the 
Partial Least Square regression (PLS) and Principle Component Regression (PCR). The acceptable 
linear models were subjected to a Cross-Validation (CV) analysis by a Leave-One-Out (LOO) and 
K-fold procedures to ensure that the models were not overfitted or underfitted. Many authors 
considered that a high r2

cv (for example, r2
cv > 0.5) an indicator that the model is highly predictive 

(Golbraikh and Tropsha 2002). To define the relative importance of the QSAR models, we have 
also performed several other tests beyond the r2

cv. These include the residual standard deviation 
and leverage, these two distance measures were then used to decide if an object was within the 
domain of application (Öberg 2005). 

 
2.2 Cross-validation technique 
 
Cross-validation is a popular technique used to test the predictive ability of statistical models. 

Assuming that a training data set consisting of n available compounds, for each data set, an input-
output model is developed based on the utilized modeling technique. The model is evaluated by 
measuring its accuracy in predicting the responses of the remaining data. In particular, the leave-
One-Out (LOO) and the K-fold procedures were utilized in this study. Leave-One-Out Cross-
Validation (LOO-CV) removes a single observation from the training data at a time and derives the 
prediction rule based on the remaining n-1 objects. This is done in turn till each object has been 
removed once, the maximum number of models produced by the LOO procedure is equal to the 
number of available examples n. While the K-fold version of cross-validation randomly allocates 
the training set into k (≤ n) groups, predicting in turn the observations in each group from the k-1 
remaining groups. If k = n, the K-fold version and LOO-CV are identical. R2

cv (cross-validation 
correlation coefficient) is the standard index to measure the accuracy of a modeling method using 
cross-validation technique, an additional measure to define the accuracy of the proposed QSARs is 
the and RMSCV (Root Mean Square of Errors of cross-validation) that summarizes the overall error 
of the model. The formulae used to calculate R2

cv and RMSCV are presented below 
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where N is the number of training patterns, and   ,     and    are the measured, predicted, and 
tested values of the i-th compound, respectively. The mean of resulting R2

cv and RMSCV were used 
to assess the generalization ability of the underlying models. 

 
2.3 Uncertainty estimation 
 
Monte Carlo simulation has many advantages over conventional methods in the estimation of 

uncertainty, especially that of complex measurement system’ outputs. However, this method is 
regarded as a black box due to none detailed exposition of the method and choosing the inputs 
distributions is the hardest part. This paper examines and analyses the conventional uncertainty 
estimation method for linear systems. The conventional uncertainty estimation demands the 
estimation of the separate effect of each input quantity on the final result through a sensitivity  

cviy , tryiy
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Fig. 2 Outlier detection of Model 1 for alkene 

 
 

analysis. When input variables in a complex measurement system are closely correlated, 
sensitivity and uncertainty analysis become extremely difficult and even more unreliable. 

The functional expression between the measure and Y and the input quantities Xi in a general 
linear model is given by: y = f (x1, x2, x3…, xN). The function f includes not only corrections for 
systematic effects but also accounts for sources of variability. The standard uncertainty in y can be 
obtained by Taylor method 
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This equation gives the uncertainty as a standard deviation irrespective of whether or not the 
measurement of xi is independent and of the probability distribution. By the Guide to the 
Expression of Uncertainty in Measurement (GUM), the standard deviation σ(xi) is referred to as 
the standard uncertainties associated with the input estimates xi. 

The partial derivatives         are called sensitivity coefficients, which give the effects of
each input quantity on the output. For a level of confidence of approximately 95% for normal
distributed measurement, y is between y ± 2σ(y). 

