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Abstract.  Phase-type distributions are the distributions of the time to absorption in finite and absorbing Markov 
chains. They generalize, while at the same time, retain the tractability of the exponential distributions and their family. 
They are widely used as stochastic models from queuing theory, reliability, dependability, and forecasting, to 
computer networks, security, and computational design. The ability to fit phase-type distributions to intractable or 
empirical distributions is, therefore, highly desirable for many practical purposes. Many methods and tools currently 
exist for this fitting problem. In this paper, we present the results of our investigation on using orthogonal-distance 
fitting as a method for fitting phase-type distributions, together with a comparison to the currently existing fitting 
methods and tools. 
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1. Introduction 

 

Stochastic modeling has diverse applications in many areas, such as queuing theory (Neuts 

1994), dependability (Böde et al. 2009), transportation (Pulungan and Hermanns 2009), building 

and steel structures (Alam et al. 2017, Chavan and Lal 2018), pre-clinical studies (Al-Khalidi and 

Schnell 1997), and even building information modeling (Sandoval et al. 2018). In many such 

models, phase-type distributions are widely used because they are versatile and tractable. Phase-

type distributions generalize exponential distributions; hence, the tractability of exponential 

distributions is retained when phase-type distributions substitute in their stead. This enables 

analyses of richer stochastic models and properties. 

The class of phase-type distributions has been proven to be topologically dense in the set of 

probability distributions with support on [0,∞) (Johnson and Taaffe 1988). Therefore, they can 

approximate other probability distributions or the traces of empirical distributions obtained from 

experimental observations. The approximations are usually carried out by fitting phase-type 

distributions to the empirical distributions. 

Various fitting methods for phase-type distributions have existed for almost four decades. These 
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methods can be roughly categorized into maximum likelihood, least-square, and moment matching 

methods. Several fitting tools have been produced based on these fitting methods over quite a long 

time, including (Bobbio and Cumani 1992), (Asmussen et al. 1996), (Horváth and Telek 2002), 

(Thümmler et al. 2006), (Reinecke et al. 2012), and most recently (Reinecke et al. 2013) and 

(Horváth and Okamura 2013). 

Orthogonal distance fitting is a least-square-based fitting method. It is a parameter estimation 

problem, where a function of the sum of the squares of distances between points is minimized 

while determining the parameters. The main characteristic of orthogonal distance fitting is its 

notion of distance between points. The distance between points is defined in a geometrical way, as 

opposed to its counterpart, algebraic distance fitting. 

In this paper, we report on our investigation on using orthogonal-distance fitting to fit phase-

type distributions to empirical probability distributions. We further conduct some experiments with 

a prototypical implementation, comparing it to existing fitting tools in terms of their goodness-of-

fit and computational performance. 

This paper is organized as follows: Section 2 provides an overview of related work. Section 3 

provides the general concepts of phase-type distributions, fitting, and orthogonal distance fitting. 

Section 4 presents our proposed method. Section 5 describes the prototypical implementation of 

the method, the experimental results, and the comparison of the resulting fitting tool with currently 

existing tools. Section 6 provides a case study showcasing the method’s application in the field of 

transportation. Section 7 concludes the paper. 

 

 

2. Related work 
 

Phase-type distributions generalize exponential distributions: the class of phase-type 

distributions consists of all serial, parallel, and cyclical arrangements of exponential distributions. 

Furthermore, the class of phase-type distributions is a superset of all types of distributions 

formerly recognized as the generalizations of exponential distributions, such as hyperexponential, 

hypoexponential, Erlang distributions, and mixtures thereof. This means that the tractability and 

explicit solutions encountered when dealing with those distributions (exponential, Erlang, or the 

mixture of Erlang distributions, etc.) are retained when phase-type distributions are used instead. 

This is important, for then phase-type distributions, which possess richer stochastic properties than 

the exponential or Erlang distributions, can be used in modeling and analyzing stochastic 

behaviors. 

Johnson and Taaffe (1988) showed that phase-type distributions are dense in the set of 

probability distributions with support on [0,∞). This means that for any probability distribution F 

with support on [0,∞), there exists a sequence of phase-type distributions that converges weakly to 

F. They first proved the denseness of infinite mixtures of Erlang distributions, which was then 

extended to finite mixtures of Erlang distributions and phase-type distributions with Coxian 

representations. Hence, given enough phases, any probability distribution with support on [0,∞) 

can be approximated arbitrarily closely by a phase-type distribution. 

The denseness of the class of phase-type distributions has practical significances: first, phase-

type distributions can be used as approximations for various distributions, whose inclusion in a 

model makes analyses difficult or impossible; and second, phase-type distributions can also be 

used as approximations for distributions that are obtained from the traces of experiments. In both 

cases, the use of phase-type distributions instead of the original distributions makes the analyses 
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tractable. In these circumstances, parameter estimation (fitting) algorithms, namely algorithms to 

determine the optimal values of the parameters of phase-type distributions given any distribution 

to approximate, play an important role. 

In the following, several existing tools for fitting phase-type distributions using the maximum 

likelihood and least-square methods are described. 

Bobbio et al. (1980) proposed an algorithm for fitting acyclic phase-type distributions to 

empirical distributions using the Kolmogorov-Smirnov goodness-of-fit test by minimizing the 

maximum absolute difference between the distributions’ cumulative distribution functions. Acyclic 

phase-type distributions are a subset of phase-type distributions whose representations have 

matrices of triangular form. They then solved the estimation problem by reducing it to a non-linear 

constrained optimization problem. 

Cumani (1982) presented three canonical forms of triangular phase-type distributions. These 

canonical forms reduce the number of parameters to be estimated in a given triangular phase-type 

distribution and moreover have unique representations. These canonical forms were used by 

Bobbio and Cumani (1992) to build an algorithm for maximum-likelihood-based phase-type 

distribution fitting. The estimation problem here was also reduced to a non-linear optimization 

problem. The algorithm was implemented in Fortran, and the resulting tool was named MLAPH. 

In 1996, Asmussen et al. (1996) presented an expectation-maximization (EM) algorithm for 

maximum-likelihood-based phase-type distribution fitting. They imposed no restrictions on the 

structure of the phase-type distributions used in the fitting. The EM algorithm is an iterative 

procedure to compute the maximum-likelihood parameter estimates when data are incomplete. The 

algorithm consists of two steps: (1) E-step, in which the expected values of parameters are 

computed based on the available data; and (2) M-step, in which the log-likelihood of both 

distributions is calculated. The two steps are carried out repeatedly until some stopping criteria of 

convergence are met. The algorithm was implemented in C and is available as tool EMpht. 

Horváth and Telek (2002) developed a new tool for fitting phase-type distributions called PhFit. 

The tool was based on a fitting method that separately approximates the main and tail parts of 

arbitrary probability distributions with phase-type distributions. The approximation was done by 

minimizing selected distance measures defined on the probability density function (PDF) or 

cumulative distribution function (CDF) of both approximated and approximating distributions. 

