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Abstract.  In this study, some models are developed to predict the fracture energy (GF), flexural 
strength (ft), splitting tensile strength (fspt), and compressive strength (fc) of fiber reinforced 
cementitious composites (FRCC) based on I-optimal design of response surface methodology (RSM-I-
optimal). Indeed, the main aim of this paper is to predict the mentioned parameters of FRCC at 
different temperatures and the aspect ratios of fibers. For this purpose, the fracture energy and strength 
properties of FRCC reinforced with aramid, glass, basalt, and polypropylene (PP) fibers were obtained 
at 20℃, 100℃ and 300℃ temperatures and were used as experimental values by RSM. The analyses 
of variance (ANOVA), perturbation, three-dimensional, contour and normal of residual plots were 
studied to assess the impacts of independent parameters on the relationships. Furthermore, the 
predictive efficiency of the RSM models between observed and predicted values were examined based 
on the Nash & Sutcliffe coefficient of efficiency (NSE). In terms of NSE values, the models were exact 
enough for predicting the flexural, splitting tensile and compressive strengths as well as fracture energy.  
 

Keywords:  fiber-reinforced cementitious composites; response surface methodology; I-optimal design; 

strength properties; fracture energy  

 
 
1. Introduction 

 

Concrete is a powerful generation of construction materials in structural engineering. Some 

significant features made this material to be used widely in the construction industry. These 

features include great compressive strength, fire resistance, and durability (Mazloom 2008, 

Mazloom and Ranjbar 2010, Mazloom et al. 2018a, Mazloom et al. 2018b). Although concrete, in 

general, is known for its advantages, it has some problems such as fragile fracture, cracking due to 

creep and shrinkage (Mazloom et al. 2004, Mazloom et al. 2019). Many researchers have tried to 

solve the mentioned difficulties. These issues encouraged the investigators to fabricate some new 

kinds of concrete including fiber reinforced concrete (FRC) and fiber-reinforced cementitious 

composite (FRCC) (Mazloom and Yoosefi 2013, Zhang et al. 2014, Mazloom and Mahboubi 2017, 
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Salehi and Mazloom 2018). The main ingredients of cementitious composites containing fibers 

(FRCC) are cementitious materials, water, fibers, and fine aggregate. In other words, the 

distinctive difference of FRCC in comparison with ordinary concrete or FRC is related to their 

aggregates. Note that adding fibers to the cementitious composite mixes can improve their low 

tensile strength (Yang et al. 2009, Yang and Li 2010, Li 2012, Mo et al. 2018, Zhang et al. 2019, 

Mazloom and Mirzamohammadi 2019, Mazloom and Mirzamohammadi 2020). 

Response surface methodology (RSM) is a useful statistical and mathematical tool for 

investigating the relationship between the impacts of some separate factors on the the responses by 

changing these factors simultaneously. In other words, it studies the relationship between the 

factors (independent parameters) and the responses of the problems (Alsanusi and Bentaher 2015, 

Esat Alyamaç and Ghafari 2017, Mohammed et al. 2018, Şimşeka et al. 2018, Tyagi et al. 2018). 

I-optimal design (RSM-I-optimal) is one of the most common methods used under RSM for 

empirical modeling. Accordingly, the response model based on I-optimal is illustrated in Eq. (1) 

(Desai et al. 2008, Esfahanian et al. 2013, Awolusi et al. 2019, Mohammed et al. 2018). 

Y= (b0 + 𝜀) + ∑ 𝑏𝑖
𝑘
𝑖=1 𝑋𝑖 + ∑ 𝑏𝑖𝑖

𝑘
𝑖=1 𝑋𝑖

2 +  ∑ ∑ 𝑏𝑖𝑗
𝑘
𝑗=𝑖+1

𝑘
𝑖=1 𝑋𝑖𝑋𝑗 (1) 

where Y and 𝑘  represent response values and number of independent parameters; b0, 
𝑏𝑖, 𝑏𝑖𝑖 and 𝑏𝑖𝑗  coefficients are determined by the least-squares method; 𝑋𝑖 𝑎𝑛𝑑 𝑋𝑗 (𝑖 ≠

𝑗) factors are independent parameters; 𝜀 is the error value. 