 
 
Table 2 ANOVA for a linear model describing the contribution of variable to ELUMO 

Source DF SS MS F Pr > F 

Model 1 0.00807 0.00807 169.19684 < 0.0001 

Error 8 0.00038 0.00005   

Corrected total 9 0.00845    

Factors      

Intercept 1 0.00199 0.00199 90.6411 < 0.0001 

NCl 1 0.00608 0.00608 259.1608 < 0.0001 

(  2ixf  ) 
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Table 3 Goodness of fit statistics 

Observations 10 MSE 0.00002 
Sum of weights 10 RMSE 0.00485 

R² 0.97006 MAPE 2.69905 
Adjusted R² 0.96631 Press RMSE 0.00557 

 

 
    Fig. 3(a) NCl as descriptors of ELUMO for the alkene

   
Fig. 3(b) Relationship between observed and predicted alkenes data. Points falling off the dominant straight

line structure are outliers. The error bars represent 95% confidence interval. The linear regression
model is as follows 

 
 

3. Results and discussion 
 

The applicability of various statistical and machine learning approaches for creating QSAR 
models was explored including MLR, PLS and PCR. The data were fit by either multiple linear 
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regression (MLR) or partial least squares regression (PLS). For a theoretical background on MLR 
and PLS, see References (Martens and Naes 1989). 
 

3.1 Evaluation of molecular descriptors 
 

We will first examine a 1+1 predictor fit: intercept and 1 predictor. In Model 1, the single 
response variable is ELUMO, and potential predictor variable is NCl. ELUMO=a1* NCl +k1. 

 
3.1.1 Outlier detection 
The Williams plot, or leverage plot, is a plot of standardized residuals versus leverages (hat 

diagonals). In this plot the horizontal and vertical straight lines indicate the normal limits of outlier 
and influential chemicals values, respectively. Prediction for compounds with high leverage values 
must be considered unreliable. According to extrapolation method, we consider as reliable only the 
predictions of the compounds, whose leverages lie within the domain of applicability. Fig. 2 shows 
that the majority of compounds of the training set are inside of this square area. However, two 
compounds (7 and 11) have leverages greater than h*(h*=0.5), and these two compounds response 
outliers can be identified in the training set. By removing these two outliers, R2 value is improved 
to 0.9701 from 0.9281. Those two points will be discarded in the following analysis. 
 

3.1.2 Linear regression 
The final models were then developed on a training set of 12 compounds and validated on 3 

external compounds. With linear regression method, a regression equation consisting of coeffi- 
cients is produced. The linear regression results from an ANOVA for the alkene are summarized in 
Table 2. 

For chlorinated alkene compounds, Fig. 3(a) demonstrated that the descriptor number of 
chlorine is negative interrelated to the ELUMO, ELUMO decrease as the number of chlorines increase. 
As ELUMO decreases, the ability of a compound to undergo reduction increases; therefore, an 
increase in chlorines increases the reactivity of the molecule. ELUMO represents 97.01% of the 
variance in the linear regression equation, the slope of the QSAR model is -0.02056, and the 
intercept is 0.1789. The correlation indicates that as the number of chlorine increase from 1 to 6 in 
an alkene compound, that ELUMO will decrease 0.1299. The probability of the alkene getting a 
correlation of -0.9849 for a sample size of 12 is less than 0.01%. Fig. 3(b) shows a plot of 
observed ELUMO against fitted values for Model 1, the correlation of the scatter is -0.9849. The 
observed over fitted plot should be routinely reported for any (QSAR) regression. The great 
advantage is that it can always be made, no matter how many predictor variables are included. 

0000.0 ,00485.0 ,197.169 ,9701.0 ,10

1790.002056.0
2 



PRMSEFRN

NE clLUMO
             (9) 

We will examine three two-predictor models. The first 1+2 predictor model that combines NCl, 
and NC with ELUMO is: ELUMO = a2*NCl+b2*NC+k2. For Model 2, leverage value can be calculated for 
both training compounds and new compounds. Fig. 4(a) shows that the majority of compounds of 
the training set are inside this area. It is important to note that chemical: hexacholorocyclopenta- 
diene (compound 11) can be identified as the outlier with the standardized residual value greater 
than the cutoff value in the training set. 