Three distance measures were defined: relative entropy, PDF area difference, and CDF area 

difference. They restricted to acyclic phase-type distributions as the approximating distributions 

for the main part. For this, they used the first canonical form (CF1) of acyclic phase-type 

distributions as defined in (Cumani 1982). The problem of minimizing the various distance 

measures and estimating the parameter were solved using non-linear optimization procedures. 

Following (Feldmann and Whitt 1998), they used hyperexponential distributions to approximate 

the tail part of the given distributions. 

Thümmler et al. (2006) developed a novel approach for fitting phase-type distributions to traces 

of probability distributions. Their method uses a specific class of phase-type distributions, namely 

the mixture of mutually independent Erlang distributions, which they referred to as hyper-Erlang 

distributions. The set of hyper-Erlang distributions is a subset of the triangular phase-type 

distributions. The fitting algorithm they used is the expectation maximization for the mixture of 

the hyper-Erlang densities. Because of the special structure of the hyper-Erlang distributions, the 

EM steps can be solved in a closed-form instead of in an iterative manner, which makes their 

implementation, called G-Fit, significantly faster than other existing tools. 

The standard performance evaluation of parameter estimation algorithms for fitting phase-type 

39



 

 

 

 

 

 

Reza Pulungan and Holger Hermanns 

distributions is the Aalborg benchmark (Bobbio and Cumani 1992). The benchmark is the result of 

an international workshop on fitting phase-type distributions held in Aalborg, Denmark, in 1991. 

Bobbio and Telek (1994) extended the benchmark while evaluating the performance of their fitting 

algorithm. 

 

 

3. Preliminaries 
 

3.1 Phase-type distributions 
 

We consider a continuous-time Markov chain with n+1 states, where the state (n+1) is 

absorbing (namely, having zero total outgoing rate), while the others are transient (namely, there is 

a non-zero probability that the state will never be revisited once left). The infinitesimal generator 

matrix of such a Markov chain is of the form: 

𝐐 = (𝐀 𝐴

0⃗⃗ 0
), (1) 

where 𝐀𝑖,𝑗 ≥ 0 (1 ≤ i,j ≤ n; i ≠ j) represents the transition rate from state i to state j; Ai,i < 0 (1 ≤ i 

≤ n) is the negative sum of all transition rates outgoing from state i; and 𝐴 is a column vector, 

where Ai (1 ≤ i ≤ n) represents the transition rate from state i to the absorbing state. Since Q is a 

Markov generator matrix, 𝐴=−𝐀1⃗⃗, where 1⃗⃗ is an n-dimensional column vector whose entries are 

all equal to 1. Moreover, because the first n states are transient, matrix A is non-singular. A 

probability distribution with support on [0,∞) is phase-type if and only if it is the distribution of 

the time until absorption in such an absorbing Markov chain (Neuts 1994). 

The absorbing Markov chain is completely specified by the generator matrix 𝐐 and the initial 

probabilities vector (𝛼⃗,αn+1), where 𝛼⃗ is an n-dimensional row vector representing the initial 

probabilities of the transient states and 𝛼⃗1⃗⃗ + αn+1 = 1. A phase-type distribution associated with 

the Markov chain has representation (𝛼⃗,A). The cumulative distribution function of the distribution 

is given by F(t) = 1 − 𝛼⃗eAt1⃗⃗, while its probability density function is: 

𝑓(𝑡) = {
𝛼𝑛+1, for 𝑡 = 0,

𝛼⃗𝑒𝐀𝑡𝐴, for 𝑡 > 0.
 (2) 

 

3.2 Fitting phase-type distributions 
 

Fitting a phase-type distribution to a given trace of a probability distribution is a parameter 

estimation problem. In parameter estimation terminology, the phase-type distribution is the model 

to be estimated, while the trace is the observations of the system. In the following, we first provide 

the general concepts of parameter estimation, mainly based on (Bobbio and Cumani 1992). 

Let Π⃗⃗⃗ be an n-dimensional vector of model’s parameters to be estimated. The size and 

configuration of this vector are usually pre-determined and based on general assumptions made on 

the system. An observation of the system, on the other hand, is represented by Y, namely error-free 

information gathered from observing the system. The system itself is a function F relating the 

parameters and the observation such that: 

𝐹(Π⃗⃗⃗, 𝑌) = 0. 
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However, in practice, observations are not free of errors but are affected by noises. Thus, what 

is actually observed from the system is: 

𝑍 = 𝑌 + 𝜖, 
where ɛ is the noise in the measurement. To counteract the noise’s effects, the observation is 

usually repeated, yielding Zi (1 ≤ i ≤ m). These Zi’s are collected in an m-dimensional vector 𝑍, 

which corresponds to the given trace. Since the trace is noisy, the function valuations F(Π⃗⃗⃗,Zi) = 0 

(1 ≤ i ≤ m) are no longer valid. Instead, we define a new function: 

ℱ(Π⃗⃗⃗, 𝑍), 

which is called the objective function. The parameters Π⃗⃗⃗  are estimated while optimizing 

(minimizing or maximizing) this function. 

Many parameter estimation methods for probability distributions have been proposed in the last 

five decades. These methods can be roughly categorized into moment matching, maximum 

likelihood, and least-square methods. We are focusing on least-square methods in this work. 

 

3.3 Orthogonal distance fitting 
 

Orthogonal distance fitting (ODF) is a least-square fitting method that minimizes errors based 

on geometric distance. In this section, algebraic distance and geometric distance in fitting are 

compared. A general definition of orthogonal distance fitting follows. Each iteration of the ODF 

relies on determining minimum distance points between the approximating and approximated 

curves. An algorithm for determining these points is presented afterward. The last part of the 

section provides the algorithm for determining or updating the model’s parameters. The primary 

source of this section is Ahn’s monograph (Ahn 2004). 

 

3.3.1 Algebraic and geometric fittings 
Based on the definition of the error measure to minimize, least-square-based fitting is 

categorized into algebraic and geometric fittings. An algebraic curve in implicit representation can 

generally be described by the function: 

𝐹(Π⃗⃗⃗, 𝑋⃗) = 0, (3) 

where Π⃗⃗⃗ is a vector of the function’s parameters (for instance, the coefficients if the function is a 

polynomial) and 𝑋⃗ is the definition of a point on the curve, namely a vector whose size is the 

dimension of the space in which the curve lies. 

If F (Π⃗⃗⃗, 𝑋⃗𝑖) ≠ 0 for some point 𝑋⃗𝑖, then the given point 𝑋⃗𝑖 is not on the curve. When the curve 

approximates a function describing a set of such points, there must be some error-of-fit. For point 

𝑋⃗𝑖 particularly, the error measure is F (Π⃗⃗⃗,𝑋⃗𝑖) itself, and it is called the algebraic distance. Using 

this error measure, least-square fitting of a set of given points {𝑋⃗𝑖}𝑖=1
𝑚  is carried out by 

determining the parameters Π⃗⃗⃗ that minimize the sum of the squared algebraic distance at each 

given point, namely: 

min
Π⃗⃗⃗
∑𝐹2(Π⃗⃗⃗, 𝑋⃗𝑖).