In order to find appropriate equations, several studies have been conducted on different types of 

concrete by RSM. Alsanusi and Bentaher (2015) detected two relationships to estimate the 

compressive strength of ordinary concrete at the age of 28 days. The first model was in terms of 

mix components, while the second model was in terms of mix components and the concrete 

compressive strength at the age of 7 days. The values of coefficient of efficiency (E) were 0.85 and 

0.91 for the first and second relationships, respectively. The variables were water, fine-aggregate, 

coarse-aggregate, cement, water to cement ratio and compressive strength at the age of 7 days. Jo 

et al. (2015) evaluated the flow and compressive strength of geopolymer concrete using central 

composite design (CCD) of RSM. Awolusi et al. (2019) discovered some relations to predict 

slump, water absorption, compressive strength, flexural strength and splitting tensile strength of 

concrete reinforced with steel fibers. The model classification was very good for slump, water 

absorption, compressive strength and splitting tensile strength, but it was acceptable for flexural 

strength. It should be noted that independent parameters were fiber aspect ratio, water to cement 

ratio and cement. Several studies have also been carried out using RSM procedure to optimize the 

mix proportions of concrete (Khayat et al. 2000, Mohammed et al. 2012, del Coz Diaz et al. 2014, 

Murray et al. 2014, Jimma and Rangaraju 2015, Al-alaily and Hassan 2016, Rezaifar et al. 2016).  

Although many studies have been performed on examining the mechanical properties of FRCC, 

including changes in cementitious materials and fiber types in the mix designs (Li et al. 1996, Li 

1998, Li 2000, Li et al. 2002, Li 2003, Maalej et al. 2005, Sahmaran and Li 2007, Li 2008, 

Şahmaran et al. 2010, Sahmaran et al. 2011, Yu et al. 2014, Yu et al. 2015), only a few studies 

have discovered some equations based on RSM (the I-optimal) to predict their mechanical 

properties. In other words, most of the studies in RSM field are related to predicting the 

compressive strength of ordinary concrete (Bayramov et al. 2004, Mandal and Roy 2006, Nambiar 

and Ramamurthy 2006, Aldahdooh et al. 2013, Cihan et al. 2013, Rostamian et al. 2015, Nassar et 

al. 2016). Accordingly, this study investigates some equations to predict fracture energy (GF), 

flexural strength (ft), splitting tensile strength (fspt), and compressive strength (fc) of FRCC at the 

age of 28 days based on the RSM-I-optimal. 
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Table 1 Mix proportions for FRCC 

Mix ID   Kg/m3    2%vol 

 Cement Silica fume Silica sand Water HRWRA W/(C+SF) Fiber 

A-FRCC 850 160 588 390 16 0.38 Aramid 

G-FRCC 850 160 588 390 16 0.38 Glass 

B-FRCC 850 160 588 390 16 0.38 Basalt 

P-FRCC 850 160 588 390 16 0.38 PP 

 

Table 2 Chemical composition of cement and SF 

 OPC SF 

Silicon dioxide (SiO2): wt% 21.30 96.4 

Calcium oxide (CaO): wt% 63.48 0.49 

Aluminium oxide (Al2O3): wt% 5.13 1.32 

Ferric oxide (Fe2O3): wt% 3.47 0.87 

Sodium oxide (Na2O): wt% 0.23 0.31 

Mangnesium oxide (MgO): wt% 2.51 0.97 

Phosphorus pentoxide (P2O5): wt% - 0.16 

Sulfur trioxide (SO3): wt% 1.67 0.10 

Potassium oxide (K2O): wt% 0.56 1.01 

Silicon carbide (SiC): wt% - 0.5 

Carbon (C): wt% - 0.3 

Chloride (CL): wt% - 0.04 

Water (H2O): wt% - 0.08 

 

Table 3 Properties of fibers 

Fiber type Diameter, µm Length, mm 
Tensile 

Strength, MPa 

Young 

Modulus, 

GPa 

Density, 

Kg/m3 

Melting 

Point, °C 

Aspect ratio* 

(Lf/Df) 