After removing this outlier and refitting the model, the regression coefficients are plotted in Fig. 
4(b) shows that number of chlorine contributes negatively to ELUMO, and number of carbon 
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Fig. 4(a) Outlier detection of Model 2 for alkenes 

 
Fig. 4(b) Regression coefficients of scaled and centered variables for Model 2 

 
 

contributes positively to ELUMO. Eq. (5) indicates that introducing NC into QSAR model, there is 
better correlation coefficient that using the one-predictor. The relationship between ELUMO and two 
descriptors (NCl and NC) is shown as follows 

0000.0,00188.0 ,869.102 ,9956.0 ,11

1641.0N00592.0N0205.0

2

CCl





PRMSEFRN

ELUMO
          (10) 

The next two-predictor models take µ and η into as response vector: µ = a3*NCl+ b3*NC+k3 and 
η = a4*NCl+ b4*NC+k4. 
The Williams plot (Fig. 5(a) and 6(a)) verified the presence of outlier (with standardized residuals 
greater than 2 standard deviation units), and this responding outlier can be identified in the training 
set of Model 3 and Model 4: 1,1-dichloropropene (compound 6) and hexachlorocyclo-pentadiene 
(compound 11), respectively. 

After removing the outlier and refitting of the model, the regression coefficients are plotted in 
Figs. 5(b) and 6(b) show that number of chlorine has the negative effect to ELUMO, and number of 
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Fig. 5(a) Outlier detection of Model 3 for alkenes 

 
Fig. 5(b) Regression coefficients of scaled and centered variables for Model 3 

 
 

carbon has the positive effect to ELUMO. PLS model for the relationship between µ, η and two 
descriptors (NCl and NC) is shown as follows 

0000.0 ,0043.0 ,661.50 ,9268.0 ,11

0961.0*00053.0*0101.0
2 



PRMSEFRN

NN CCl
              (11) 

0000.0 ,0043.0 ,661.50 ,9268.0 ,11

2592.0*00494.0*00995.0
2 


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NN CCl
              (12) 

 
3.2 Development of QSAR model 
 

Activities of molecules in the biological systems are highly influenced by their inherent electronic 
properties. Hence, highest occupied molecular orbital (EHUMO) energy along with NCl 
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Fig. 6(a) Outlier detection of Model 4 for alkenes 

 
Fig. 6(b) Regression coefficients of scaled and centered variables for Model 4 

 

 
Fig. 7 Outlier detection of Model 5 for alkene 
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and NC were selected as molecular descriptor to predict ELUMO. Using all three descriptors in the 
QSAR model, for the combined set of 12 alkane congeners, maximum values for the coefficient of 
correlation and lowest root mean square error were obtained. By 3 predictors, ELUMO = 
a5*NCl+b5*NC +c5*EHOMO+ k5. Fig. 7 shows that all of compounds of the training set are inside this 
area, and all compound are within the cut-off value limit, which implies that they are not be 
consider outliers but influential chemicals. The presence of outliers and chemicals very structurally 
influential in determining model parameters was verified by the Williams plot. 

With straightforward MLR, a regression equation consisting of coefficients is produced. These 
coefficients are intuitively simple and are summarized in Tables 4-6, Table 4 presents the 
correlation matrix, where it is clear that the three selected descriptors are not highly correlated, 
while the pair of descriptors, (NCl and NC) is correlated each with each other. In order to examine 
the importance of each descriptor and answer the question which of the independent variables has 
a great effect on the dependent variable in the multiple regression analysis, the standardized 
regression coefficients were also calculated. Results from an ANOVA for the alkene are 
summarized in Table 5. The contribution from these three factors to ELUMO can thus be described 
by a simple linear model, accounting for 97.09% of the variance. 

 
 

Table 4 Correlation matrix for the three selected descriptors 

 EHOMO NCl NC 

EHOMO 1.000   

NCl 0.096 1.000  

NC -0.066 0.671 1.000 

 
Table 5 Analysis of variance 

Source DF SS MS F Pr > F 

Model 3 0.0163 0.0054 88.9681 < 0.0001 

Error 8 0.0005 0.0001   

Corrected total 11 0.0168    

Factors      

Intercept 1 0.0005 0.0005 11.573 0.643 

EHOMO 1 0.00137 0.00137 22.408 0.001 

NCl 1 0.01483 0.01483 243.031 < 0.0001 

NC 1 0.00009 0.00009 1.465 0.261 

 
Table 6 Goodness of fit statistics 

Observations 12 MSE 0.00006 

Sum of weights 12 RMSE 0.00781 

DF 8 MAPE 6.45885 

R² 0.97090 Press RMSE 0.01942 

Adjusted R² 0.95999   
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Fig. 8(a) Relationship between observed and predicted endpoint data 

 
Fig. 8(b) Regression coefficients of scaled and centered variables. The full regression equation is Model 8. 