𝑚

𝑖=1

 

This least-square fitting is called algebraic fitting. 

In the geometric fitting, on the other hand, the error measure is defined as the shortest distance 

between the given point and any point on the curve. This distance is called the geometric distance. 
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Hence, least-square fitting of a set of given points {𝑋⃗𝑖}𝑖=1
𝑚  is geometric fitting if the parameters Π⃗⃗⃗ 

are determined while minimizing the sum of the squared geometric distance at each given point, 

namely: 

min
Π⃗⃗⃗,{𝑋⃗⃗𝑖

′}𝑖=1
𝑚 ⊂𝐹

∑‖𝑋⃗𝑖 − 𝑋⃗𝑖
′‖
2
,

𝑚

𝑖=1

 

where {𝑋⃗𝑖
′}𝑖=1
𝑚  are the closest points on the curve to the corresponding given points {𝑋⃗𝑖}𝑖=1

𝑚 , and: 

‖𝑋⃗𝑖 − 𝑋⃗𝑖
′‖ = √(𝑋⃗𝑖 − 𝑋⃗𝑖

′)T(𝑋⃗𝑖 − 𝑋⃗𝑖
′). 

In general, geometric fitting is non-linear to the model’s parameters, which results in a higher 

complexity in the computation and minimization of the sum of the squared geometric distance 

compared to algebraic fitting, which is linear to the model’s parameters and can often be solved in 

closed form. Nevertheless, algebraic fitting has numerous disadvantages, as listed by Ahn (2004), 

including the fact that the error definition of algebraic fitting does not comply with measurement 

guidelines. Specifically, in algebraic fitting, errors are always assumed not to occur in one of the 

variables defining the curves. Fig. 1 illustrates the difference between algebraic and geometric 

fittings in terms of their error definitions. Let 𝑋⃗𝑖 be a point to approximate. In algebraic fitting, 

the closest point in the curve is 𝑋⃗𝑖
′′, and the distance between them is 𝑑𝑖

′′. In geometric fitting, on 

the other hand, the closest point is 𝑋⃗𝑖
′, and the distance between them is 𝑑𝑖

′. It is evident from the 

figure that in the algebraic fitting of 2-dimensional curves, errors are assumed to occur only in the 

y-axis. 

 

3.3.2 Definition 
The purpose of orthogonal distance fitting of a model to a set of given points is to determine the 

model’s parameters that minimize the sum of the squared minimum distances of each given point 

to any point on the model. There are two ways to define the sum of the squared distance (also 

called the cost function), namely: 

𝜎0
2 = ‖𝐖𝑑‖

2
= 𝑑T𝐖T𝐖𝑑 and (4) 

𝜎0
2 = ‖𝐖(𝑋⃗ − 𝑋⃗′)‖

2
= (𝑋⃗ − 𝑋⃗′)

T
𝐖T𝐖(𝑋⃗ − 𝑋⃗′), (5) 

where 𝑋⃗ and 𝑋⃗′ are the coordinate column vectors of the given ({𝑋⃗𝑖}𝑖=1
𝑚 ) and the model’s 

corresponding points ({𝑋⃗𝑖
′}𝑖=1
𝑚 ), respectively; 𝑑 is the distance column vector, namely 𝑑T = (d1, 

d2, ⋯,dm) and di = ‖𝑋⃗𝑖 − 𝑋⃗𝑖
′‖; and WTW is the weighting or error covariance matrix. 

An ODF algorithm that uses Eq. (4) as the cost function is a distance-based algorithm, while 

that which uses Eq. (5) is a coordinate-based algorithm. This paper selects the distance-based 

algorithm because the resulting algorithm for phase-type distributions is simpler and easier to 

implement. 

ODF determines the model’s parameters and minimizes the sum of the squared minimum 

distance of each given point to any point on the model. If determining the parameters and 

minimizing the sum are carried out simultaneously, the ODF is said to use the total method (Ahn 

2004), in which case the ODF is described by: 

min
Π⃗⃗⃗,{𝑋⃗⃗𝑖

′}𝑖=1
𝑚 ⊂𝐹

𝜎0
2. 
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Fig. 1 Algebraic and geometric distances 

 

 

On the other hand, if they are carried out separately, the ODF uses the variable-separation 

method, and the ODF is described by: 

min
Π⃗⃗⃗

min
{𝑋⃗⃗𝑖
′}
𝑖=1

𝑚
⊂𝐹
𝜎0
2. 

(6) 

We use the variable-separation method in this paper for the reason of simplicity of the resulting 

ODF algorithm. 

 

3.3.3 Determining the minimum distance points 

The inner minimization of Eq. (6) involves searching for the minimum distance points {𝑋⃗𝑖
′}𝑖=1
𝑚  

on the model from the given points {𝑋⃗𝑖}𝑖=1
𝑚 . This paper uses the generalized Newton method to 

determine the minimum distance points. 

For a point 𝑋⃗𝑖
′ on a model with implicit representation (cf. Eq. (3)) to have the minimum 

distance from a given point 𝑋⃗𝑖, it is necessary that the line connecting 𝑋⃗𝑖
′ and 𝑋⃗𝑖 be parallel to 

∇𝐹 = (
𝜕𝐹

𝜕𝑋⃗⃗𝑖
′)
T

 at 𝑋⃗𝑖
′, hence: 

∇𝐹 × (𝑋⃗𝑖 − 𝑋⃗𝑖
′) = 0⃗⃗. 

This equation combined with Eq. (3) allows us to define the function: 

𝔽(Π⃗⃗⃗, 𝑋⃗𝑖, 𝑋⃗𝑖
′) = (

𝐹

∇𝐹 × (𝑋⃗𝑖 − 𝑋⃗𝑖
′)
) = 0⃗⃗, 

which can be solved by using the generalized Newton method starting from the initial point 

𝑋⃗0 = 𝑋⃗𝑖 as follows: 

𝜕𝔽

𝜕𝑋⃗𝑖
′
|

𝑘

∆𝑋⃗𝑖
′ = −𝔽(𝑋⃗𝑖

′)|
𝑘
;        𝑋⃗𝑖

′|
𝑘+1

= 𝑋⃗𝑖
′|
𝑘
+ 𝛼∆𝑋⃗𝑖

′, (7) 
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where 𝑋⃗𝑖
′|
𝑘
 is the value of 𝑋⃗𝑖

′ at iteration k. 

 

3.3.4 Updating the model’s parameters 
This part presents the ODF distance-based algorithm using the variable-separation method to 

determine the model’s parameters. This essentially boils down to the outer minimization of Eq. (6). 