Aramid 12 10 3150 80 1440 800 833 

Basalt 

Glass 

11 

20 

10 

10 

2950 

3450 

90 

69 

2670 

2550 

600 

1400 

909 

500 

PP 23 10 400 2.7 910 165 434 

* Aspect ratio of fiber is defined as its length divided by its diameter 

 

 
2. Experimental program 

 
2.1 Material 

 
The FRCC mix proportions are presented in Table 1. Silica fume (SF) and Ordinary Portland 

cement (OPC) were used as cementitious materials. Silica fume can develop the quality of 

hydration products (Mazlom et al. 2015, Mazloom and Miri 2017, Mazloom et al. 2017, Afzali  
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Table 5 Details of experimental values in coded 

Num Mix ID Factors  Responses   

  A B 
Compressive strength  

(MPa) 

Splitting tensile 

strength (MPa) 

Flexural 

Strength 

(MPa) 

Fracture 

energy 

(MPa) 

1 A-FRCC 20 800 65 8 9 4.21 

2 A-FRCC 20 800 71 9 10 4.31 

3 A-FRCC 20 800 69 8 9 4.2 

4 G-FRCC 20 500 56 6.5 9 6.3 

5 G-FRCC 20 500 59.5 7 10 6.5 

6 G-FRCC 20 500 60.5 7 10 6.64 

7 B-FRCC 20 900 53 6 7.5 5.1 

8 B-FRCC 20 900 54.5 7 8 5.4 

9 B-FRCC 20 900 49.5 6 8 5.37 

10 P-FRCC 20 400 58 6 8 7.6 

11 P-FRCC 20 400 53 5.5 7.5 7.4 

12 P-FRCC 20 400 60 7 8.5 7.71 

13 A-FRCC 100 800 71 7 7 2.8 

14 A-FRCC 100 800 70 7 7.5 3.01 

15 A-FRCC 100 800 75 8 8.5 3.1 

16 G-FRCC 100 500 64.5 6 9.5 6.1 

17 G-FRCC 100 500 61 5.5 6.5 5.7 

18 G-FRCC 100 500 61 5 8 5.96 

19 B-FRCC 100 900 49.5 6 7 2.64 

20 B-FRCC 100 900 48 5.5 6 2.5 

21 B-FRCC 100 900 48 6 6 2.45 

22 P-FRCC 100 400 60 5 5 3.99 

23 P-FRCC 100 400 66 6 6 3.95 

24 P-FRCC 100 400 63 5 5.5 3.85 

25 A-FRCC 300 800 71.5 4.5 5 1.7 

26 A-FRCC 300 800 73 5 6 1.85 

27 A-FRCC 300 800 72.5 4.5 6 1.97 

28 G-FRCC 300 500 55 4.5 5 2.2 

29 G-FRCC 300 500 56 4.5 4 2.09 

30 G-FRCC 300 500 57 5 5 2.01 

31 B-FRCC 300 900 43 3 4 1.25 

32 B-FRCC 300 900 50 4 4.5 1.6 

33 B-FRCC 300 900 47 3 4 1.5 

34 P-FRCC 300 400 62.5 5 5 2.3 

35 P-FRCC 300 400 63 5 5 2.2 

36 P-FRCC 300 400 70 5.5 5.5 2.49 

Table 4 Independent parameters with code levels 

Independent variables Symbols Code levels 

  -1    0   +1 

A = Temperature (℃) A 20  160  300 

B = Fiber aspect ratio (µm/mm) B 400  650  900 
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Naniz and Mazloom 2018, Afzali Naniz and Mazloom 2019a). Table 2 presents the chemical 

compositions of the mentioned materials. Furthermore, silica sand and polycarboxylate-based 

high-range water reducing admixture (HRWRA) were used as fine aggregate and superplasticizer, 

respectively. The fibers used in the mix designs were aramid, basalt, glass, and polypropylene (PP) 

fibers. The mechanical and geometrical properties of these fibers are presented in Table 3. To 

determine the experimental (observed) values including compressive strength, rupture modulus, 

splitting tensile strength, and fracture energy of cement composites containing fibers (FRCC) at 

20℃, 100℃, and 300℃ temperatures, the samples were cast and wet cured for 28 days. Next, the 

specimens (except for the temperature of 20℃) were maintained in an electric oven for 1 h at 

100℃ and 300℃. Then, the specimens were ready for the tests. 