The error bars represent 95% confidence interval 
 
 

Fig. 8(a) starts with repeating observed versus fitted and residuals over fitted for the full model. 
The regression coefficients are plotted in Fig. 8(b). Since molecular descriptors do not have equal 
variance, their relative importance in the model is measured better by standardized regression 
coefficients. The errors of the regression coefficients have also been reported for each equation. 

The other interpretation is very interesting compared to other MLR alternatives; PLS regression 
is possible to calculate the applicability domain of a QSAR model, that is, the range within which 
it “tolerates” a new molecule. This specification can be made regarding both the X- and the Y- data 
as long as not all initial variance is used in the model. 

Fig. 9(a) indicates that all X-variables such as EHOMO, number of carbons (NCl), and number of 
chlorine (NC) load strongly in the model and closely related. Overall, NCl and EHOMO are the most 
important X-variables. The data analysis resulted in a QSAR with R2X = 0.545, R2Y = 0.846, and 
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Fig. 9(a) PLS loading plot of the data set showing 
the relationships between the three X- and the one Y-
variable at the same time

 
Fig. 9(b) Distribution of the 12 compounds in the 
latent variable space, defined by the scores of the 
first two latent variables

Fig. 9(c) PLS coefficients plot for Model 5. These show that number of chlorine is more important than
EHOMO 

 

 
 
Q2Y = 0.700, which are excellent performance statistics considering that four responses are handled 
simultaneously. 

Fig. 9(b) shows the model scores. There are no outliers in the score space because all 
compounds lie inside the elliptic 95% tolerance volume depicted in the plot. We also plot 
coefficients using PLS to simplify comparison with MLR (Fig. 9(c)) since the sizes and signs of 
the coefficients (βPLS) predict the relative importance of the variables and are basically needed for 
revealing and interpreting of new samples. Altogether, hexachloro-cyclohexene (Figs. 9(a) and (b), 
point 7) is the highest toxic compound because it contains the high number of chlorine and carbon. 

Principal Component Regression (PCR) is a reduced regression that uses derived inputs, based 
on principal components, of less than or equal dimension than the original inputs. Fig. 10(a) shows 
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the combined plot of scores and loadings in the space defined by the first two principle 
components (PC1: NCl, PC2: EHOMO) of the studied chemicals which are represented by the 
response variable (ELUMO). The explained variance of these two components is 89.67% of the total 
information (PC1 explained variance = 55.72%). The loading plot (the lines in the figure) reveals 
the relevance of each variable in each of the first two principle components. All the variables are 
oriented in the same direction along the most informative principal component PC1, which is 
evidence of their satisfactory correlation and is consistent with the results of previous pair-wise 
correlation analyses. It shows that compound 11 is significant positive relative to NCl, and 
compound 7 was strongly correlated with NC. Fig. 10(b) is the regression coefficient plot. 

Table 7 compares the quality of MLR, PLS and PCR model as represented by r2 and RMSE. It 
shows that the number of variables is same for PLS and MLR, but the former model shows a lower 
RMSE (0.00638 verses 0.00781) compared to the latter one. Similar improvements can be seen for 
the Models 1-4. 

Regression models for the training set of 12 chlorinated alkene congeners with calculated 
ELUMO values taken as dependent variables and all possible combinations of the three descriptors, 
such as number of chlorine (NCl), number of carbon (NC), and the highest occupied molecular 
orbital energy (ELUMO) as independent variables are presented in Table 9. Table 9 summarizes the 
PLS models for the endpoint ELUMO, µ and η that have the lowest RMSE values. According to the 
rule that to count as a good model when r2 should be greater than 0.8, all models in Table 9 are 
significant and that most models can be considered good models. 