The necessary condition for the cost function (cf. Eq. (4)), as a function of the model’s parameters 

Π⃗⃗⃗, to be minimum is given by: 

(
𝜕

𝜕Π⃗⃗⃗
𝜎0
2)
T

= 2𝐉T𝐖T𝐖𝑑 = 0⃗⃗, (8) 

where 𝐉 =
𝜕𝑑⃗

𝜕Π⃗⃗⃗
. Eq. (8) can be iteratively solved using the Gauss-Newton method as follows: 

𝐖𝐉|𝑘∆Π⃗⃗⃗ = −𝐖𝑑|𝑘;        Π⃗⃗⃗|𝑘+1 = Π⃗⃗⃗|𝑘 + 𝛼∆Π⃗⃗⃗, (9) 

with termination conditions: 

‖𝐉T𝐖T𝐖𝑑‖ ≈ 0   or   ‖∆Π⃗⃗⃗‖ ≈ 0   or   𝜎0
2|
𝑘+1

− 𝜎0
2|
𝑘
≈ 0. 

The second part of Eq. (9) updates the model’s parameters, and the updates are weighted by a 

constant of proper choice α. The first of the termination conditions is the original minimum 

requirement, namely Eq. (8). Eq. (9) itself is a system of linear equations: 

𝐖(

𝐉𝑑1,Π⃗⃗⃗
⋮

𝐉𝑑𝑚,Π⃗⃗⃗

)

⏟    
𝑚×𝑛

∆Π⃗⃗⃗ = −𝐖(
𝑑1
⋮
𝑑𝑚

)
⏟  
𝑚×𝟏

,       where  𝐉𝑑𝑖,Π⃗⃗⃗ =
𝜕𝑑𝑖

𝜕Π⃗⃗⃗
. 

(10) 

Matrix 𝐉 in Eq. (9) is called the Jacobian matrix, whose components, represented by 𝐉𝑑𝑖,Π⃗⃗⃗, is 

solved as follows: 

𝐉𝑑𝑖,Π⃗⃗⃗ =
𝜕𝑑𝑖

𝜕Π⃗⃗⃗
= −

(𝑋⃗𝑖 − 𝑋⃗𝑖
′)
T

‖𝑋⃗𝑖 − 𝑋⃗𝑖
′‖

𝜕𝑋⃗

𝜕Π⃗⃗⃗
|
𝑋⃗⃗=𝑋⃗⃗𝑖

′

. 

From the derivative of Eq. (3): 

𝜕𝐹

𝜕𝑋⃗

𝜕𝑋⃗

𝜕Π⃗⃗⃗
+
𝜕𝐹

𝜕Π⃗⃗⃗
= 0;      

𝜕𝐹

𝜕𝑋⃗

𝜕𝑋⃗

𝜕Π⃗⃗⃗
= ∇T𝐹

𝜕𝑋⃗

𝜕Π⃗⃗⃗
= −

𝜕𝐹

𝜕Π⃗⃗⃗
. 

and since (𝑋⃗𝑖 − 𝑋⃗𝑖
′) is parallel to ∇𝐹|𝑋⃗⃗=𝑋⃗⃗𝑖

′, we have: 

𝐉𝑑𝑖,Π⃗⃗⃗ =

(

 
 sgn ((𝑋⃗𝑖 − 𝑋⃗𝑖

′)
T
∇𝐹)

‖∇𝐹‖

𝜕𝐹

𝜕Π⃗⃗⃗⏟
1×𝑛

|

𝑋⃗⃗=𝑋⃗⃗𝑖
′
)

 
 
. 

 

 

4. Proposed method 
 

This section describes the application of ODF for fitting phase-type distributions to given traces 
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of probability distributions. The ODF algorithm described in Section 3 fits a particular curve of a 

certain parameter structure of unknown parameter values to a set of given points in space. The 

curve itself is represented in implicit form. Algorithm 1 depicts the proposed orthogonal-distance-

based fitting algorithm especially tailored for a specific type of phase-type distributions. 

Phase-type distributions used in the proposed ODF algorithm are restricted to the class of 

acyclic phase-type (APH) distributions. These are phase-type distributions whose generator 

matrices are upper triangular or contain no cycles when viewed as graphs. This class of phase-type 

distributions has several canonical forms. This paper uses the ordered bidiagonal form, first 

defined by Cumani (1982). The n-state ordered bidiagonal representation (𝛼⃗,A) has the following 

structure: 

𝛼⃗ = (𝛼1, 𝛼2, 𝛼3, ⋯ , 𝛼𝑛)   and   𝐀 =

(

 
 

−𝐴1 𝐴1 0 ⋯ 0
0 −𝐴2 𝐴2 ⋯ 0
0 0 −𝐴3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −𝐴𝑛)

 
 
, 

where An ≥ An-1 ≥ ⋯ ≥ A2 ≥ A1. This particular structure is selected to ease the computation of both 

its probability density and cumulative distribution functions. Furthermore, the number of free 

parameters to estimate is reduced to 2n compared to 2n2 for the general phase-type distributions. 

Although this class is a proper subset of the whole class of phase-type distributions, the use of the 

restricted class does not seem to limit the flexibility of the estimation, as was also observed by 

Thümmler et al. (2006). 

At the beginning of Algorithm 1, acyclic phase-type distributions and the corresponding 

parameters to estimate are initialized. Function Initialize-APH(n) performs the initialization of an 

ordered bidiagonal representation (𝛼⃗,A) of size n. Two ways are considered for this, namely: 

1. Initializing the representation by an Erlang distribution (Stewart 2009) of n phases (states), 

whose rate is fixed such that its mean is equal to the given trace’s mean. 

2. Initializing the representation by the best (in terms of the cost function in Eq. (4)) of 𝑘 

randomly generated ordered bidiagonal representations. 

To fix the structure of the parameters to estimate Π⃗⃗⃗ from the representation (𝛼⃗,A) is basically 

to select a particular structure for the non-zero components of vector 𝛼⃗ and matrix 𝐀. Function 

Initialize-Parameters(𝛼⃗ ,A) accomplishes this initialization of the vector of parameters Π⃗⃗⃗ by 

setting: 

Π𝑖 = {
𝛼𝑖 , for 1 ≤ 𝑖 ≤ 𝑛,

𝐴𝑖−𝑛, for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.
 

The fitting of the phase-type distributions is carried out in the probability density function 

domain. This means that the phase-type distributions are fitted to the probability density function 

of the given traces. The probability density function of a phase-type distribution with 

representation (𝛼⃗, 𝐀) is Eq. (2), whose implicit representation is given by: 

𝐹(Π⃗⃗⃗, 𝑋⃗) = {
𝑓(𝑡) − 𝛼𝑛+1 = 0, for 𝑡 = 0,

𝑓(𝑡) − 𝛼⃗𝑒𝐀𝑡𝐴 = 0, for 𝑡 > 0.
 

where 𝑋⃗ = (f(t),t)T. 