 

2.2 Methodology 
 
The I-optimal design was selected to discover the relationship between two independent parameters 

and responses. The independent parameters with code levels are shown in Table 4. The responses 

include fracture energy (GF), flexural strength or rupture modulus (ft), splitting tensile (fspt) and 

compressive (fc) strengths. All of the 36 experimental values used by RSM, in 14 experimental runs, are 

presented in Table 5. In order to determine the predictive efficiency of the RSM model between 

experimental (observed) and predicted values, Nash & Sutcliffe coefficient of efficiency (NSE) was 

used, as defined in Eqs. (2) to (5) (Ritter and Muñoz -Carpena 2013). 

NSE = 1- (
𝑅𝑀𝑆𝐸

𝑆𝐷
)2 (2) 

RMSE = (𝑀𝑆𝐸)
1

2 (3) 

MSE = 
∑ (𝑌𝑖− 𝑂𝑖)2𝑛

𝑖=1

𝑛
 (4) 

SD = (
∑ (𝑂𝑖− �̅�)2𝑛

𝑖=1

𝑛
)

1

2 (5) 

where MSE, RMSE and SD are mean square error, root-mean-square error and standard deviation, 

respectively. Moreover, 𝑌𝑖, 𝑂𝑖 , �̅� and 𝑛 are predicted, experimental, mean of the experimental and 

number of values, respectively. In terms of NSE, the model performance rating is classified 

unsatisfactory, acceptable, good and very good when NSE < 0.65, 0.65 ≤ NSE < 0.8, 0.8 ≤ NSE < 0.9 

and NSE ≥ 0.9, respectively. 

 

 
3. Results and discussion 

 
3.1 Fracture energy 
 
In recent years, several studies have examined the fracture behavior of ordinary, lightweight, 

and self-compacting normal concrete (Nikbin et al. 2016, Karamloo et al. 2016, Karamloo et al. 

2017, Karamloo and Mazloom 2018, Mazloom and Karamloo 2019, Salehi and Mazloom 2019a, 

Salehi and Mazloom 2019b, Afzali Naniz and Mazloom 2019b). However, sparse studies have 

investigated the fracture energy of FRCC (Bolander et al. 2008). In this research, to calculate the  
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Table 6 ANOVA for fracture energy 

Source 
Sum of 

Squares 

Degree of 

freedom 
Mean Square F-value p-value 

 

Model 160.08 5 32.02 705.45 < 0.0001 significant 

A-Temperature 104.87 1 104.87 2310.82 < 0.0001 
 

B-Fiber aspect ratio 22.50 1 22.50 495.72 < 0.0001 
 

AB 5.94 1 5.94 130.94 < 0.0001 
 

A² 6.27 1 6.27 138.16 < 0.0001 
 

B² 0.6862 1 0.6862 15.12 0.0004 
 

Residual 1.63 36 0.0454 
   

Lack of Fit 0.1357 6 0.0226 0.4528 0.8372 not significant 

Pure Error 1.50 30 0.0499 
   

Cor Total 161.71 41 
    

 

 

fracture energies of the specimens, ASTM C1609 (2006) is used. In this regard, the fracture energy 

can be determined as given in Eqs. (6) to (8) (Hillerborg 1985). 

GF = 
𝑊

𝑎
 (6) 

𝑊 = 𝑊0 + 𝑊1 + 𝑊2 (7) 

𝑊1 = 𝑊2 = F1𝛿0 (8) 

Where GF, 𝑊 and 𝑎 are fracture energy, total area under the load-deflection curve and broken  

cross-section. Furthermore, the deformation when the beam breaks is 𝛿0, the initial area under the 

load-deflection curve is  𝑊0, and F1 is the weight of testing equipment and the beam (Mazloom and 

Mirzamohammadi 2020). 