 
 

 
Fig. 10(a) Bioplot of F1 (55.72%) vs. F2 (33.95%) Fig. 10(b) Coefficient plot for Model 5 

 
Table 7 Comparison for chlorinated alkenes Model 4 using three different calibration methods 

Model calibration 
methods 

Model 4 R2 RMSE 

MLR ELUMO = -0.02187 NCl+0.002896 NC-0.5701 ELUMO-0.03399 0.9709 0.00781 

PLS ELUMO = -0.02187 NCl+0.002896 NC-0.5701 EHOMO-0.03399 0.9709 0.00638 

PCR ELUMO = -0.02187 NC+0.002896 NC+0.5701 EHOMO-0.03399 0.9709 0.00781 
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Table 8 Experimental and calculated values of ELUMO for the model training (1-12) and test (13-15) set 

No. Compounds 
Descriptors ELUMO

a
  values 

EHOMO NCl NC  Calculated Predicted Residualb 

1 2-chlorobutane 0.09745 4 2  0.09745 0.09154 0.00591 

2 1-chlorohexane 0.13581 2 2  0.13581 0.13518 0.00063 

3 2-chloro-2-methyl-butane 0.07710 5 3  0.07710 0.07696 0.00014 

4 1-chloroheptane 0.13123 2 2  0.13123 0.13474 -0.00350 

5 Chloromethane 0.16159 1 3  0.16159 0.15625 0.00534 

6 2-chloropropane 0.14295 2 3  0.14295 0.13183 0.01111 

7 1-chloropentane 0.07676 6 6  0.07676 0.06886 0.00790 

8 1-chlorooctane 0.15621 1 2  0.15621 0.16012 -0.00392 

9 1-chlorodecane 0.13369 2 2  0.13369 0.13930 -0.00560 

10 2-chlorohexane 0.14625 2 4  0.14625 0.15417 -0.00792 

11 3-chlorohexane 0.03166 6 5  0.03166 0.04244 -0.01078 

12 Chloroethane 0.11417 3 2  0.11417 0.11347 0.00070 

13 1,2-dichloropropane 0.13125 2 3  0.13125 0.13763 -0.00638 

14 1,4-dichlorobutane 0.13184 2 3  0.13184 0.14139 -0.00955 

15 1,5-dichloropentane 0.10720 4 3  0.10720 0.10275 0.00445 
a With NCl, NC, EHOMO as descriptors 
b The residual is the difference between calculated and predicted ELUMO values 
 
Table 9 Summary of the models for chlorinated alkenes 

Model  
No. 

Regression equations N* R2 RMSE 

1 ELUMO = -0.02056 NCl+0.1790 10 0.9701 0.00485

2 ELUMO = -0.0205 NCl+0.00592 NC+0.1641 11 0.99559 0.00188

3 µ = -0.0101*NCl+ 0.00053*NC-0.0961 11 0.96772 0.00373

4 η = -0.00995*NCl+ 0.00494*NC+0.2592 11 0.92682 0.00427

5 ELUMO = -0.02187 NCl+0.002896 NC-0.5701 EHOMO-0.03399 12 0.9709 0.00638

*None outlier are included 
 
 

Possible combinations of parameters were considered among other equations using various 
statistical criteria. The results showed that there was one best equation using NCl, and NC as 
molecular descriptor to predict ELUMO. The negative regression coefficient of this descriptor is due 
to its influence in decreasing ELUMO. That the dimensional descriptor (NCl) in the QSAR model was 
negative in sign, as was expected, while the descriptor, NC, was positive. This demonstrates that an 
increase in chemical size leads to a decrease in energy of ELUMO; on the contrary the presence of 
halogen groups tends to increase ELUMO. 

 
3.3 QSAR model validation 
 
The robustness of the models and their internal predictive ability was evaluated by cross- 
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Table 10 Results of LOO and K-fold cross-validation test for alkene 

Model 
No. 

d = 1 (LOO-CV) k = 2 

RMSCV r2
cv RMSCV r2

cv 

1 0.004848 0.96874 0.005120 0.95495 

2 0.002210 0.99557 0.002170 0.99335 

3 0.003679 0.96876 0.002105 0.99130 

4 0.004254 0.92809 0.003000 0.96350 

5 0.007358 0.97469 0.007250 0.98795 
 

Model 
No. 