The probability density function of the phase-type distribution is computed by using the 

uniformization (randomization) method (Jensen 1953, Gross and Miller 1984). This method arises 

in the transient analysis of Markov chains. Given a Markov chain as in Eq. (1), the transient 

analysis is the computation of the transient state-probabilities vector: 
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Algorithm 1 The proposed orthogonal distance fitting algorithm 

1: function Orthogonal-APH-Fit(𝑛, {𝑋⃗𝑖}𝑖=1
𝑚 , 𝜖, 𝑚𝑎𝑥𝑖𝑡): (𝛼⃗, 𝐀)  

2:   (𝛼⃗, 𝐀) ← Initialize-APH(𝑛)  

3:   Π⃗⃗⃗ ← Initialize-Parameters(𝛼⃗, 𝐀)  

4:   𝑘 ← 0  

5:   repeat  

6:     𝑘 ← 𝑘 + 1  

7:     for 𝑖 ← 1 to 𝑚 do  

8:       𝑋⃗𝑖
′ ← Minimum-Distance(𝑋⃗𝑖 , 𝛼⃗, 𝐀) ⊳Eq. (7) 

9:     end for  

10:     Π⃗⃗⃗ ← Update-Parameters({𝑋⃗𝑖
′}𝑖=1
𝑚 , 𝛼⃗, 𝐀) ⊳Eq. (9) 

11:     (𝛼⃗, 𝐀) ← Update-APH(Π⃗⃗⃗)  

12:   until (‖𝐉T𝐖T𝐖𝑑‖ < 𝜖 or ‖∆Π⃗⃗⃗‖ < 𝜖 or |𝜎0
2|𝑘+1 − 𝜎0

2|𝑘| < 𝜖 or 𝑘 > 𝑚𝑎𝑥𝑖𝑡)  

13:   return (𝛼⃗, 𝐀)  

14: end function  

 

 

𝜋⃗⃗(𝑡) = (𝛼⃗, 𝛼𝑛+1)𝑒
𝐐𝑡 = (𝛼⃗, 𝛼𝑛+1)∑

(𝐐𝑡)𝑖

𝑖!

∞

𝑖=0

, (11) 

where 𝜋⃗⃗(𝑡) is the state-probabilities vector at time-instant 𝑡. For Λ ≥ max
𝑖
{−𝐐𝑖,𝑖} and 𝐏 = 𝐈 +

𝐐/Λ, where 𝐈 is the corresponding identity matrix, the uniformization method solves Eq. (11) as 

follows: 

𝜋⃗⃗(𝑡) = (𝛼⃗, 𝛼𝑛+1)𝑒
Λ𝑡(𝐏−𝐈) = (𝛼⃗, 𝛼𝑛+1)∑

𝑒Λ𝑡(Λ𝑡)𝑖

𝑖!

∞

𝑖=0

𝐏𝑖. 

Hence, in this case the cumulative distribution function of the phase-type distribution is 𝐹(𝑡) =
𝜋𝑛(𝑡) and its derivative (namely, the probability density function), for the first canonical form of 

acyclic phase-type distributions, is simply given by 𝑓(𝑡) = 𝐹′(𝑡) = 𝜋𝑛(𝑡)𝐴𝑛. 

The nucleus of the algorithm is the repeated computation of Eq. (6) in the form of determining 

the minimum distance points and then updating the model’s parameters until one of the 

termination conditions is satisfied (lines 5-12). 

The first part is accomplished by applying the function Minimum-Distance(𝑋⃗𝑖, 𝛼⃗, 𝐀)  to 

compute the orthogonally closest point in the curve of the current phase-type representation (𝛼⃗, 𝐀) 
to each point 𝑋⃗𝑖 in the given trace. This function represents the computation of Eq. (7), namely 

solving the minimum orthogonal-distance points by using the generalized Newton method. 

The second part is carried out by the function Update-Parameters({𝑋⃗𝑖
′}𝑖=1
𝑚 ,𝛼⃗ ,A), which 

represents the computation of Eq. (9) by using the singular value decomposition (SVD) method 

(Press et al. 2007). The components of the Jacobian matrix in Eq. (10), which are essentially the 

partial derivative of the distance measure relative to each parameter, are computed by a numerical 

derivation method. The distance measure between points is not weighted; hence, we use 𝐖 = 𝐈 in 

Eq. (4) and in subsequent equations that use the error covariance matrix. In each iteration of the 
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evaluation of Eq. (9), the parameters are updated by ∆Π⃗⃗⃗. However, updating the parameter by ∆Π⃗⃗⃗ 
simultaneously can result in worse and diverging approximants. To avoid this, a similar method as 

described by Horváth and Telek (2002) is used to search for the optimal direction inside the 

linearized area of changes as specified by ∆Π⃗⃗⃗. 

As the last step of the iteration, the curve (namely, the PDF of the acyclic phase-type 

distribution) represented by (𝛼⃗,A) is updated as directed by changes to the vector of parameters Π⃗⃗⃗ 

through the function Update-APH(Π⃗⃗⃗). This function ensures that the structure of the ordered 

bidiagonal canonical form is maintained, namely that: 

1. 𝛼1 > 0 and 𝛼𝑖 ≥ 0 for 2 ≤ 𝑖 ≤ n, 

2. ∑ 𝛼𝑖
𝑛
𝑖=1  = 1 − αn+1, 

3. 𝐴𝑖 > 0 for 1 ≤ 𝑖 ≤ n, and 

4. 𝐴𝑛 ≥ 𝐴𝑛−1 ≥ ⋯ ≥ 𝐴2 ≥ 𝐴1. 

 

 

5. Results and discussions 
 

A prototype of the proposed orthogonal-distance fitting method for acyclic phase-type 

distributions has been implemented in C++. The prototype requires a special implementation of 

sparse matrix operations tailored to the first canonical form of acyclic phase-type distributions. 

Six goodness-of-fit measures, as specified in (Bobbio and Telek 1994), are used to evaluate the 

performance of the proposed method. The measures are presented in Table 1 In the table, F(t) and 

f(t) are the cumulative distribution function (CDF) and the probability density function (PDF) of 

the phase-type distribution (curve), respectively, 𝐹̃(𝑡) and 𝑓(𝑡) are the CDF and the PDF of the 

approximated distribution (trace), respectively, c1(F) is the mean, c2(F) is the variance, and c3(F) is 

the third central moment of F(t). 