Eq. (9) represents a formula for predicting the fracture energy of FRCC based on RSM-I-optimal. In 

this equation, A and B are temperature (℃) and fiber aspect ratio (µm/mm), respectively. The 

coefficient of determination (R2) for this equation was 0.98. Table 6 presents the analysis of variance 

(ANOVA) for the fracture energy. According to this table, both temperature and fiber aspect ratio have 

significant impacts on the fracture energy (p-value<0.05). Moreover, the effect of temperature is far 

greater than fiber aspect ratio. High temperatures have negative influence on the fracture energy of all 

specimens. The perturbation plot for fracture energy is illustrated in Fig. 1. The findings mentioned 

above can be seen in this figure. 

Fracture energy = +8.2198 – 0.0414017A + 0.00214909B + 1.60201 × 10-5AB + 5.20594 × 10-5A2 – 

6.49742 × 10-6B2 
(9) 

 

3.2 Flexural strength 
 

To evaluate the flexural strengths of the specimens, ASTM C1609 (ASTM C1609/M-05 2006) 

was used. Eq. (10) indicates a relationship for the flexural strength of FRCC. The coefficient of 

determination (R2) for this equation was calculated to be 0.92. Fig. 2 depicts three-dimensional  
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Fig. 1 Perturbation plot for fracture energy 

 

 
Fig. 2 3D plot of flexural strength in I-optimal design 

 

 

plot (3D) for flexural strength in the I-optimal design. As can be seen in this figure, the highest and 

lowest flexural strengths of the samples were related to temperatures of 20℃ and 300℃, 

respectively. 

Flexural strength = -3.9714 – 0.0296095A + 0.0451316B + 5.10413 × 10-5A2 –3.46596

 × 10-5B2 (10) 

 

3.3 Splitting tensile strength 
 

To assess the tensile strength of the samples, BS 1881: part 117: 1983 (BS 1983a) was used. Eq. 

(11) indicates a relationship for the splitting tensile strength of FRCC. The coefficient of determination 

(R2) for this equation was 0.83. Fig. 3 displays the contour plot for splitting tensile strength in the RSM. 

This figure reveals that splitting tensile strengths of the specimens decreased when the temperature 

increased. Mechtcherine et al. (2012) investigated the effects of temperature on the tensile behavior of  
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Fig. 3 Contour plot for splitting tensile strength 

 

 

strain-hardening cement-based composites (SHCC) reinforced with PVA fibers. They similarly detected 

the tensile strength of the samples dropped at 100 and 150℃. 

Splitting tensile strength = -3.34234 - 0.00565433A + 0.0322036B – 1.42734 × 10-5AB + 2.43318 

× 10-5A2 – 2.28726 × 10-5B2 
(11) 

 

3.4 Compressive strength 
 

The experimental values for the compressive strength of the specimens are shown in Table 5. 

The dimensions of the cube samples used for this test were 15×15×15 cm3 according to BS 1881: 

part 108: 1983 (BS 1983b). Eq. (12) presents a relationship to predict compressive strength of 

FRCC based on the RSM method. In this equation, the coefficient of determination (R2) is 0.98. 

Table 7 shows the analysis of variance (ANOVA) for compressive strength. As can be seen in this 

table, the effects of fiber aspect ratio on the compressive strength are far greater than temperature, 

and fiber aspect ratio has a higher F-value than temperature. In other words, sub-elevated 

temperatures did not have considerable impacts on the compressive strength of the specimens. 

Some studies are in agreement with the mentioned results. For instance, Morsy et al. (2012) 

detected that the compressive strengths of the blended and control cement mortars were enhanced 

with temperatures up to 250℃ and then declined as the temperature rose up to 800℃. Fig. 4 

depicts the normal plot of residuals for the compressive strength. The normal probability plot is a 

graphical technique for assessing whether or not a data set is approximatly normally distributed. 