k = 3 k = 5 k = 10 

RMSCV r2
cv RMSCV r2

cv RMSCV r2
cv 

1 0.005127 0.96410 0.005134 0.96350 0.005091 0.96356 

2 0.001963 0.99680 0.002072 0.99628 0.002092 0.99605 

3 0.003813 0.97063 0.004146 0.96518 0.003891 0.96770 

4 0.003993 0.93550 0.004364 0.92764 0.004410 0.92384 

5 0.005430 0.98743 0.006960 0.97832 0.008022 0.97230 

 
 

validation. A cross-validation method was applied to the original data set for Models 1-5. In 
particular, the LOO-CV and two-fold CVs with k = 3, 5, and 10 were utilized for the evaluation of 
the QSAR models and compared the statistics results with PLS method, because r2 and r2

cv values 
are a good test for evenly distributed data, but they are not always reliable for unevenly distributed 
data sets; RMSE provides a more reliable indication of the robustness of the model, independently 
of the applied splitting (Gramatica and Papa 2005). The reported fitting and validation parameters 
have, as expected, very high values, indicating that the model has very good descriptive and 
predictive performance. The quality of r2

cv and the small RMSE values confirm the high 
predictivity of these models. A group of 2, 3, 5, and 10 compounds was randomly selected from 
the training set. The results of LOO, 2-fold, 3-fold, 5-fold, and 10-fold for Models 1-5 are reported 
in Table 10. The consistency in the statistics of r2

cv (r
2

cv > 0.5) and RMSCV reveals the stability and 
robustness for different model. 

Cross validation did confirm the Model 2 as the best QSAR model to predict ELUMO of any 
compound in the class of Chlorinated alkenes. The cross-validation r2

cv values had a maximum at 
three-term equation. Cross validation results using NCl and NC as the variable were much better 
those including three parameters NCl, EHOMO, and NC. This two-parameter equation was very stable, 
leading to cross-validated values in the range between 0.9935-0.9968, whereas the three-parameter 
equations gave cross-validated value between 0.9723-0.9879. This showed that two-parameter 
equation indicated higher predictive ability, as shown by cross validation. It was again verified that 
the best single molecular descriptor is NCl (rcv

2 = 95.5%-96.87%). It is important to note that the 2-
variables model (Model 2) gives satisfying fitting and prediction performances (r2 = 0.9956, r2

LOO = 
0.99557, r2

5-fold = 0.9963) are higher than in the 3-descriptors model, its RMSE values (RMSE(training, 

set) = 0.00188, RMSE(cross-val, set) = 0.002072) are all lower than in the 3-descriptors model. On the 
contrary the 3-variables model (r2 = 0.9709, r2

LOO = 0.9747, r2
5-fold = 0.9276) did not significantly 

increase the predictive performance of the nested model, as is evident on comparing the internal 
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and external r2
cv values. The RMSE value (RMSE(training, set) = 0.00638, RMSE(cross-val, set) = 0.00696) 

also show that this last model had a worse internal performance and an external predictivity lower 
than in Model 2. 

Table 10 shows that for Model 2 RMSCV based on the LOO-CV is greater than the true RMSE 
by about 17.55% ((0.00221-0.00638)/0.00638), and RMSCV based on K-fold are greater than true 
RMSE in the range 4.43%-15.43%, the difference between RMSCV and true RMSE reaches its 
maximum at d = 1. For Models 1, 3 and 4, in the case d = 1, CV estimates the r2

cv and RMSCV 
values with satisfactory accuracy. In addition, the RMSCV based on the selected model is very close 
to the true RMS error in these cases. The difference between them is about 0.0412%-1.37%. In 
practice, true RMS error usually means that RMSE estimated based on the model since the true 
RMS error is not known. 

Compared with K-fold cross-validation with k = 2 yields unsatisfactory results, but for all values 
of k > 2 good models are obtained. However, when k = 10, the results may not be very reliable due 

 
 

 
Fig. 11 Relationship between NCl and uncertainty in ELUMO 

 
 

 
Fig. 12 Relationship between number of carbon and uncertainty in ELUMO 

273



 
 
 
 
 
 

Walter Z. Tang and Fang Wang 

to very few observations per predictor. Consequently, fivefold instead of tenfold CV may be used 
to reduce the computational cost in predicting experimental data of modeling. 