For the test cases of distributions to be fitted, we use the seven distributions whose traces are 

provided by the tool G-Fit (Thümmler et al. 2006). Each of the seven distributions is represented 

by 10,000 points in the PDF domain. The test cases are quite similar to the test cases in (Bobbio 

 

 
Table 1 Goodness-of-fit measures (Bobbio and Telek 1994) 

Measure Definition 

Relative error in the 1st moment 𝑒1 =
|𝑐1(𝐹) − 𝑐1(𝐹̃)|

𝑐1(𝐹̃)
 

Relative error in the 2nd moment 𝑒2 =
|𝑐2(𝐹) − 𝑐2(𝐹̃)|

𝑐2(𝐹̃)
 

Relative error in the 3rd moment 𝑒3 =
|𝑐3(𝐹) − 𝑐3(𝐹̃)|

𝑐3(𝐹̃)
 

PDF absolute area difference 𝐷𝑝𝑑𝑓 = ∫ |𝑓(𝑡) − 𝑓(𝑡)|𝑑𝑡
∞

0

 

CDF absolute area difference 𝐷𝑐𝑑𝑓 = ∫ |𝐹(𝑡) − 𝐹̃(𝑡)|𝑑𝑡
∞

0

 

Minus the cross entropy −𝐻 = ∫ log (𝑓(𝑡))𝑑𝐹̃(𝑡)
∞

0
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Table 2 Benchmark probability distributions used to generate the traces 

Distribution Probability density function 

Weibull(𝑎, 𝑏), 𝑎 > 0, 𝑏 > 0 𝑓(𝑡; 𝑎, 𝑏) =
𝑏

𝑎
(
𝑡

𝑎
)
𝑏−1

𝑒
−(
𝑡
𝑎
)
𝑏

 

ParetoII(𝑎, 𝑏), 𝑎 > 0, 𝑏 > 0 𝑓(𝑡; 𝑎, 𝑏) =
𝑏𝑎𝑒−𝑏/𝑡

Γ(𝑎)
𝑡−𝑎−1 

Uniform(𝑎, 𝑏), −∞ < 𝑎 < 𝑏 < ∞ 𝑓(𝑡; 𝑎, 𝑏) = {

1

𝑏 − 𝑎
, 𝑎 ≤ 𝑡 ≤ 𝑏

0, otherwise
 

Lognormal(𝑎, 𝑏), −∞ < 𝑎 < ∞, 𝑏 > 0 𝑓(𝑡; 𝑎, 𝑏) =
1

𝑡𝑏√2𝜋
𝑒
−
(ln(𝑡)−𝑎)2

2𝑏2  

Shifted exponential 𝑓(𝑡; 𝑎, 𝑏) = {

1

2
𝑒−𝑡 , 0 ≤ 𝑡 < 1

1

2
𝑒−𝑡 +

1

2
𝑒−(𝑡−1), 𝑡 ≥ 1

 

Matrix exponential 𝑓(𝑡) = (1 +
1

(2𝜋)2
) (1 − cos (2𝜋𝑡))𝑒−𝑡  

 

 

and Telek 1994), but for some changes in the parameters of the distributions. Specifically, we use 

Weibull (1.0,0.5), Weibull (1.0,5.0), ParetoII (1.5,2.0), Uniform (0.5,1.5), Lognormal (1.0,1.5), 

Shifted exponential, and Matrix exponential, as specified in Table 2. 

To evaluate the goodness-of-fit and the performance of the prototype, we compare it with G-Fit 

according to the benchmark goodness-of-fit measures by fitting phase-type distributions to the 

traces of the test cases. We decide to compare the proposed method with G-Fit because, according 

to Thümmler et al. (2006), its goodness-of-fit and performance were better than the other tools. 

Furthermore, even with the latest advancements in phase-type fitting tools (Esparza 2011, 

Reinecke et al. 2012, 2013, Horváth and Okamura 2013, Buchholz et al. 2014, Okamura and Dohi 

2016), G-Fit remains the best in both measures. 

In the comparison, each test case distribution is fitted by both G-Fit (GF) and our prototypical 

tool (OD) to phase-type distributions of size 4, 8 and 16 phases. The resulting goodness-of-fit of 

both tools can be observed in Tables 3, 4 and 5, where the approximating phase-type distributions 

are of size 4, 8 and 16 phases, respectively. Table 6 shows the performance of both tools in terms 

of the number of required iterations to convergence and the required computation time. 

The relative errors in the first, second, and third moments are presented in the first six rows of 

Tables 3, 4, and 5. Both G-Fit and the proposed method produce consistent relative errors of 

moments, in the sense that the relative errors decrease as the number of phases increases. Aside 

from this, a few patterns can be further observed. In all experiments, G-Fit shows better results in 

the relative errors of the first moment than the proposed method. G-Fit produces fitting with 

almost no first moment error and approximates the mean of the empirical distribution well. In 
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Fitting acyclic phase-type distributions by orthogonal distance 

Table 3 Goodness-of-fit comparison of G-Fit and the proposed method (4 phases) 

Measure Wei. 1 Wei. 2 Pareto Uniform Lognorm. Sh. exp. Mat. exp. 

1st moment (GF) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1st moment (OD) 0.00000 0.00000 0.00056 0.00241 0.00000 0.00492 0.00301 

2nd moment (GF) 0.21083 3.79841 0.63891 1.94629 0.16833 0.00424 0.02412 

2nd moment (OD) 0.20021 2.90156 1.47393 2.82377 0.16720 0.62119 0.41782 

3rd moment (GF) 0.64104 -45.857 0.90748 346.243 0.64772 0.12340 0.00615 

3rd moment (OD) 0.57091 -43.218 1.95679 403.451 0.63892 0.79129 0.58931 

PDF area diff. (GF) 1.64613 2.20822 1.33205 2.10464 1.06309 1.27079 1.44163 

PDF area diff. (OD) 1.58321 2.19320 1.06481 3.23901 1.41832 1.10547 1.28494 

CDF area diff. (GF) 0.13909 0.19692 0.49026 0.15374 0.04399 0.06527 0.08439 

CDF area diff. (OD) 0.57321 0.21029 0.53561 0.12531 0.11782 0.11024 0.20612 

Cross entropy (GF) 0.29979 -1.84399 -1.62523 0.00799 -0.40339 -1.10627 -0.90572 

Cross entropy (OD) 0.16121 -2.19054 -2.05631 0.00319 -0.61980 -1.57199 -1.14198 

 
Table 4 Goodness-of-fit comparison of G-Fit and the proposed method (8 phases) 

Measure Wei. 1 Wei. 2 Pareto Uniform Lognorm. Sh. exp. Mat. exp. 

1st moment (GF) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1st moment (OD) 0.00000 0.00000 0.00000 0.00161 0.00000 0.00251 0.00135 

2nd moment (GF) 0.08566 1.39920 0.38259 0.47315 0.07857 0.03636 0.02665 

2nd moment (OD) 0.07189 1.29430 1.12761 1.16731 0.07729 0.44091 0.33931 

3rd moment (GF) 0.40724 -12.214 0.64704 85.8107 0.34642 0.16784 0.12418 

3rd moment (OD) 0.36831 -11.529 1.39811 97.9540 0.32981 1.38561 1.17658 

PDF area diff. (GF) 8.02902 2.30474 1.34247 2.05356 1.07779 1.32691 1.51665 

PDF area diff. (OD) 5.87231 2.10723 1.10542 2.87490 2.18965 1.20551 1.10744 

CDF area diff. (GF) 0.04143 0.09376 0.27928 0.05416 0.01537 0.04099 0.06438 

CDF area diff. (OD) 0.09710 0.32712 0.89261 0.05098 0.20951 0.08497 0.10617 

Cross entropy (GF) 9.19468 -1.75304 -1.59501 0.01207 -0.39229 -1.12367 -0.88617 

Cross entropy (OD) 7.18732 -1.56390 -1.70319 0.00569 -0.59120 -1.73109 -2.12018 

 

 

the second and third moments, the proposed method produces smaller relative errors for Weibull 1, 

Weibull 2, and Lognormal test cases, while G-Fit performs better for the other four test cases. This 

is also consistent with when the approximating acyclic phase-type distributions are set to have 8 or 

16 phases. However, it must be noted that in the second and third moments, the relative errors of 

the proposed method can be orders of magnitude larger than those of G-Fit for the cases of Shifted 

exponential and Matrix exponential. 