The data are plotted against a theoretical normal distribution in such a way that the points should 

form an approximate straight line. Departures from this straight line indicate departures from 

normality. As can be seen in this figure, all plotted points fell very close to the distribution fitted 

line. 
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Table 7 ANOVA for compressive strength 

Source 
Sum of 

Squares 

Degree of 

freedom 
Mean Square F-value p-value 

 

Model 864.43 5 172.89 372.31 < 0.0001 significant 

A-Temperature 9.50 1 9.50 20.46 < 0.0001 
 

B-Fiber aspect ratio 278.69 1 278.69 600.16 < 0.0001 
 

AB 103.37 1 103.37 222.62 < 0.0001 
 

A² 0.0102 1 0.0102 0.0219 0.8832 
 

B² 517.42 1 517.42 1114.27 < 0.0001 
 

Residual 16.72 36 0.4644 
   

Lack of Fit 3.88 6 0.6472 1.51 0.2078 not significant 

Pure Error 12.83 30 0.4278 
   

Cor Total 881.14 41 
    

 

 
Fig. 4 Normal plot of residuals for the compressive strength 

 

 

Compressive strength = -7.62398 + 0.0391253A + 0.229317B – 6.6784 × 10-5AB –                 

0.000178288 × B2 
(12) 

 

3.5 Predictive efficiency of the RSM model 
 

This study presents the predictive efficiency of the RSM model between the observed and 

predicted values based on NSE method (Ritter and Carpena, 2013). Standard deviation (SD), mean 

square error (MSE), root-mean-square error (RMSE), Nash & Sutcliffe coefficient of efficiency 

(NSE), and model classification are reported in Table 8. According to this table, the model 

classifications are very good, good, good, and acceptable for fracture energy (FE), flexural (FS), 

splitting tensile (STS) and compressive strengths (CS), respectively. 
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Table 8 Predictive efficiency of the RSM model 

Test SD MSE RMSE NSE Model classification 

FE 2.06 0.42 0.65 0.90 Very good 

FS 2.15 0.51 0.71 0.89 Good 

STS 1.65 0.47 0.68 0.82 Good 

CS 13.1 53.3 7.30 0.69 Acceptable 

 

 

5. Conclusions 
 

From the results of this study, the following conclusions can be derived: 

• The analysis of variance (ANOVA) for fracture energy indicated that both temperature and 

fiber aspect ratio had significant impacts on the fracture energy. However, the impact of 

temperature was greater than fiber aspect ratio. In other words, sub-elevated temperatures had 

considerable negative effects on the fracture energy of the specimens.  

• Regarding the fracture energy, the results of the RSM models showed that the use of 

polypropylene fibers in fiber reinforced cementitious composites (FRCC) was more efficient 

than utilizing glass, aramid, and basalt fibers at both normal and sub-elevated temperatures.  

• Three-dimensional (3D) and contour plots for flexural and splitting tensile strengths showed 

the considerable negative influences of sub-elevated temperatures on the mentioned strengths. 

Perhaps the reason for this phenomenon is that high temperatures can reduce the van der Waal’s 

forces between C-S-H layers; therefore, the mentioned strengths can diminish. The samples 

reinforced with glass and aramid fibers had the greatest flexural and splitting tensile strengths 

at both normal and sub-elevated temperatures. 

• The analysis of variance (ANOVA) for compressive strength indicated that the influence of 

fiber aspect ratio on the compressive strength was greater than temperature. In other words, 

sub-elevated temperatures did not have considerable negative impact on the compressive 

strength of the specimens. The reason for this can be the hydration of cement particles that did 

not contribute to the hydration process before reaching to 100 ℃ and 300 ℃ temperatures. 

• In almost all cases, the specimens reinforced with polypropylene fibers showed the best 

performances against elevated temperatures. In other words, the minimum reductions in 

fracture energy, flexural, splitting tensile, and compressive strengths were related to the 

samples containing polypropylene fibers at both 100℃ and 300℃ temperatures.  

• The predictive efficiencies of the RSM models were very good, good, good, and acceptable 

for fracture energy, flexural, splitting tensile and compressive strengths, respectively. 
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