For chlorinated alkenes, K-fold cross-validation performs better than LOO-CV and the full 
model with respect to model size, model complexity and, most importantly, predictive power. K-
fold is comparatively insensitive to the parameter k, since all runs with k > 2 resulted in good final 
models. 

 
3.4 Uncertainty analysis 
 
From the regression equation discussed in the section 3.2, coefficients of parameters and the 

standard deviations are estimated in Table 9 using bootstrap analysis. The bootstrapping is 
repeated 5000 times for each validated model and gives the following parameter estimates and 
their standard errors (Table 11). 

The expression for the uncertainty in ELUMO determined from the regression Model 5 at a 
measured or specified value of X is found by Eq. (13). Here we don’t considered the correlated 
uncertainties between any two of these variables, and the uncertainty of number of carbon are zero, 
then all terms involving correlated uncertainties in Eq. (16) will be simplified as following Eq. 
(14). 

 
 

Table 11 Summary of parameter coefficients and the standard deviations for Models 1-5 

Model 
No. 

a b c k σa σb σc σk 

1 -0.02069 - - 0.1792 0.00125 - - 0.00339

2 -0.02048 0.005972 - 0.16384 0.00066 0.00098 - 0.00249

3 -0.01011 0.000525 - -0.09602 0.00117 0.00167 - 0.00304

4 -0.00982 0.004708 - 0.2593 0.00113 0.00229 - 0.00515

5 -0.02187 0.00290 -0.5701 -0.03399 0.00178 0.00239 0.19364 0.07062

 

 
   Fig. 13 Relationship between EHOMO and uncertainty in ELUMO 
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     (13) 

where,   ClLUMO NaE  ,   aNE ClLUMO  ,   CLUMO NbE  ,   bNE CLUMO  , 
  HOMOLUMO EcE  ,     cEE HOMOLUMO  ,   1 kELUMO . 

2222222222
kEcHOMObCaClE UUcUEUNUNU

HOMOLUMO
               (14) 

Fig. 11 shows the change of uncertainty in ELUMO with number of chlorine. It is clearly show 
that number of chlorine has slightly effect on the uncertainty of ELUMO for Models 1-5. For 
example, the uncertainty of ELUMO will increase from 0.5152 to 1.7028 when NCl increase from 1 to 
6. Fig. 12 shows the relationship between uncertainty in ELUMO and number of carbon. The 
uncertainty in ELUMO for Models 2-4 does not change significantly from 0.6338 to 2.9347 with the 
number of carbon when the NC is increase from 2 to 6. Similarly, Fig. 13 indicated the impact of 
EHOMO on uncertainty of ELUMO follows the same pattern as showed in Figs. 11 and 12. EHOMO has 
obvious effect on the relative error on EHOMO, and the uncertainty of ELUMO for Models 2-4 will be 
increased from 1.0304 to 1.4077 when randomly distributed EHOMO values decrease from -0.33 to -
0.39. In Figs. 12-13, three variables effect to the uncertainty of ELUMO for each model are following: 
Model 5 > Model 4 > Model 3 > Model 2. 
 
 
4. Conclusions 
 

The QSAR models are homogenous and stable from Models 1-5, since the cross-validated r2
cv 

was not affected very much when larger groups of molecules were left out each time. Each cross-
validation experiment was repeated and, accordingly, reported as the average r2

cv. In QSAR 
modeling, decision-making has to take into account the models’ uncertainty. Even if the 2-
variables model, nested on the previous one, gives satisfying fitting and prediction performances 
(r2 = 0.9956, r2

LOO = 0.9956, r2
5-fold = 0.9963), its RMSE values (RMSE(training set) = 0.00188, 

RMSE(cross-val set) = 0.00207) are all higher than in the 3-descriptors Model 2. On the contrary the 3-
variables model, obtained by replacing EHOMO with ELUMO (r2 = 0.9709, r2

LOO = 0.9747, r2
5-fold = 

0.9783), did not significantly increase the predictive performance of the nested model, as is 
evident on comparing the internal and external r2

cv values. The RMSE values (RMSE(training set) = 
0.00638, RMSE(cross-val set) = 0.00696) also show that this last model has a worse internal 
performance and an external predictivity lower than in Model 2. 
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