The PDF absolute area difference measure is especially important since the proposed method, 

in essence, performs approximation by minimizing the orthogonal distance between every point in 

the trace to the closest point in the curve of the PDF. This minimization is also supposed to 

proportionally minimize the area below the PDF curve. However, even for this measure, the 

proposed method cannot become the absolute winner. The proposed method performs relatively 
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Table 5 Goodness-of-fit comparison of G-Fit and the proposed method (16 phases) 

Measure Wei. 1 Wei. 2 Pareto Uniform Lognorm. Sh. exp. Mat. exp. 

1st moment (GF) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1st moment (OD) 0.00000 0.00000 0.00000 0.00082 0.00000 0.00076 0.00041 

2nd moment (GF) 0.06712 0.19960 0.12971 0.07138 0.05158 0.00610 0.03769 

2nd moment (OD) 0.05679 0.17514 0.30287 0.22901 0.05076 0.08910 0.16230 

3rd moment (GF) 0.34897 -3.80358 0.19095 44.9169 0.23726 0.01043 0.14837 

3rd moment (OD) 0.31543 -3.17534 0.34082 50.5929 0.22876 0.10871 0.20459 

PDF area diff. (GF) 9.72018 2.43744 1.35283 2.08429 1.08734 1.36746 1.57195 

PDF area diff. (OD) 8.12785 2.08356 1.20844 3.70891 1.48703 1.10875 1.39753 

CDF area diff. (GF) 0.03549 0.02953 0.08281 0.05009 0.01070 0.02104 0.05460 

CDF area diff. (OD) 0.09276 0.12289 0.09719 0.10851 0.06719 0.14813 0.06571 

Cross entropy (GF) 11.5548 -1.61246 -1.61012 0.01373 -0.39081 -1.14263 -0.89862 

Cross entropy (OD) 10.2398 -1.81921 -2.01876 0.00498 -0.71093 -1.91034 -1.02984 

 
Table 6 Performance comparison of G-Fit and the proposed method 

Measure Distribution 
4 phases 8 phases 16 phases 

GF OD GF OD GF OD 

Number of 

iterations 

Weibull (1.0,0.5) 393 25 3813 25 79700 30 

Weibull (1.0,5.0) 78 18 808 20 16565 21 

ParetoII (1.5,2.0) 116 22 1661 20 39989 27 

Uniform (0.5,1.5) 81 26 849 23 17972 29 

Lognormal (1.0,1.5) 302 26 3480 32 61775 30 

Shifted exponential 360 36 3039 36 52463 32 

Matrix exponential 150 27 2031 25 35261 29 

Computation 

times (seconds) 

Weibull (1.0,0.5) 3 899 35 1862 765 4064 

Weibull (1.0,5.0) 1 719 5 1612 124 2905 

ParetoII (1.5,2.0) 1 928 11 1406 472 3739 

Uniform (0.5,1.5) 1 677 6 1365 143 3746 

Lognormal (1.0,1.5) 2 765 22 1934 590 3343 

Shifted exponential 1 1242 17 2582 461 4890 

Matrix exponential 1 620 13 1570 302 3319 

 

 

better than G-Fit for test cases Weibull 1, Weibull 2, Pareto II, Shifted exponential and Matrix 

exponential. On the other hand, G-Fit produces smaller PDF absolute area differences for Uniform 

and Lognormal test cases. This result is consistent for the cases of 4, 8 or 16 phases. 

For the last two measures, the CDF absolute area difference and negative cross entropy, the G-

Fit performs better in almost all test cases. The proposed method produces smaller CDF absolute 

area differences for the Uniform distribution test case, but only when the approximating 

distribution is of phase 4 or 8. When the phase is 16, the proposed method again produces larger 

CDF absolute area differences. 
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Table 6 provides the comparison of G-Fit and the proposed method in terms of computational 

performance. The table immediately reveals that the proposed method requires far more 

computation time in each iteration than G-Fit. On average, each iteration consumes around 33 

seconds when the proposed method is fitting a 4-phase phase-type distribution to the traces. Most 

of the computation effort is spent in determining the closest orthogonal distance between the 

points of the approximating and the approximated distributions. The proposed method requires 16 

to 32 iterations to perform the fitting. In more than half of the cases, however, the iterations are 

terminated because optimal directions cannot be found anymore in the linearized area of the 

parameters’ updates. These cases usually arise when the minimization procedure results in local 

minima. 

G-Fit, on the other hand, consumes much less amount of time per iteration compared with the 

proposed method. This is because the parameters’ updates are not computed iteratively but in 

closed form. G-Fit fits hyper-Erlang distributions to empirical distributions. Hyper-Erlang 

distributions are basically mixtures of Erlang distributions. However, for a given number of states, 

there are many ways of mixing Erlang distributions. For 4, 8 and 16 phases, the numbers of 

possible mixtures of Erlang distributions are 5, 22 and 231, respectively. This explains the high 

number of iterations in the G-Fit. On average, for the 16-phase cases, G-Fit requires around 187 

iterations to fit a particular mixture of Erlang distributions to the traces. 

 

 

6. Case study 
 

To demonstrate the applicability of the proposed method, we revisit and extend a case study we 

previously presented in (Pulungan and Hermanns 2009), which was based on the models 

developed by Meester and Muns (2007). Fig. 2 depicts a part of the Netherlands’ intercity railway 

network connecting 10 cities and Table 7 provides relevant information on the lines and segments 

in the network. We are interested in studying the propagation of delays experienced on each line’s 

segments at the line’s end in both directions. To this end, we make assumptions on the delays, 

model them by Erlang, Weibull, and Uniform distributions, and then fit them to APH distributions 

using the proposed method. 

Especially important to note from the figure is that some line segments become feeders to 

connecting trains on other line segments. There are seven such synchronizations, namely 1-01 to 

3-02, 1-52 to 3-53, 2-01 to 3-03, 3-01 to 1-02, 3-51 to 2-54, 3-51 to 2-02, and 3-52 to 1-53. Aside 

from the delays accrued up the line, the departure of the connecting trains is further constrained by 

the arrival of the feeder trains because passengers may need to transfer. The complication of the 

model arises from these synchronizations. 

Let D be a random variable governing the departure delay at the beginning of a segment, and T 

be a random variable representing the segment’s actual travel time subtracted by its minimum 

travel time 𝑡 (in minutes). Note that when T – r > 0, the maximum buffer time r (in minutes) is 

exceeded, and a delay occurs. In our experiments, each of the 10 distinct values of r (cf. Fig. 2) 

will be modeled by a distinct random variable T. 

Let [x]+ = max {x, 0}. The departure delay of the next segment in a line is [D + T – r]+. For 

synchronization cases, the departure delay of the next segment after the feeder f is [Df + Tf – r]+, 

while the departure delay of the connecting segment c is given by max{[Df + Tf − r]+, [Dc + Tc – 

r]+}. All those random variables are approximated by (fitted to) APH distributions. Addition and 

maximum operations on the random variables can be accomplished by convolution and maximum  
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Fig. 2 The intercity railway network connecting Amersfoort, Amsterdam, Arnhem, Deventer, Enschede, 

Groningen, Neijmegen, ’s-Hertogenbosch, Utrecht, and Zwolle 

 

 

operations on APH distributions, respectively. Moreover, if ( 𝛼⃗ ,A) is the APH distribution 

governing random variable X, the APH distribution of [X − r]+ is given by (𝛼⃗eAr,A). 

In this case study, we experiment on three types of delay models governing the random 

variables T, using Erlang, Weibull, and Uniform distributions. In the Erlang experiment, for a 

specific number of phases, the Erlang rate is adjusted such that r is around the 80-th percentile of 

the Erlang distribution. In the Weibull experiment, the shape parameter of the Weibull distribution 

is set to 2.4 when r is 1, 2, or 3; to 1.8 when r is 4, 5, or 6; and to 1.4 when r is 7, 8, 9, or 11. The 

scale parameter, on the other hand, is adjusted in a similar fashion, namely such that r is around 

the 80-th percentile of the Weibull distribution. In the Uniform experiment, the random variables T 

are governed by Uniform (0, r). Since Erlang distributions are a subset of APH distributions, they 

require no fitting. The Weibull and Uniform distributions, however, are first fitted to APH 

distributions by using the proposed method before the transient analysis of the resulting delay 

models. 

Table 8 presents the results of our experiments on varying the delay distribution models and the 

number of phases of APH distributions approximating those delay distributions. The table presents 

the resulting probability that the overall delay when a train arrives at the end of the line (in both 

directions) is no more than 3 minutes (Pr(A ≤ 3)) for the six different lines. The results indicate 

that the Weibull delay model produces the largest probabilities almost in all cases, followed by 

Erlang and then Uniform models. Furthermore, varying the number of phases does not readily 

result in a discernible impact on the probability. Nevertheless, all delay models agree that the 

probability that the overall delay is no more than 3 minutes is quite large, more than 85% in all  
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Table 7 Lines and segments joining the 10 cities in the railway network, and each segment’s minimum travel 

time t and maximum buffer time r 

Line Segment Origin Destination 𝑡 𝑟 

1 

01 Amsterdam Amersfoort 29 5 

02 Amersfoort Zwolle 32 5 

03 Zwolle Groningen 59 11 

51 Groningen Zwolle 59 9 

52 Zwolle Amersfoort 32 6 

53 Amersfoort Amsterdam 28 8 

2 

01 Zwolle Deventer 17 2 

02 Deventer Arnhem 32 3 

03 Arnhem Nijmegen 14 1 

04 Nijmegen ’s-Hertogenbosch 26 8 

51 ’s-Hertogenbosch Nijmegen 25 3 

52 Nijmegen Arnhem 13 1 

53 Arnhem Deventer 32 3 

54 Deventer Zwolle 18 7 

3 

01 Utrecht Amersfoort 13 3 

02 Amersfoort Deventer 33 4 

03 Deventer Enschede 39 9 

51 Enschede Deventer 39 5 

52 Deventer Amersfoort 36 5 

53 Amersfoort Utrecht 14 6 

 
Table 8 Probability that a line’s overall delay is no more than 3 minutes (Pr(A ≤ 3)) for different delay 

models (Erlang, Weibull, and Uniform) and different phases of the approximating APH 

APH phases Line segment 
Pr(𝐴 ≤ 3) 

Erlang Weibull Uniform 

10 

1-03 0.94460584 0.98750249 0.85562310 

1-53 0.94866633 0.98473806 0.85758391 

2-04 0.97077302 0.98481936 0.86661845 

2-54 0.97382524 0.98495819 0.86674911 

3-03 0.95994336 0.98787838 0.86539341 

3-53 0.96052168 0.96486199 0.86434618 

20 

1-03 0.97260921 0.97636953 0.86558931 

1-53 0.97888762 0.97582951 0.86712758 

2-04 0.99010732 0.98919711 0.87830552 

2-54 0.99239673 0.98239760 0.87887365 

3-03 0.98340104 0.97321550 0.87346501 

3-53 0.98628849 0.94047354 0.87475398 
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cases, even when delays associated with transferring passengers to connecting trains are 

considered. This bespeaks the efficiency of the Netherlands’ trains and railway network. 

 
 
7. Conclusions 
 

In this paper, we have reported on our investigation in applying expectation-minimization-

based orthogonal distance fitting to acyclic phase-type distributions. The resulting method 

minimizes the orthogonal distances of points in the curve of the approximating phase-type 

distribution and points in the empirical distribution. The minimization problem is turned into a 

non-linear optimization problem, which is then solved by an iterative linearization method. In 

every expectation-minimization iteration, the proposed method must search for the (orthogonally) 

closest point in the approximating curve to each point in the trace. This search turns out to be 

computationally substantial. 

We have also compared the resulting fitting tool with the currently best fitting tool. Initially, we 

had expected that, although the computational requirement of orthogonal distance fitting is 

relatively heavier than other existing methods for the same number of phases, the orthogonal 

distance fitting would converge faster. The comparison produces no clear-cut judgment. It reveals 

that the orthogonal distance for fitting phase-type distributions to traces of probability distributions 

is not superior and only beneficial in certain cases. 

Nevertheless, based on our experience in implementing the proposed method, we are still 

convinced of its potential and see several possible avenues for improving it further: 

1. Investigating the best initialization of the parameters. Our experience indicates that 

initializing the parameters randomly often results in being trapped in local optima while 

initializing them by Erlang distributions results in sluggish convergence. The latter is still a viable 

method since it avoids randomness. However, it must be augmented by strategies to quicken 

convergence. 

2. Improving the method for the simultaneous updating of the parameters. Since ordered 

bidiagonal representations impose a particular structure on the parameters, parameter changes 

specified by ∆Π⃗⃗⃗ cannot always be readily applied. Devising an optimal updating strategy will 

greatly improve the overall fitting method. 

3. Optimizing the computation of the minimum distance points. 

These are for future endeavors. Since fitting is usually a pre-processing step, in which an 

approximating model is computed, heavy and time-consuming computation is still well invested in 

this step if it results in better and closer models. Further tuning in the proposed method is worth 

investigating. 
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